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Improve Computer-Aided Diagnosis with Machine
Learning Techniques Using Undiagnosed Samples
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Abstract— In computer-aided diagnosis, machine learning
techniques have been widely applied to learn hypothesis from
diagnosed samples in order to assist the medical experts in
making diagnosis. To learn a well-performed hypothesis, a large
amount of diagnosed samples are required. Although the samples
can be easily collected from routine medical examinations, it is
usually impossible for the medical experts to make diagnosis for
each of the collected samples. If hypothesis could be learned
in presence of a large amount of undiagnosed samples, the
heavy burden on the medical experts could be released. In
this paper, a new semi-supervised learning algorithm named
Co-Forest is proposed. It extends the co-training paradigm by
using a well-known ensemble method named Random Forest,
which enables Co-Forest to estimate the labeling confidence of
undiagnosed samples and produce the final hypothesis easily.
Experiments on benchmark data sets verify the effectiveness
of the proposed algorithm. Case studies on three medical data
sets and a successful application to microcalcification detection
for breast cancer diagnosis show that undiagnosed samples are
helpful in building computer-aided diagnosis systems, and Co-
Forest is able to enhance the performance of the hypothesis
learned on only a small amount of diagnosed samples by utilizing
the available undiagnosed samples.

Index Terms— Computer-aided diagnosis, machine learning,
semi-supervised learning, co-training, ensemble learning, random
forest, microcalcification cluster detection

I. INTRODUCTION

MAchine learning techniques have been successfully ap-
plied to computer-aided diagnosis (CAD) systems [20]

[35] [42]. These methods learn hypotheses from a large
amount of diagnosed samples, i.e. the data collected from
a number of necessary medical examinations along with the
corresponding diagnoses made by medical experts, in order to
assist the medical experts in making diagnosis in future.

To make the CAD systems perform well, a large amount
of samples with diagnosis are required for learning. Usually
these samples can be easily collected from routine medical
examinations. However, making diagnosis for such a large
amount of cases one by one places heavy burden on medical
experts. For instance, to construct a CAD system for breast
cancer diagnosis, radiologists have to label every focus in a
huge amount of easily obtained high resolution mammograms.
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This process is usually quite time-consuming and inefficient.
One possible solution is to learn hypothesis from a small
amount of samples that are carefully diagnosed by medical
experts (the labeled data) and then utilize a large amount of
readily available undiagnosed samples (the unlabeled data) to
enhance the performance of the learned hypothesis. In machine
learning, this technique is called learning with labeled and
unlabeled data.

An effective way to enhance the performance of the learned
hypothesis by using the labeled and unlabeled data together
is known as semi-supervised learning [8] [32] [46], where
an initial hypothesis is usually learned from labeled data and
then refined with the information derived from the unlabeled
ones. Co-training [4] is an attractive semi-supervised learning
paradigm, which trains two classifiers through letting them
label the unlabeled examples for each other. In co-training
the data should be described by two sufficient and redundant
attribute subsets, each of which is sufficient for learning and
independent to the other given class label.

Although co-training has already been successfully applied
to some fields [4] [25] [30], the requirement on two sufficient
and redundant attribute subsets is too strong to be met in many
real-world applications. Goldman and Zhou [17] extended
co-training by replacing the requirement on two sufficient
and redundant attribute subsets with the requirement on two
different supervised learning algorithms whose hypotheses
partition the instance space into a set of equivalence classes.
Ten-fold cross validation is frequently applied to find the
confident examples to label in every training iteration and
produce the final hypothesis, which makes both the learning
process and prediction time-consuming.

In this paper, a new co-training style algorithm named Co-
Forest, i.e. CO-trained random FOREST, is proposed. It ex-
tends the co-training paradigm by incorporating a well-known
ensemble learning [13] algorithm named Random Forest [7] to
tackle the problems of how to determine the most confident
examples to label and how to produce the final hypothesis.
Since ensemble learning has been successfully applied to many
medical problems [35] [41] [42], the particular settings enables
Co-Forest to exploit the power of ensemble for better perfor-
mance of the learned hypothesis in semi-supervised learning.
Since Co-Forest requires neither the data be described by
sufficient and redundant attribute subsets nor special learning
algorithms which frequently employ time-consuming cross
validation in learning, it could be easily applied in CAD
systems. Experiments on UCI data sets verify the effectiveness
of the proposed algorithm. Case studies on three medical
diagnosis tasks and a successful application to microcalcifi-
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cation cluster detection in digital mammograms show that the
undiagnosed samples are beneficial and the hypothesis learned
by Co-Forest achieves remarkable performance, even though
it is learned from a large amount of undiagnosed samples in
addition to only a small amount of diagnosed ones. Hence,
constructing CAD system with Co-Forest may release the
burden on medical experts for diagnosing a large number of
samples.

The rest of the paper is organized as follows: Section II
briefly reviews semi-supervised learning and ensemble learn-
ing. Section III presents Co-Forest. Section IV reports the
experimental results on UCI data sets and case studies on
three medical diagnosis data sets. Section V describes the
application to microcalcification cluster detection in digital
mammograms. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Semi-Supervised Learning

In traditional supervised learning, all training data should
be labeled before learning, and classifiers are then trained on
these labeled data. When a portion of the training data are
unlabeled, an effective way to combining labeled and unla-
beled data in learning is known as semi-supervised learning
[8] [32] [46], where an initial hypothesis is firstly learned from
the labeled data and then refined through the unlabeled ones
labeled by certain automatic labeling strategy.

Many semi-supervised learning algorithms have been pro-
posed. Typical ones include using EM [12] approach to esti-
mate the parameters of a generative model and the probability
of unlabeled examples being in each class [26] [28] [34]; con-
structing a graph on training data by certain similarity between
examples and imposing label smoothness on the graph as a
regularization term [3] [38] [47]; using a transductive inference
for support vector machines on a special test set [23]; etc.

A preeminent work in semi-supervised learning methods is
the co-training paradigm proposed by Blum and Mitchell [4].
In co-training, two classifiers are trained on two sufficient and
redundant sets of attributes respectively. Each classifier labels
several unlabeled examples whose labels are most confidently
predicted from its point of view. These newly labeled examples
are used to augment the labeled training set of the other
classifier. Then, each classifier is refined with its augmented
labeled training set. They [4] showed that any weak hypothesis
could be boosted from the unlabeled data if the data meet the
class-conditional independent requirement and the target con-
cept is learnable with random classification noise. Dasgupta et
al. [11] derived a generalization error bound for the co-trained
classifier, which indicates that when the requirement on the
existence of sufficient and redundant attribute subsets is met,
the co-trained classifiers can make fewer generalization errors
by maximizing their agreements over the unlabeled data.

However, although co-training has been applied in some ap-
plications such as visual detection [25], noun phrase identifica-
tion [29] and statistical parsing [21] [30] [36], the requirement
on sufficient and redundant attribute subsets can be hardly
met in most real-world applications. Goldman and Zhou [17]
relaxed this constraint on data by using two supervised learn-
ing algorithms, each of which produces hypothesis that is

able to partition the instance space into a set of equivalence
classes. Recently, through using three classifiers instead of two
classifiers, Zhou and Li [43] proposed the tri-training algo-
rithm, which requires neither sufficient and redundant attribute
subsets nor special supervised learning algorithms that could
partition the instance space into a set of equivalence classes.
Another variant of co-training involving multiple classifiers
has been presented by Zhou and Goldman [39]. It is worth
mentioning that co-training paradigm is not only applicable
to classification tasks. Recently, a co-training style algorithm
for semi-supervised regression has been proposed [44], which
does not require sufficient and redundant attribute subsets.

B. Ensemble Learning

Ensemble learning paradigms train multiple component
learners and then combine their predictions. Ensemble tech-
niques can significantly improve the generalization ability of
single learners, and therefore ensemble learning has been a
hot topic during the past years [13].

An ensemble is usually built in two steps. The first step
is to generate multiple component classifiers and the second
step is to combine their predictions. According to the way
to generate component classifiers, current ensemble learning
algorithms fall into two categories, i.e., algorithms that gen-
erate component classifiers in parallel and algorithms that
generate component classifiers in sequence. Bagging [5] is a
representative of the first category. It generates each classifier
on an example set bootstrap sampled [14] from the original
training set in parallel, and then combines their predictions
using majority voting. Other well-known algorithms in this
category include Random Subspace [19], Random Forest [7],
etc. In the second category the representative algorithm is Ad-
aBoost [15], which sequentially generates a series of classifiers
on the data set by making the subsequent classifier focus on
the training examples misclassified by the former classifiers.
Other well-known algorithms in this category include Arc-
x4 [6], LogitBoost [16], etc.

Ensemble learning has already been successfully applied to
computer-aided diagnosis. Representative applications include
employing a two-level ensemble to identify lung cancer cells in
the images of the specimens of needle biopsies obtained from
the bodies of the subjects to be diagnosed [42]; employing
an ensemble to reduce the high prediction variance exhibited
by a single classifier in predicting the outcome in In-Vitro
Fertilisation [10]; employing an ensemble for breast cancer
diagnosis, where the ensemble is adapted to the required
sensitivity and specificity by manipulating the proportion of
the benign samples to the malignant samples in training
data [35]; employing an ensemble for the classification of
glaucoma by using the Heidelberg Retina Tomograph to derive
the measurements from laser scanning images of the optic
nerve head [20]; employing an ensemble with special voting
schemata for early melanoma diagnosis [31]; etc. Recently,
Zhou and Jiang [41] have proposed the C4.5 Rule-PANE
algorithm, which combines ensemble learning technique with
C4.5Rule induction, and achieved strong generalization as well
as good comprehensibility in medical tasks.
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III. CO-FOREST

Let L and U denote the labeled set and unlabeled set
respectively, which are drawn independently from the same
data distribution. In co-training paradigm, two classifiers are
firstly trained from L, and then each of them selects the
most confident examples in U to label from its point of
view, and the other classifier updates itself with these newly
labeled examples. One of the most important aspect in co-
training is how to estimate the confidence of a given unlabeled
example. In standard co-training, the confidence estimation
directly benefits from the two sufficient and redundant attribute
subsets, where labeling confidence of a classifier could be
regarded as its confidence for an unlabeled example. When
the two sufficient and redundant attribute subsets do not exist,
ten-fold cross validation is applied in each training iteration to
estimate the confidence for the unlabeled data [17], in order
not to bias its peer classifier with the unconfident examples.
The ineffective confidence estimation greatly reduces the ap-
plicability of the extended co-training algorithm in many real-
world applications such as computer-aided diagnosis.

However, if an ensemble of N classifiers, which is denoted
by H∗, are used in co-training instead of two classifiers,
the confidence could be estimated in an efficient way. When
determining the most confidently labeled examples for a
component classifier of the ensemble hi (i = 1, ..., N ), all
other component classifiers in H∗ except hi are used. These
component classifiers form a new ensemble, which is called
the concomitant ensemble of hi, denoted by Hi. Note that
Hi differs from H∗ only by the absence of hi. Now the
confidence for an unlabeled example can be simply estimated
by the degree of agreements on the labeling, i.e. the number of
classifiers that agree on the label assigned by Hi. By using this
method, Co-Forest firstly trains an ensemble of classifiers on
L and then refines each component classifier with unlabeled
examples selected by its concomitant ensemble.

In detail, in each learning iteration of Co-Forest, the con-
comitant ensemble Hi examines each example in U . If the
number of classifiers voting for a particular label exceeds
a pre-set threshold θ, the unlabeled example along with the
newly assigned label is then copied into the newly labeled
set L′

i. Set L ∪ L′
i is used for the refinement of hi in this

iteration. Note that the unlabeled examples selected by Hi are
not removed from U , so they might be selected again by other
Hj (j �= i) or the concomitant ensembles in the following
iterations.

Since all the examples whose estimated confidence are
above θ will be added to L′

i, the size of L′
i might be very large,

even equal to the size of U in an extreme case. However, when
the learned hypothesis has not fully captured the underlying
distribution, especially in several initial iterations, using such
a huge amount of automatically-labeled data might affect the
performance of the learned hypothesis. Inspired by Nigam et
al. [28], each unlabeled example is assigned a weight. Unlike
the fixed weight used in [28], in our approach an example
is weighted by the predictive confidence of a concomitant
ensemble. On the one hand, the weighting of unlabeled ex-
ample reduces the potential negative influence of the use of

overwhelming amount of unlabeled data. On the other hand,
it makes the algorithm insensitive to the parameter θ. Even if
θ is small, this weighting strategy can limit the influence of
the examples with low predictive confidence.

Furthermore, the use of an ensemble of classifiers here not
only serves as a simple way to avoid utilizing complicated
confidence estimation method, but also makes the labeling
of the unlabeled data more accurate than a single classifier.
However, although ensemble generalizes better than a single
classifier, misclassification of unlabeled example is inevitable.
So hi receives noisy examples from time to time, which might
bias the refinement of hi. Fortunately, the following derivation
inspired by Goldman and Zhou [17] shows that the negative
influence caused by such noise could be compensated by
augmenting the labeled set with sufficient amount of newly
labeled examples under certain conditions.

According to Angluin and Laird [1], if the size of training
data (m), the noise rate (η) and the hypothesis worst-case error
rate (ε) satisfy the following relationship

m =
c

ε2(1 − 2η)2
(1)

where c is a constant, then the learned hypothesis hi that
minimizes the disagreement on a sequence of noisy training
examples converges to the true hypothesis h∗ with the proba-
bility equal to one.

By reforming (1), the following utility function is obtained.

u =
c

ε2
= m(1 − 2η)2 (2)

In the t-th learning iteration, a component classifier hi

(i = 1...N ) is supposed to refine itself on the union of
original labeled set L with the size of m0 and the newly
labeled set L′

i,t with the size of mi,t, where L′
i,t is determined

and labeled by its concomitant ensemble Hi. Let the error
rate of Hi on L′

i,t be êi,t, and then the weighted number of
examples being mislabeled by Hi in L′

i,t is êi,tWi,t, where
Wi,t =

∑mi,t

j=0 wi,t,j and wi,t,j is the predictive confidence
of Hi on xj in L′

i,t. To uniform the expressions, m0 is
rewritten as the weighted form W0 where W0 =

∑m0
j=0 1.

In the augmented training set L ∪ L′
i,t, the noisy examples

consist of the noisy examples in L and the examples in L′
i,t

that are misclassified by the concomitant ensemble Hi. Thus
the noise rate in L ∪ L′

i,t is estimated by

ηi,t =
η0W0 + êi,tWi,t

W0 + Wi,t
(3)

By replacing η and m in (2) with (3) and the weighted size
of the augmented training set (W0 + Wi,t) respectively, the
utility of hi in the t-th iteration takes the form of

ui,t = (W0 + Wi,t)
(

1 − 2
η0W0 + êi,tWi,t

W0 + Wi,t

)2

(4)

Similarly, the utility of hi in the (t − 1)-th iteration is

ui,t−1 = (W0 + Wi,t−1)
(

1 − 2
η0W0 + êi,t−1Wi,t−1

W0 + Wi,t−1

)2

(5)
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According to (2), the utility u is inverse proportion to the
squared worse-case error rate ε2. Thus, to reduce the worst-
case error rate of each classifier hi, the utility of hi should
be increased in the learning iterations, i.e. ui,t > ui,t−1.
Now assume that little noise exists in L and each component
classifier hi meets the requirement of weak classifier, i.e
êi,t < 0.5. By comparing the right hand side of (4) and
(5), ui,t > ui,t−1 holds when Wi,t > Wi,t−1 and êi,tWi,t <
êi,t−1Wi,t−1, which are further summarized by

êi,t

êi,t−1
<

Wi,t−1

Wi,t
< 1 (6)

According to (6), êi,t < êi,t−1 and Wi,t > Wi,t−1 should be
satisfied at the same time. However, even if this requirement is
met, êi,tWi,t < êi,t−1Wi,t−1 might still be violated since Wi,t

might be much larger than Wi,t−1. To make (6) hold again in
this case, L′

i,t must be subsampled so that Wi,t is less than
êi,t−1Wi,t−1

êi,t
.

Another important factor in co-training is how to produce
the learned hypothesis with the refined classifiers, which is
sometimes complicated and time-consuming [17]. Since an
ensemble of classifiers is introduced to extend the co-training
process, majority voting, which is widely used in ensemble
learning, is employed to produce the final hypothesis.

Note that, when (6) holds, component classifiers are refined
with unlabeled data, so the average error rate of component
classifiers are expected to be reduced as the semi-supervised
learning process proceeds. Nevertheless, the performance im-
provement of each component classifier does not necessar-
ily lead to the performance improvement of the ensemble.
According to Krogh and Vedelsby [24], an ensemble ex-
hibits its generalization power when the average error rate
of component classifiers is low and the diversity between
component classifiers is high. To obtain a good performance
of the ensemble, the diversity between component classifiers
should be maintained when Co-Forest exploits the unlabeled
data.

Unfortunately, the learning process of Co-Forest does hurt
the diversity of classifiers. In each learning iteration, con-
comitant ensembles are used to select and label the unlabeled
data for its corresponding classifiers. Since two concomitant
ensembles Hi and Hj differs from each other only by two
classifiers, i.e. hi and hj , the prediction made by Hi and Hj

as well as the predictive confidence for each prediction could
be quite similar, especially when the size of the concomitant
ensembles is large. Thus, hi and hj will be similar in the next
iteration after retraining themselves with the similar newly
labeled sets. This degradation of diversity might counteract the
error rate reduction of each component classifiers benefitting
from the unlabeled data.

To maintain the diversity in the semi-supervised learn-
ing process, two strategies are employed. Firstly, a well-
known ensemble method named Random Forest [7] is used
to construct the ensemble in Co-Forest. Since Random Forest
injects certain randomness in the tree learning process, any
two trees in the Random Forest could still be diverse even
if their training data are similar. Secondly, the diversity is

TABLE I

PSEUDO-CODE DESCRIBING THE CO-FOREST ALGORITHM

Algorithm: Co-Forest
Input: the labeled set L, the unlabeled set U ,

the confidence threshold θ, the number of random trees N
Process:

Construct a random forest consisting N random trees.
for i ∈ {1, ..., N} do

êi,0 ← 0.5
Wi,0 ← 0

end for
t← 0
Repeat until none of the trees in Random Forest changes

t← t + 1
for i ∈ {1, ..., N} do

êi,t ← EstimateError(Hi, L)
L′

i,t ← φ

if(êi,t < êi,t−1)

U ′
i,t ← SubSampled(U,

êi,t−1Wi,t−1
êi,t

)

for each xu ∈ U ′
i,t do

if (Confidence(Hi, xu) > θ)
L′

i,t ← L′
i,t ∪ {(xu, Hi(xu))}

Wi,t ←Wi,t + Confidence(Hi, xu)
end for

end for
for i ∈ {1, ..., N} do

if (ei,tWi,t < ei,t−1Wi,t−1)
hi ← LearnRandomTree(L ∪ L′

i,t)

end for
end of Repeat

Output: H∗(x)← arg max
y∈label

�

i:hi(x)=y

1

further maintained when the concomitant ensembles select
the unlabeled data to label. Specifically, not all the examples
in U will be examined by concomitant ensembles. Instead,
a subset of unlabeled examples with the total weight less
than êi,t−1Wi,t−1

êi,t
is randomly selected from U . Then confident

examples are further selected from the subset. Note that the
subset not only offers diversity to some extent, but also acts
as a pool to reduce the chance of being trapped into local
minima, just like a similar strategy employed in [4].

Table I shows the pseudo-code of Co-Forest. N random
trees are firstly initiated from the training set bootstrap sam-
pled from L for creating a Random Forest. Then, in each
learning iterations each random tree is refined with the newly
labeled examples selected by its concomitant ensemble under
the conditions showing in (6), where the error rate êi,t of
concomitant ensemble Hi should be estimated accurately.
Here, the error rate is estimated on the training data under the
assumption that the incoming examples to be predicted come
from the same distribution as that of training data. This method
tends to under-estimate the error rate. Fortunately, since the
Random Forest in Co-Forest is initiated through bootstrap
sampling [14] on L, the out-of-bag error estimation [7] could
be used at the first iteration to give a more accurate estimate
of êi,t. This method reduces the chance of the trees in the
Random Forest being biased when utilizing unlabeled data at
the first iteration.

Note that by introducing ensemble method into the co-
training process, Co-Forest requires neither the data described
by the sufficient and redundant attribute subsets nor the use of
two special supervised learning algorithms which frequently
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use ten-fold cross validation to select the confident unlabeled
examples to label and to produce the final hypothesis. There-
fore, Co-Forest can be easily applied to many real-world
applications such as computer-aided diagnosis. Moreover, Co-
Forest extends tri-training [43] with more classifiers. These
classifiers enable Co-Forest to exploit the power of ensemble
in confidently selecting the unlabeled examples to label and
producing the final hypothesis that generalizes quite well.

IV. EXPERIMENTS

Ten data sets from UCI machine learning repository [2]
are used in the experiments. Table II tabulates the detailed
information of the experimental data sets. Among these data
sets, three medical diagnosis data sets, namely diabetes, hep-
atitis, and wpbc, are further analyzed, respectively, to verify
the effectiveness of proposed Co-Forest algorithm on medical
diagnosis tasks. The diabetes data set is a collection of diabetes
cases of Pima Indians from the National Institute of Diabetes
and Digestive and Kidney Diseases. It contains 768 samples
described by 8 continuous attributes. 268 samples are tested
positive for diabetes and the other 500 samples are negative.
The hepatitis data set consists of samples of 155 patients
described by 19 attributes, i.e. 5 continuous attributes and
14 nominal ones. Among these patients, 32 patients died
of hepatitis while the remaining ones survived. In the data
set of wpbc, 33 continuous attributes are used to describe
198 samples belonging to two classes, i.e. whether the breast
cancer would reoccur within 24 months.

TABLE II

EXPERIMENTAL DATA SETS

Data set # features # instances # classes
bupa 6 345 2
colic 22 368 2
diabetes 8 768 2
hepatitis 19 155 2
hypothyroid 25 3163 2
ionosphere 34 351 2
kr-vs-kp 36 3196 2
sonar 60 208 2
vote 16 435 2
wpbc 33 198 2

For each data set, 10-fold cross validation is employed for
evaluation. In each fold, training data are randomly partitioned
into labeled set L and unlabeled set U for a given unlabel
rate (μ), which can be computed by the size of U over the
size of L ∪ U . For instance, if a training set contains 100
examples, splitting the training set according to unlabel rate
80% will produce a set with 20 labeled examples and a set
with 80 unlabeled examples. In order to simulate different
amount of unlabeled data, four different unlabel rates, i.e. 20%,
40%, 60% and 80%, are investigated here. Note that the class
distributions in L and U are kept similar to that in the original
data set.

As mentioned in Section III, the learning process of Co-
Forest might hurt the diversity of the component classifiers
when the size of ensemble is large. According to Zhou et
al. [45], large size of ensemble does not necessarily lead to
better performance of an ensemble. Thus, the ensemble size N

in Co-Forest is not supposed to be too big. In the experiments,
the value of N is set to 6. The other parameters of Random
Forest adopt the default settings of the RandomForest package
in WEKA [37]. The confident threshold θ is set to 0.75, i.e.
an unlabeled example is regarded as being confidently labeled
if more than 3/4 trees agree on a certain label.

For comparison, the performance of two semi-supervised
algorithms, i.e. co-training and self-training, are also evalu-
ated. Since standard co-training [4] requires the sufficient and
redundant attribute subsets, it could not be directly applied
to the experimental data sets. Fortunately, previous work [27]
indicates that under this circumstance co-training could still
benefit from the unlabeled data in most of time by randomly
splitting the attributes into two sets. Thus, the attributes in each
data set are randomly split into two disjoint sets with almost
equal size, just like what was done in [27], and then the co-
training algorithm learns hypothesis from the transformed data
set. The self-training algorithm [27] learns hypothesis from
the labeled data and keeps on refining the hypothesis with the
self-labeled data from the unlabeled set. Although the self-
training algorithm has similar working style to the co-training
algorithm, it has no requirement on the data sets. Note that the
termination criteria in both standard co-training algorithm and
self-training algorithm are different from that in Co-Forest.
For fair comparison, the termination criteria of co-training
and self-training are modified to that in Co-Forest. Random
tree and Random Forest trained on L, denoted by RTree and
Forest respectively, are used as the baselines for comparison.
Here, random tree is the base classifier in Random Forest. The
settings of random tree and Random Forest are kept the same
as that in Co-Forest. These two baselines illustrate how well a
Random Forest and one of its component can perform without
further exploiting the unlabeled data, respectively. Moreover,
SVM and AdaBoost [15] trained on L are also compared in the
experiment, providing a reference to the performance achieved
by some top classifiers without utilizing unlabeled data.

For each data set under a specific unlabel rate, 10-fold
cross validation is repeated 10 times, and the results are
averaged. Table III to Table VI tabulate the average error
rates of the learned hypotheses under different unlabel rates.
In the columns of the three semi-supervised learning algo-
rithms, initial and final shows the average error rates of the
hypotheses learned only with the labeled data and those further
refined with the unlabeled data respectively. The performance
improvement of the learned hypothesis from the unlabeled data
is denoted by improv., which can be computed by the reduction
of error rates of the learned hypothesis over that of the hypoth-
esis initially learned with the labeled data. Note that some of
the data in the tables seem inconsistent due to truncation. The
highest improvement under each unlabel rates on each data
set has been boldfaced. Pairwise two-tailed t-test under the
significance level 0.05 is applied to the experimental results,
and the significant performance improvement is marked by a
star. The row avg. in each table shows the average results over
all the experimental data sets.

Moreover, classifiers are trained on L ∪ U provided with
all ground-truth labels of the unlabeled data (i.e. the case
when μ = 0%). Such data set is referred as ideal training
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TABLE III

AVERAGE ERROR RATES OF THE COMPARED ALGORITHMS UNDER THE UNLABEL RATE OF 80%

Self-Training Co-Training Co-Forest
Data set RTree Forest SVM AdaBoost

initial final improv. initial final improv. initial final improv.

bupa .396 .395 .420 .387 .396 .424 -7.1%∗ .427 .443 -3.6% .395 .384 2.9%∗
colic .272 .208 .233 .230 .272 .278 -2.3% .255 .285 -11.7%∗ .208 .178 14.5%∗
diabetes .321 .278 .261 .263 .321 .318 0.8% .374 .356 4.8%∗ .278 .261 6.2%∗
hepatitis .231 .203 .186 .206 .231 .240 -4.2% .246 .240 2.8% .203 .180 11.5%∗
hypothyroid .023 .018 .035 .014 .023 .023 -2.6% .032 .038 -18.4%∗ .018 .017 6.6%
ionosphere .159 .129 .155 .156 .159 .191 -20.4%∗ .179 .194 -8.6% .129 .092 28.7%∗
kr-vs-kp .100 .051 .055 .080 .100 .122 -22.2%∗ .112 .123 -9.4%∗ .051 .035 32.2%∗
sonar .367 .312 .273 .306 .367 .388 -5.7% .366 .398 -8.7%∗ .312 .282 9.7%∗
vote .088 .066 .056 .053 .088 .096 -9.2% .104 .135 -30.1%∗ .066 .056 15.0%∗
wpbc .333 .328 .244 .304 .333 .373 -12.3%∗ .353 .341 3.5% .328 .279 15.0%∗
avg. .229 .199 .192 .200 .229 .245 -8.5% .245 .255 -7.9% .199 .176 14.2%

TABLE IV

AVERAGE ERROR RATES OF THE COMPARED ALGORITHMS UNDER THE UNLABEL RATE OF 60%

Self-Training Co-Training Co-Forest
Data set RTree Forest SVM AdaBoost

initial final improv. initial final improv. initial final improv.

bupa .396 .376 .422 .390 .396 .403 -1.7% .411 .447 -8.7%∗ .376 .364 3.2%∗
colic .242 .189 .203 .199 .242 .258 -6.8% .213 .240 -12.7%∗ .189 .162 14.2%∗
diabetes .318 .279 .243 .260 .318 .310 2.5% .363 .365 -0.5% .279 .264 5.3%∗
hepatitis .239 .199 .180 .201 .239 .221 7.3% .217 .227 -4.7% .199 .186 6.7%
hypothyroid .020 .014 .032 .011 .020 .021 -8.0% .030 .034 -11.3%∗ .014 .013 8.8%∗
ionosphere .143 .104 .139 .135 .143 .142 0.8% .151 .150 0.2% .104 .079 23.9%∗
kr-vs-kp .071 .033 .050 .084 .071 .075 -5.4% .082 .079 3.7% .033 .023 30.8%∗
sonar .330 .282 .264 .297 .330 .347 -5.3% .348 .341 1.9% .282 .246 12.8%∗
vote .076 .058 .048 .050 .076 .087 -14.2%∗ .084 .120 -42.4%∗ .058 .050 13.9%∗
wpbc .312 .319 .231 .262 .312 .354 -13.6%∗ .338 .329 2.6% .319 .267 16.1%∗
avg. .215 .185 .181 .189 .215 .222 -4.4% .224 .233 -7.2% .185 .165 13.6%

TABLE V

AVERAGE ERROR RATES OF THE COMPARED ALGORITHMS UNDER THE UNLABEL RATE OF 40%

Self-Training Co-Training Co-Forest
Data set RTree Forest SVM AdaBoost

initial final improv. initial final improv. initial final improv.

bupa .379 .360 .419 .372 .379 .394 -4.0% .431 .440 -2.0% .360 .347 3.7%
colic .242 .178 .187 .188 .242 .240 0.7% .193 .209 -8.0%∗ .178 .160 10.1%∗
diabetes .304 .271 .231 .259 .304 .305 -0.2% .362 .363 -0.4% .271 .255 5.9%∗
hepatitis .196 .184 .151 .186 .196 .215 -9.9% .204 .209 -2.8% .184 .163 11.6%∗
hypothyroid .017 .012 .028 .010 .017 .018 -7.6% .028 .032 -17.2%∗ .012 .011 9.8%∗
ionosphere .124 .093 .119 .124 .124 .128 -3.2% .132 .142 -7.3% .093 .075 19.1%∗
kr-vs-kp .056 .026 .047 .081 .056 .058 -2.5% .067 .071 -5.4%∗ .026 .019 27.7%∗
sonar .309 .269 .235 .287 .309 .310 -0.2% .305 .310 -1.8% .269 .224 16.7%∗
vote .076 .058 .051 .044 .076 .066 12.5% .085 .090 -6.3% .058 .051 12.3%∗
wpbc .328 .305 .233 .264 .328 .348 -6.3% .342 .315 7.9% .305 .266 12.5%∗
avg. .203 .176 .170 .182 .203 .208 -2.1% .215 .218 -4.3% .176 .157 12.9%

set thereinafter. Since all the examples are labeled, only the
results of the baseline methods are shown in Table VII.

Table III to Table VI show that unlabeled data could be
used to enhance the performance of the hypothesis learned
only on the labeled data over different unlabel rates. Co-
Forest achieves an overall 13.1% performance improvement.
Under each unlabel rates, Co-Forest achieves significantly
improvement on most of the data sets. The sign test applied
on the results of t-test indicates that the improvement in the
experiment is significant. It is also shown in the table that, after
further exploiting the merit of unlabeled data, the hypothesis
learned by Co-Forest reaches lower error rates than those

learned by the baseline methods only on the labeled examples
under all unlabel rates. Interestingly, when comparing the error
rates of the baseline methods when μ = 0% (i.e. the ideal
training set) with those of Co-Forest, it could be observed that
the hypothesis learned with certain amount of data unlabeled
even outperforms those learned by the baseline methods with
all the training data labeled. For example, when 80% data are
unlabeled, Co-Forest, by exploiting the unlabeled examples,
is able to reach an error rate comparable to that of AdaBoost
using the ideal training set; when 60% examples are unlabeled,
Co-Forest achieves comparable performance to SVM using the
ideal training set, and outperforms AdaBoost using the ideal
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TABLE VI

AVERAGE ERROR RATES OF THE COMPARED ALGORITHMS UNDER THE UNLABEL RATE OF 20%

Self-Training Co-Training Co-Forest
Data set RTree Forest SVM AdaBoost

initial final improv. initial final improv. initial final improv.

bupa .378 .349 .421 .356 .378 .363 4.0% .409 .421 -2.8% .349 .331 5.1%∗
colic .233 .170 .179 .181 .233 .222 4.8% .193 .189 2.0% .170 .158 6.9%∗
diabetes .303 .268 .228 .259 .303 .306 -0.7% .365 .353 3.1% .268 .261 2.8%
hepatitis .238 .183 .159 .192 .238 .216 9.5%∗ .200 .209 -4.5% .183 .166 9.5%∗
hypothyroid .016 .011 .027 .009 .016 .018 -7.4% .028 .029 -3.8% .011 .010 10.6%∗
ionosphere .114 .085 .119 .124 .114 .119 -4.7% .120 .131 -9.3% .085 .069 19.1%∗
kr-vs-kp .050 .019 .044 .089 .050 .048 5.2% .062 .061 1.8% .019 .014 25.0%∗
sonar .276 .233 .227 .264 .276 .289 -4.8% .294 .324 -10.0%∗ .233 .201 14.0%∗
vote .062 .053 .047 .045 .062 .073 -18.2%∗ .081 .088 -8.5% .053 .048 10.8%∗
wpbc .312 .282 .230 .261 .312 .322 -3.3% .340 .333 2.1% .282 .250 11.5%∗
avg. .198 .165 .168 .178 .198 .198 -1.6% .209 .214 -3.0% .165 .151 11.5%

training set.

TABLE VII

AVERAGE ERROR RATES OF THE COMPARED ALGORITHMS UNDER THE

UNLABEL RATE OF 0%

Data set RTree Forest SVM AdaBoost

bupa .364 .347 .420 .358
colic .214 .158 .170 .173
diabetes .307 .268 .230 .259
hepatitis .218 .183 .146 .202
hypothyroid .017 .010 .026 .008
ionosphere .111 .075 .121 .124
kr-vs-kp .038 .017 .041 .093
sonar .279 .231 .231 .272
vote .071 .048 .044 .039
wpbc .316 .258 .232 .250
avg. .194 .160 .166 .178

While Co-Forest benefits from the unlabeled data, co-
training and self-training fail to improve the performance of
the learned hypotheses using the unlabeled data. Although the
performance improvement is observed on some data sets under
certain unlabel rates, in most cases the performance degrades
after exploiting unlabeled data using co-training and self-
training. By averaging on all the data sets and all the unlabel
rates, the average error rate of co-training and self-training
increases by 5.6% and 4.2%, respectively. Since the same
termination criterion is employed in Co-Forest, co-training and
self-training, the three algorithms differ from each other by the
way of labeling unlabeled examples, which leads to different
performance for utilizing the unlabeled data.

In self-training, there is only one classifier involved in the
learning process, and thus the classifier has to provide the
labels for unlabeled examples totally based on its current
‘knowledge’. If the classifier is initially biased much, keeping
on learning with the self-labeled examples makes the classifier
overfit quickly, which leads to the performance degradation.
The fewer the labeled training data, the more chance for the
classifier to be biased, and hence the more chance for the
performance degrades. This claim is confirmed by Table III to
Table VI. By contrast, in Co-Forest each component classifier
hi is refined by the examples labeled by its concomitant
ensemble Hi instead of itself, and thus, there is less chance
for hi to overfit. Moreover, since the label is assigned by an

ensemble instead of a single classifier, hi is more likely to
receive correctly labeled examples than that in self-training. In
co-training, the major reason accounting for the performance
degradation is the violation of the requirement on sufficient
and redundant views of data set. Since no experimental data
set contains sufficient and redundant attribute sets, the original
attribute set has to be randomly partitioned into two parts,
which are not usually conditionally independent to each other
given the class label. Thus, the classifiers trained on this
two attribute set might behave similarly, such that the same
unlabeled examples could be mislabeled by both classifiers.
In the extreme case when all the examples mislabeled by the
two classifiers are exactly the same, the effect of co-training
degenerates to self-training. Moreover, since fewer attributes
are used to train classifiers after the partitioning, the perfor-
mance of learned classifiers could be worse than a classifier
learned with the same amount of training data using original
attribute sets. This claim is consistent with the tables, where
initial error rates of co-training is much higher than the initial
error rates of self-training. Due to the worse performance of
component classifier, each component classifier is very likely
to assign incorrect labels to the unlabeled data. Because of
the second reason, co-training might even perform worse than
self-training. This fact can also be observed in the tables.
By contrast, Co-Forest works on original attribute sets and
leverages the power of concomitant ensembles to provide the
labeling for unlabeled examples.

In order to investigate the effectiveness of Co-Forest on
medical diagnosis tasks, the performance of Co-Forest on
diabetes, hepatitis and wpbc are further analyzed. It can be
observed from the table that Co-Forest is able to enhance the
performance of the learned hypothesis using unlabeled data
under different unlabel rates. The average error rate over the
four different unlabel rates reduces by 5.1% on diabetes, 9.8%
on hepatitis and 13.8% on wpbc, respectively. By contrast,
although co-training and self-training are able to benefit from
the unlabeled data on the three tasks under certain unlabel
rates, the improvement is quite limited and the error rates
of the learned hypothesis are higher than Co-Forest. Besides,
performance degradation can also be observed in the table,
sometimes the degradation is rather drastic, e.g. the perfor-
mance improves -13.6% when applying self-training on wpbc
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Fig. 1. Error rates averaged over different unlabel rates on experimental data sets

under unlabel rate 60%. It can be concluded that Co-Forest,
which leverages the advantages of ensemble, is suitable for
exploiting unlabeled data in conventional medical diagnosis
tasks which have no sufficient and redundant attribute sets. The
generalization ability of Co-Forest is better than the compared
two semi-supervised learning algorithms.

To get an insight of the learning process of Co-Forest,
the average error rates at each learning iteration are further
averaged over the different unlabel rates on each data set.
Note that unlike terminating the learning process at a fixed
number of iterations (e.g. 10), the termination criterion allows
Co-Forest to stop at any round. Fig. 1 gives the plots of the
average error rates versus the learning iterations from the 0th
round to the maximum round reached before the algorithm
stops (e.g. the maximum round of Co-Forest on hepatitis is
4). The error rates at the termination are used as the error
rates in the rounds after the termination in the figure. It could
be observed from the figure that the line of Co-Forest is always
below those of the other compared algorithms. The error rate
of Co-Forest keeps on decreasing after utilizing unlabeled data,
and converges quickly within just a few learning iterations.
Since the maximum iterations required for convergence is
quite small, the training of Co-Forest could be very fast. This
advantage makes Co-Forest more appealing when exploiting
unlabeled data in computer-aided diagnosis in that the systems
can be updated very fast when new data, both labeled and
unlabeled, are available.

Note that in previous experiments, N , the ensemble size, is
fixed in Co-Forest. Different N values might affect the diver-
sity of the ensemble, which might counteract the performance
improvement acquired through exploiting the unlabeled data.
Therefore, the performance of Co-Forest with different ensem-
ble size N (N = 3, ..., 10, 20, 50, 100) is further investigated.
Other experiment setups remain unchanged. The average per-
formance improvements of Co-Forest are shown in Fig. 2.
In the figure, Co-Forest achieves its highest improvement on
all the three data sets when N is not too big. For instance,
under the unlabel rate 80%, the ensemble size for highest
improvement is 4 on diabetes, 4 on hepatitis and 6 on wpbc,
respectively. When N is large enough (e.g. N = 100), the
improvement becomes very small and negative improvement
even appears, especially when μ = 80%. This observation
confirms the claim in Section III that large size of the ensemble

Fig. 2. Performance improvement over different ensemble sizes

leads to drastic decrease of diversity between component
classifiers, and hence counteracts the benefits obtained by
utilizing the unlabeled data. When the labeled training set is
small, the initial diversity obtained by bootstrap sampling is
limited. Consequently, the diversity may drop down rapidly as
the learning proceeds, and the performance of the ensemble is
severely humbled. This is why negative performance is usually
observed when μ = 80%.

It is noteworthy that performance of Co-Forest varies on dif-
ferent data sets. For instance, its performance on hepatitis and
wpbc are quite remarkable, but it performs not so impressive
on diabetes as the other two data sets. This can be explained
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Fig. 3. The average false positive rates and false negative rates of compared algorithms

by the number of attributes in the data set. Since each tree
in Random Forest is constructed by using the best attribute
among several randomly selected attributes as the split at
each internal node, the smaller the number of attributes, the
more chance for some attributes to be selected together, hence
more chance for the split to be the same. Thus, the trees in
Random Forest trained on data set with fewer attributes could
be less diverse than those trained on more attributes. Since the
diabetes data set has only 8 attributes while hepatitis and wpbc
have more attributes, it is possible for the improvement on
diabetes to be less than those on hepatitis and wpbc. To solve
this problem, new attributes might be generated according to
method suggested by [7].

V. APPLICATION TO MICROCALCIFICATION DETECTION IN

DIGITAL MAMMOGRAMS

Breast cancer is the second leading cause of cancer death
in woman, exceeded only by lung cancer. Since its pathogeny
is unknown, breast cancer can hardly be prevented. The key
for the survival of patients is the early detection of microcal-
cification clusters in digital mammograms, which is regarded
as the aura of breast cancer.

The data set used here consists of 88 high-resolution digi-
tal mammograms collected from Jiangsu Zhongda Hospital,
among which 20 images contain one or more microcalci-
fication clusters marked by radiologists and the other 68
images are unmarked. Each digital image with 1914 × 2294
resolution and 12 bits pixel depth is fragmented into a set
of 100 × 100 blocks. In each block, 5 features, i.e. average
density, density variance, energy variance, block activity and
spectral entropy, are extracted to form an example via the same
method used in [22]. In the marked images, if there exists
microcalcification in the block, the corresponding example
is positive, otherwise it is a negative one. All the examples
are left unlabeled if their corresponding blocks appear in the
unmarked images. After removing the blocks of background,
the data set comprises altogether 69 positive examples, 100
negative examples and additional 506 unlabeled examples.
The goal of the learning system is to predict whether a block
contains microcalcification clusters.

To evaluate the performance of Co-Forest on this micro-
calcification detection problem, five-fold cross validation is

carried out, where the labeled data is partitioned in to 5 subsets
with similar class distribution to that in the original labeled
data. In each fold, classifiers are evaluated on one of the subset
after being trained on the other four. The process of five-fold
cross validation terminates after each subset has served as the
test set exactly once, and the results are averaged over the
5 folds. In the experiment, the ensemble size of Co-Forest
N is set to 6 and the confidence threshold θ is set to 0.75.
For comparison, the co-training algorithm and the self-training
algorithm are also evaluated here. Again, a random tree and a
Random Forest trained only on the labeled data serve as the
baselines for comparison. The parameters of the two baseline
algorithms are kept the same as the corresponding ones in
Co-Forest.

Since the early detection of microcalcification cluster leads
to early cure of the disease, misclassifying the blocks with
microcalcification as the normal ones reduces the chance for
the survival of the patients. Thus, the false negative rate,
which is computed by the ratio of the number of positive
examples classified as negative by the learned hypothesis over
the total number of examples are actually positive, becomes
a major factor for evaluation of the algorithms. Moreover,
since the doctors make their diagnosis according to the blocks
detected by the system, misclassifying the normal blocks
as lesions increases the burden on the doctors. Thus, false
positive rate, which is computed by the ratio of the number of
negative examples misclassified as positive over the number
of examples classified as positive. Five-fold cross validation is
repeated 10 times. Both the average false negative rates and
the average false positive rates of all the algorithms versus the
number iterations are plotted in Fig. 3.

Fig. 3 shows that Co-Forest benefits from the unlabeled
data, and the learned hypothesis outperforms those learned by
other compared algorithms. After two learning iterations, the
average false negative rate decreases from the 0.133 to 0.107,
which is lower than the two baselines. It is quite impressive
that the average false negative rate of the learned hypothesis
reduces by 20.0%. Meanwhile, the average false positive rate
of the hypothesis learned by Co-Forest reduces by 5.8%. The
reduction of both false negative rate and false positive rate
suggests that without classifying more normal blocks as the
positive ones, Co-Forest is able to use the unlabeled data to
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Fig. 4. The mammogram and the blocks with microcalcification detected
after using unlabeled data

increase the chance of detecting microcalcification clusters in
mammograms.

By contrast, while Co-Forest improves the performance
with the unlabeled data, co-training and self-training fail to
solve the microcalcification cluster detection problem. The
performance of both co-training and self-training degenerates
respectively after the unlabeled data are used to refine the
learned hypothesis. The average false positive rate of co-
training and self-training reduces by -22.3% and -21.3%,
respectively, and the false negative rate of them even reduces
by -71.2% and -31.7%. As shown in the figure, the curves
of co-training and self-training are much higher than the
curve of Co-Forest. Note that co-training exhibits very poor
performance when handling this task. As explained in Section
IV, the reason is that the microcalcification cluster detection
problem does not contain sufficient and redundant attribute
sets. Co-training has to work on randomly partitioned attribute
sets. Since there are only 5 features, after the partitioning, it
is difficult to discriminate the positive and negative examples
using the 2 or 3 features in each view. Thus, each co-trained
classifier tends to receive many unlabeled examples with
incorrect labels from its peer classifier. As learning proceeds,
the performance degrades quickly. Therefore, it is concluded
that Co-Forest is a better solution to the microcalcification
cluster detection.

To illustrate how Co-Forest benefits from the unlabeled
data, a mammogram reduced to 292 × 350 resolution and
three 100 × 100 blocks with microcalcification clusters in the
mammogram are shown in Fig. 4, where the positions of the
blocks in the mammogram have been marked. In the three
selected blocks, the microcalcification clusters are neglected
firstly by the hypothesis learned from only the labeled data,
and then correctly detected after exploiting the unlabeled
data with Co-Forest. Note that some of the microcalcification
clusters are not very apparent in these blocks, which means
that unlabeled data help the learning system focus on those
unapparent areas sharing something in common with the areas
that has been correctly identified as the lesions.

In summary, unlabeled data are beneficial in microcalcifica-
tion detection. While co-training and self-training are ineffec-

tive for this task, the Co-Forest algorithm is able to enhance the
performance of the learned hypothesis by exploiting unlabeled
data in an effective and efficient way. Now Co-Forest is being
implemented in the CabCD (Computer-aided breast Cancer
Diagnosis) System by Jiangsu Zhongda Hospital.

VI. CONCLUSION

In computer-aided medical diagnosis, diagnosing the sam-
ples for training a well-performed CAD system places heavy
burden on medical experts. Such burden could be released
if the learning algorithm could use unlabeled data to help
learning. In this paper, the Co-Forest algorithm is proposed,
which can use undiagnosed samples to boost the performance
of the system trained from the diagnosed samples. By ex-
tending the co-training paradigm, it exploits the power of
Random Forest, a well-known ensemble method, to tackle
the problem of selecting confident undiagnosed samples to
label and producing the final hypothesis. Experiments on UCI
data sets verify the effectiveness of Co-Forest. Case studies
on three medical data sets and a successful application to
microcalcification cluster detection for breast cancer diagnosis
show that the undiagnosed samples are beneficial in building
computer-aided diagnosis systems and Co-Forest is able to
enhance the performance of the hypothesis learned simply
on a small amount of diagnosed samples by exploiting the
undiagnosed samples.

Since Co-Forest tends to under-estimate the error rates
of the concomitant ensembles, finding an efficient method
to properly estimate the error rates of these ensembles will
be done in future, which is anticipated to make Co-Forest
perform better. Another interesting future work is to enhance
the performance of Co-Forest by incorporating Query by Com-
mittee [33], an active learning [9] mechanism, such that more
helpful information can be provided by the diagnosis from
medical experts on certain undiagnosed samples. Such a idea
of combining semi-supervised learning with active learning
in co-training paradigm has been applied for content based
image retrieval [40]. Furthermore, it is noteworthy that the
diversity between component classifiers is maintained based
on the randomness provided by Random Forest. This places
constraints to the base learner of Co-Forest and the scale
of ensemble. In future, exploring a method to maintain the
diversity of component classifiers in any ensembles during the
semi-supervised learning process will extend the idea of Co-
Forest to more general cases, such that it can be applied in
more practical applications.

ACKNOWLEDGMENT

The comments and suggestions from the anonymous re-
viewers greatly improved this paper. The authors wish to
thank their collaborators at the Jiangsu Zhongda Hospital for
providing the high-resolution digital mammograms and their
collaboration in developing the diagnosis system.

REFERENCES

[1] D. Angluin and P. Laird, “Learning from noisy examples,” Machine
Learning, vol.2, no.4, pp.343-370, 1988.



11

[2] C. Blake, E. Keogh, and C.J. Merz, “UCI repository of machine learning
databases” [http://www.ics.uci.edu/∼mlearn/MLRepository.html], De-
partment of Information and Computer Science, University of California,
Irvine, CA, 1998.

[3] A. Blum and S. Chawla, “Learning from labeled and unlabeled data us-
ing graph mincuts,” in Proceedings of the 18th International Conference
on Machine Learning, Williamstown, MA, 2001, pp.19-26.

[4] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the 11th Annual Conference on
Computational Learning Theory, Madison, WI, 1998, pp. 92-100.

[5] L. Breiman, “Bagging predictors,” Machine Learning, vol.24, no.2,
pp.123-140, 1996.

[6] L. Breiman, “Bias, variance, and arcing classifiers,” Technical Report,
University of California, Berkeley, CA, 1996.

[7] L. Breiman, “Random forests,” Machine Learning, vol.45, no.1, pp.5-32,
2001.

[8] O.Chappelle, B. Schölkopf, and A. Zien, eds., Semi-Supervised Learn-
ing. MIT Press, Cambridge, MA, 2006

[9] D.A. Cohn, Z. Ghahramani, and M.I. Jordan, “Active learning with
statistical models,” Journal of Artificial Intelligence Research, vol.4,
pp.129-145, 1996.

[10] P. Cunningham, J. Carney, and S. Jacob, “Stability problems with arti-
ficial neural networks and the ensemble solution,” Artificial Intelligence
in Medicine, vol. 20, no.3, pp.217-225, 2000.

[11] S. Dasgupta, M. Littman, and D. McAllester, “PAC generalization
bounds for co-training,” in T.G. Dietterich, S. Becker, and Z. Ghahra-
mani, Eds., Advances in Neural Information Processing Systems 14,
Cambridge, MA: MIT Press, pp.375-382, 2002.

[12] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of Royal Statistical
Society, Series B, vol.39, no.1, pp.1-38, 1977.

[13] T.G. Dietterich, “Ensemble learning,” in The Handbook of Brain Theory
and Neural Networks, 2nd edition, M.A. Arbib, Ed., Cambridge, MA:
MIT Press, 2002.

[14] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, New York:
Chapman & Hall, 1993.

[15] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of
online learning and an application to boosting,” in Proceedings of
the 2nd European Conference on Computational Learning Theory,
Barcelona, Spain, 1995, pp.23-37.

[16] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” The Annals of Statistics, vol.28, no.2,
pp.337-407, 2000.

[17] S. Goldman and Y. Zhou, “Enhancing supervised learning with unlabeled
data,” in Proceedings of the 17th International Conference on Machine
Learning, San Francisco, CA, 2000, pp.327-334.

[18] L. Hansen and P. Salamon, “Neural network ensemble,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol.12, no.10,
pp.993-1001, 1990.

[19] T.K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol.20, no.8, pp.832-844, 1998.

[20] T. Hothorn and B. Lausen, “Bagging tree classifiers for laser scanning
images: a data- and simulation-based strategy,” Artificial Intelligence in
Medicine, vol.27, no.1, pp.65-79, 2003.

[21] R. Hwa, M. Osborne, A. Sarkar, and M. Steedman,“Corrected co-
training for statistical parsers,” in Working Notes of the ICML’03
Workshop on the Continuum from Labeled to Unlabeled Data in Machine
Learning and Data Mining, Washington, DC, 2003.

[22] X. Jia, Z. Wang, S. Chen, N. Li, and Z.-H. Zhou, “Fast screen out
true negative regions for microcalcification detection in digital mam-
mograms,” Technical Report, Nanjing University of Aeronautics and
Astronautics, Nanjing, China, 2005.

[23] T. Joachims, “Transductive inference for text classification using support
vector machines,” in Proceedings of the 16th International Conference
on Machine Learning, Bled, Slovenia, 1999, pp. 200-209.

[24] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in G. Tesauro, D.S. Touretzky, and T.K. Leen, Eds.,
Advances in Neural Information Processing Systems 7, Cambridge, MA:
MIT Press, 1995, pp. 231-238.

[25] A. Levin, P. Viola, and Y. Freund, “Unsupervised improvement of
visual detectors using co-training,” in Proceedings of the 9th IEEE
International Conference on Computer Vision, Nice, France, 2003, pp.
626-633.

[26] D.J. Miller and H.S. Uyar, “A mixture of experts classifier with learning
based on both labelled and unlabelled Data,” in M. Mozer, M.I. Jordan,

and T. Petsche, Eds., Advances in Neural Information Processing
Systems 9, Cambridge, MA: MIT Press, 1997, pp. 571-577.

[27] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability
of co-training,” in Proceedings of the 9th ACM International Conference
on Information and Knowledge Management, McLean, VA, 2000, pp.
86-93.

[28] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell, “Text classi-
fication from labeled and unlabeled documents using EM,” Machine
Learning, vol.39, no.2-3, pp.103-134, 2000.

[29] D. Pierce and C. Cardie, “Limitations of co-training for natural language
learning from large data sets,” in Proceedings of the 6th Conference
on Empirical Methods in Natural Language Processing, Pittsburgh, PA,
2001, pp. 1-9.

[30] A. Sarkar, “Applying co-training methods to statistical parsing,” in
Proceedings of the 2nd Annual Meeting of the North American Chapter
of the Association for Computational Linguistics, Pittsburgh, PA, 2001,
pp. 95-102.

[31] A. Sboner, C. Eccher, E. Blanzieri, P. Bauer, M. Cristofolini, G.
Zuniani, and S. Forti, “A multiple classifier system for early melanoma
diagnosis,” Artificial Intelligence in Medicine, vol.27, no.1, pp.29-44,
2003.

[32] M. Seeger, “Learning with labeled and unlabeled data,” Technical
Report, University of Edinburgh, Edinburgh, Scotland, 2001.

[33] H. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in
Proceedings of the 5th ACM Workshop on Computational Learning
Theory, Pittsburgh, PA, 1992, pp. 287-294.

[34] B. Shahshahani and D. Landgrebe, “The effect of unlabeled samples
in reducing the small sample size problem and mitigating the hughes
phenomenon,” IEEE Transactions on Geoscience and Remote Sensing,
vol.32, no.5, pp. 1087-1095, 1994.

[35] A. Sharkey, N. Sharkey, and S. Cross, “Adapting an ensemble approach
for the diagnosis of breast cancer,” in Proceedings of the 6th Interna-
tional Conference on Artificial Neural Networks, Skövd, Sweden, 1998,
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