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Networks formed from interdependent networks
Jianxi Gao1,2, Sergey V. Buldyrev3, H. Eugene Stanley1 and Shlomo Havlin4*
Complex networks appear in almost every aspect of science and technology. Although most results in the field have been
obtained by analysing isolated networks, many real-world networks do in fact interact with and depend on other networks. The
set of extensive results for the limiting case of non-interacting networks holds only to the extent that ignoring the presence
of other networks can be justified. Recently, an analytical framework for studying the percolation properties of interacting
networks has been developed. Here we review this framework and the results obtained so far for connectivity properties of
‘networks of networks’ formed by interdependent random networks.

The interdisciplinary field of network science has attracted a
great deal of attention in recent years1–30. This development is
based on the enormous number of data that are now routinely

being collected, modelled and analysed, concerning social31–39,
economic14,36,40,41, technological40,42–48 and biological9,13,49,50 sys-
tems. The investigation and growing understanding of this extraor-
dinary volume of data will enable us to make the infrastructures we
use in everyday life more efficient andmore robust.

The original model of networks, random graph theory, was
developed in the 1960s by ErdÆs and Rényi, and is based on the
assumption that every pair of nodes is randomly connected with
the same probability, leading to a Poisson degree distribution. In
parallel, in physics, lattice networks, where each node has exactly the
same number of links, have been studied tomodel physical systems.
Although graph theory is a well-established tool in the mathematics
and computer science literature, it cannot describe well modern,
real-life networks. Indeed, the pioneering 1999 observation by
Barabasi2, that many real networks do not follow the ErdÆs–Rényi
model but that organizational principles naturally arise in most
systems, led to an overwhelming accumulation of supporting data,
new models and computational and analytical results, and to the
emergence of a new science, that of complex networks.

Complex networks are usually non-homogeneous structures
that in many cases obey a power-law form in their degree (that
is, number of links per node) distribution. These systems are
called scale-free networks. Real networks that can be approximated
as scale-free networks include the Internet3, the World Wide
Web4, social networks31–39 representing the relations between
individuals, infrastructure networks such as those of airlines51,
networks in biology9,13,49,50, in particular networks of protein–
protein interactions10, gene regulation and biochemical pathways,
and networks in physics, such as polymer networks or the potential-
energy-landscape network. The discovery of scale-free networks led
to a re-evaluation of the basic properties of networks, such as their
robustness, which exhibit a drastically different character than those
of ErdÆs–Rényi networks. For example, whereas homogeneous
ErdÆs–Rényi networks are extremely vulnerable to random failures,
heterogeneous scale-free networks are remarkably robust4,5. A great
part of our current knowledge on networks is based on ideas
borrowed from statistical physics, such as percolation theory,
fractals and scaling analysis. An important property of these
infrastructures is their stability, and it is thus important that we
understand and quantify their robustness in terms of node and
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link failures. Percolation theory was introduced to study network
stability and predicted the critical percolation threshold5. The
robustness of a network is usually either characterized by the value
of the critical threshold analysed using percolation theory52 or
defined as the integrated size of the largest connected cluster during
the entire attack process53. The percolation approach was also
proved to be extremely useful in addressing other scenarios, such as
efficient attacks or immunization6,7,54,55, and for obtaining optimal
paths56 aswell as for designing robust networks53.Network concepts
have also proven to be useful for the analysis and understanding of
the spread of epidemics57,58, and the organizational laws of social
interactions, such as friendships59,60 or scientific collaborations61,62.
Ref. 63 investigated topologically biased failure in scale-free
networks network and control of the robustness or fragility through
fine-tuning of the topological bias in the failure process.

A large number of new measures and methods have been
developed to characterize network properties, including measures
of node clustering, network modularity, correlation between
degrees of neighbouring nodes, measures of node importance
and methods for the identification and extraction of community
structures. These measures demonstrated that many real networks,
and in particular biological networks, contain network motifs—
small specific subnetworks—that occur repeatedly and provide
information about functionality9. Dynamical processes, such
as flow and electrical transport in heterogeneous networks,
were shown to be significantly more efficient when compared
with ErdÆs–Rényi networks64,65. Furthermore, it was shown that
networks can also possess self-similar properties, so that under
proper coarse graining (or, renormalization) of the nodes the
network properties remain invariant19.

However, these complex systems were mainly modelled and
analysed as single networks that do not interact with or depend
on other networks. In interacting networks, the failure of nodes
in one network generally leads to the failure of dependent
nodes in other networks, which in turn may cause further
damage to the first network, leading to cascading failures and
catastrophic consequences. It is known, for example, that blackouts
in various countries have been the result of cascading failures
between interdependent systems such as communication and
power grid systems67,68. Furthermore, different kinds of critical
infrastructure are also coupled together, such as systems of water
and food supply, communications, fuel, financial transactions
and power generation and transmission. Modern technology has
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Figure 1 | Schematic demonstration of first- and second-order percolation
transitions. In the second-order case, the giant component is continuously
approaching zero at the percolation threshold p = pc. In the first-order case,
the giant component approaches zero discontinuously.

produced infrastructures that are becoming more and more
interdependent, and understanding how robustness is affected by
these interdependences is one of the main challenges faced when
designing resilient infrastructures67,69–72. In recent decades, research
was carried out in applied science on cataloguing, analysing and
modelling the interdependences in critical infrastructure as well
as modelling cascading failures in coupled critical infrastructure
networks40,42–48. However, no systematic mathematical framework,
such as percolation theory, is currently available for adequately
addressing the consequences of disruptions and failures occurring
simultaneously in interdependent critical infrastructures.

Recently, motivated by the fact that modern, crucially important
infrastructures significantly interact, a mathematical framework
was developed73 to study percolation in a system of two inter-
dependent networks subject to cascading failure. The analytical
framework is based on a generating-function formalismwidely used
for studies of percolation and structure within a single network73–75.
The framework for interdependent networks enables us to follow
the dynamics of the cascading failures as well as to derive the
analytic solutions for the final steady state. It was found73 that
certain types of interdependent network were significantly more
vulnerable than their non-interacting counterparts. The failure of
even a small number of elements within a single network may
trigger a catastrophic cascade of events that destroys the global
connectivity. For a fully interdependent case in which each node
in one network depends on a functioning node in other networks
and vice versa, a first-order discontinuous phase transition, which
is dramatically different from the second-order continuous phase
transition found in isolated networks (Fig. 1), was found73. This
phenomenon is caused by the presence of two types of link:
connectivity links within each network; and dependence links
between networks. Connectivity links enable the network to carry
out its function and dependence links represent the fact that the
function of a given node in one network depends crucially on
nodes in other networks. The case of connectivity links between
the different networks was studied in ref. 66. It was shown76

that, when the dependence coupling between the networks is
reduced, at a critical coupling strength the percolation transition
becomes second order.

More recently, two important generalizations of the basic model
of ref. 73 have been developed:

One generalization takes into account that in real-world
scenarios the initial failure of important nodes (or hubs) may
be not random but targeted. A mathematical framework for
understanding the robustness of interdependent networks under
an initial targeted attack has been studied in ref. 77. The
authors of that work developed a general technique that uses the
random-attack problem to map the targeted-attack problem in
interdependent networks.

The other generalization takes into account that, in real-world
scenarios, the assumption that each node in network A depends
on one and only one node in network B and vice versa may not
be valid. To correct this shortcoming, a theoretical framework for
understanding the robustness of interdependent networks with a
random number of support and dependence relationships has been
developed and studied78.

In all of the above studies73,76–78, the dependent pairs of
nodes in both networks were chosen randomly. Thus when high-
degree nodes in one network depend with a high probability
on low-degree nodes of another network the configuration
becomes vulnerable. To quantify and better understand this
phenomenon, we proposed two ‘intersimilarity’ measures between
the interdependent networks79. On the one hand, intersimilarity
occurs in interdependent networks when nodes with similar degrees
tend to be interdependent. On the other hand, it occurs if the
neighbours of interdependent nodes in each network also tend to
be interdependent. Refs 79–81 found that as the interdependent
networks become more intersimilar the system becomes more
robust. A system composed of an interdependent world-wide
seaport and airport networks and the world-wide airport network
was studied in ref. 79, where it was found that well-connected
seaports tend to couple with well-connected airports, and two
ways of measuring the intersimilarity of interdependent networks
were developed. The case in which all pairs of interdependent
nodes in both networks have the same degree was solved
analytically in ref. 82.

The robustness of a two-coupled-networks system has been
studied for dependence coupling73 and for connectivity coupling66.
Very recently a more realistic coupled network system with both
dependence and connectivity links between the coupled networks
was studied83. Using a percolation approach, rich andunusual phase
transition phenomena were found, including a mixed first-order
and second-order hybrid transition. This hybrid transition shows
that a discontinuous jump in the size of the giant component (as in
a first-order transition) is followed by a continuous decrease to zero
(as in a second-order transition).

Previous studies of isolated networks in which dependence links
cause cascading failure fall into two categories:

The first studies failures due to network overload when the
network flow is a physical quantity, for example, in power trans-
mission systems, transportation networks, or Internet traffic84–87.
The models produced by these studies demonstrate that when an
overloaded node stops traffic flow, the choosing of alternative paths
can overload other nodes, and a cascading failure that disables the
entire network can result.

The second is studies that produce models based on local depen-
dences, such as the decision-making of interacting agents11. In these
models the state of a node depends on the state of its neighbours,
that is, a failing node will cause its neighbours to also fail.

The rich phenomena found in interdependent networks and
the insights obtained from the percolation framework developed
in refs 73,76 have led to a better understanding of the effect of
dependence links within single isolated networks. A percolation
approach for a single network in the presence of random
dependence links was developed recently88–90. The results show that
cascading failures occur, yielding a first-order transition, and that
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the percolation threshold of the network significantly increases with
an increase in the number of dependence links.

Generating functions for a single network
We begin by describing the generating-function formalism74 for a
single network that will also be useful in studying interdependent
networks. We assume that all Ni nodes in network i are randomly
assigned a degree k from a probability distribution Pi(k), and are
randomly connected with the only constraint that the node with
degree k has exactly k links91. We define the generating function of
the degree distribution

Gi(x)⌘
1X

k=0

Pi(k)xk (1)

where x is an arbitrary complex variable. Using equation (1), the
average degree of network i is

hkii =
1X

k=0

kPi(k)=
@Gi

@x

����
x!1

=G0
i(1) (2)

In the limit of infinitely large networks Ni ! 1, the random
connection process can bemodelled as a branching process inwhich
an outgoing link of any node has a probability kPi(k)/hkii of being
connected to a node with degree k, which in turn has k�1 outgoing
links. Using equations (1) and (2), the generating function of this
branching process is defined as

Hi(x)⌘
P1

k=0Pi(k)kxk�1

hkii
= G0

i(x)
G0

i(1)
(3)

Let fi be the probability that a randomly selected link does
not lead to the giant component. If a link leads to a node with
k � 1 outgoing links this probability is f k�1

i . Thus Hi(fi) also
has the meaning that a randomly selected link does not lead to
the giant component and hence fi satisfies the recursive relation
equation fi = Hi(fi). The probability that a node with degree k
does not belong to the giant component is f ki and hence the
probability that a randomly selected node belongs to the giant
component is gi = 1�Gi(fi).

Once a fraction 1� p of nodes is randomly removed from a
network, the generating function remains the same, but with a
new argument zi ⌘ px + 1 � p (ref. 75). Accordingly, owing to
the definition of fi and gi the probability that a randomly chosen
surviving node belongs to a giant component is given by

gi(p)= 1�Gi[pfi(p)+1�p] (4)

where fi(p) satisfies

fi(p)=Hi[pfi(p)+1�p] (5)

Thus P1,i, the fraction of nodes that belongs to the giant
component, is given by the product75

P1,i = pgi(p) (6)

As p decreases, the non-trivial solution fi < 1 of equation (5)
gradually approaches the trivial solution fi = 1. Accordingly, P1,i
gradually approaches zero as in a second-order phase transition and
becomes zero when two solutions of equation (5) coincide at p=pc.
At this point the straight line corresponding to the left-hand side

of equation (5) becomes tangent to the curve corresponding to its
right-hand side, yielding

pc = 1/H 0
i(1) (7)

For example, for ErdÆs–Rényi networks92–94, characterized by
a Poisson degree distribution, using equations (1), (3) and (7)
we obtain

Gi(x)=Hi(x)= exp[hkii(x�1)] (8)

gi(p)= 1� fi(p) (9)

fi(p)= exp{phkii[fi(p)�1]} (10)

and using equations (7) and (8)

pc =
1

hkii
(11)

Finally, using equations (6), (9) and (10), we obtain a direct
equation for P1,i

P1,i = p[1�exp(�hkiiP1,i)] (12)

Framework of two partially interdependent networks
A generalization of the percolation theory of two fully interdepen-
dent networks73 has been developed by Parshani et al.76, where a
more realistic case of a pair of partially interdependent networks
has been studied. In this case, both interacting networks have a
certain fraction of completely autonomous nodes whose function
does not directly depend on the nodes of the other network. It has
been found that, once the fraction of autonomous nodes increases
above a certain threshold, the abrupt collapse of the interdependent
networks characterized by a first-order transition observed in ref. 73
changes, at a critical coupling strength, to a continuous second-
order transition as in classical percolation theory52.

In the following we describe in more detail the framework
developed in ref. 76. This framework consists of two networks A
and B with the numbers of nodes NA and NB, respectively. Within
network A, the nodes are randomly connected by A edges with
degree distribution PA(k), whereas the nodes in network B are
randomly connected by B edges with degree distribution PB(k). The
average degrees of the networks A and B are a and b respectively. In
addition, a fraction qA of network A nodes depends on the nodes in
network B and a fraction qB of network B nodes depends on the
nodes in network A. We assume that a node from one network
depends on no more than one node from the other network,
and if node Ai depends on node Bj , and Bj depends on Ak , then
k = i. The latter condition, which we call a no-feedback condition
(Fig. 2), excludes configurations that completely collapse even for
fully interdependent networks once a single node is removed78.
We assume that the initial removal of nodes from network A
is a fraction 1 � p.

Next we present the formalism for the cascade process
step by step (Fig. 3). After an initial removal of nodes, the
remaining fraction of nodes in network A is  0

1 ⌘ p. The initial
removal of nodes will disconnect some nodes from the giant
component. The remaining functional part of network A therefore
constitutes a fraction  1 = 0

1gA( 0
1) of the network nodes, where

gA( 0
1) is defined by equations (4) and (5). As a fraction qB of

nodes from network B depends on nodes from network A, the
number of nodes in network B that become non-functional is
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Figure 2 |Differences between the feedback condition and no-feedback
condition. a,b In the case of feedback (a), node A3 depends on node B2,
and node B3 6= B2 depends on node A3, whereas if there is no feedback (b)
this is forbidden. The blue links between the two networks show the
dependence links and the red links in each network show the connectivity
links, which enable each network to function.

(1� 1)qB = qB[1� 0
1gA( 0

1)]. Accordingly, the remaining fraction
of network B nodes is �0

1 =1�qB[1� 0
1gA( 0

1)], and the fraction of
nodes in the giant component of network B is�1 =�0

1gB(�0
1).

Following this approach we can construct the sequence,  0
t and

�0
t , of the remaining fraction of nodes at each stage of the cascade of

failures. The general form is given by

 0
1 ⌘ p

�0
1 = 1�qB[1�pgA( 0

1)]
 0

t = p[1�qA(1�gB(�0
t�1))]

�0
t = 1�qB[1�pgA( 0

t�1)]

(13)

To determine the state of the system at the end of the cascade
process we look at 0

⌧ and �0
⌧ at the limit of ⌧ !1. This limit must

satisfy the equations 0
⌧ = 0

⌧+1 and�0
⌧ =�0

⌧+1 because eventually the
clusters stop fragmenting and the fractions of randomly removed
nodes at steps ⌧ and ⌧ +1 are equal. Denoting  0

⌧ = x and �0
⌧ = y ,

we arrive in the stationary state at a system of two equations
with two unknowns,

x = p{1�qA[1�gB(y)]}
y = 1�qB[1�gA(x)p]

(14)

The giant components of networks A and B at the end of the
cascade of failures are, respectively, P1,A =  1 = xgA(x) and
P1,B =�1 = ygB(y). Figure 4 shows the excellent agreement for
the cascading failures in the giant component between computer
simulations and the analytical results. The analytical results were
obtained by recursive relations (13), where gA( 0

t ) and gB(�0
t ) are

computed using equations (9) and (10).
Equation (14) can be illustrated graphically by two curves cross-

ing in the (x,y) plane. For sufficiently large qA and qB the curves
intersect at two points (0< x0,0< y0) and (x0 < x1 < 1,y0 < y1 < 1).
Only the second solution (x1,y1) has a physical meaning. As p
decreases, the two solutions become closer to each other, remaining
inside the unit square (0< x <1;0< y <1), and at a certain thresh-
old p= pc they coincide: 0< x0 = x1 = xc < 1, 0< y0 = y1 = yc < 1.

Attack
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Figure 3 |Description of the dynamic process of cascading failures on two
partially interdependent networks, which can be generalized to n partially
interdependent networks. The black nodes represent the survival nodes,
the yellow node represents the initially attacked node, the red nodes
represent the nodes removed because they do not belong to the largest
cluster and the blue nodes represent the nodes removed because they
depend on the failed nodes in the other network. In each stage, for one
network, we first remove the nodes that depend on the failed nodes in the
other network or on the initially attacked nodes. Next we remove the nodes
that do not belong to the largest cluster of the network.

For p<pc the non-trivial solution corresponding to the intersection
abruptly disappears. Thus for sufficiently large qA and qB, P1,A
and P1,B as a function of p show a first-order phase transition. As
qB decreases, the intersection of the curves moves out of the unit
square; therefore, for small enough qB, P1,A as a function of p shows
a second-order phase transition. For the graphical representation of
equation (14) and all possible solutions see Fig. 3 in ref. 76.

In a recent study95, it was shown that a pair of interdependent
networks can be designed to be more robust by choosing the
autonomous nodes to be high-degree nodes. This choice mitigates
the probability of catastrophic cascading failure.

Framework for a network of interdependent networks
In many real systems there are more than two interdependent
networks, and diverse infrastructures—water and food supply
networks, communication networks, fuel networks, financial
transaction networks or power-station networks—can be coupled
together69,70. Understanding the way system robustness is affected
by such interdependences is one of the main challenges when
designing resilient infrastructures.

Here we review the generalization of the theory of a pair
of interdependent networks73,76 to a system of n interacting
networks96, which can be graphically represented (Fig. 5) as a
network of networks (NON). We develop an exact analytical
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Figure 4 | Cascade of failures in two partially interdependent Erdős–Rényi
networks. The giant component �t for every iteration of the cascading
failures is shown for the case of a first-order phase transition with the initial
parameters p = 0.8505, a = b = 2.5, qA = 0.7 and qB = 0.8. In the
simulations, N = 2⇥ 105 with over 20 realizations. The grey lines represent
different realizations. The squares represent the average over all
realizations and the black line is obtained from equation (13).

approach for percolation of an NON system composed of n fully
or partially interdependent randomly connected networks. The
approach is based on analysing the dynamical process of the
cascading failures. The results generalize the known results for
percolation of a single network (n= 1) and the n= 2 result found
in refs 73,76, and show that, whereas for n= 1 the percolation
transition is a second-order transition, for n> 1 cascading failures
occur and the transition becomes first order. Our results for
n interdependent networks suggest that the classical percolation
theory extensively studied in physics and mathematics is a limiting
case of n = 1 of a general theory of percolation in NON. As we
shall discuss here this general theory has many features that are not
present in the classical percolation theory.

In our generalization, each node in the NON is a network itself
and each link represents a fully or partially dependent pair of
networks. We assume that each network i (i = 1,2, ...,n) of the
NON consists of Ni nodes linked together by connectivity links.
Two networks i and j form a partially dependent pair if a certain
fraction qji > 0 of nodes of network i directly depends on nodes of
network j, that is, they cannot function if the nodes in network j on
which they depend do not function. Dependent pairs are connected
by unidirectional dependence links pointing from network j to
network i. This convention symbolizes the fact that nodes in
network i receive supply from nodes in network j of a crucial
commodity, for example electric power if network j is a power grid.

We assume that after an attack or failure only a fraction of nodes
pi in each network i will remain. We also assume that only nodes
that belong to a giant connected component of each network i
will remain functional. This assumption helps explain the cascade
of failures: nodes in network i that do not belong to its giant
component fail, causing failures of nodes in other networks that
depend on the failing nodes of network i. The failure of these nodes
causes the direct failure of the dependent nodes in other networks,
failures of isolated nodes in them and further failure of nodes in
network i, and so on. Our goal is to find the fraction of nodes P1,i
of each network that remain functional at the end of the cascade
of failures as a function of all fractions pi and all fractions qij .
We assume that all networks in the NON are randomly connected
networks characterized by a degree distribution of linksPi(k), where
k is a degree of a node in network i. We further assume that each

qi1

q1i

qik
qki

qi4

q4i

q3i

qi3
qi2

q2i

3

2

1

k

4

i

Figure 5 | Schematic representation of a NON. Circles represent
interdependent networks, and the arrows connect the partially
interdependent pairs. For example, a fraction of q3i of nodes in network i
depend on the nodes in network 3. The networks that are not connected by
the dependence links do not have nodes that directly depend on
one another.

node a in network i may depend with probability qji on only one
node b in network j.

We can study different models of cascading failures in which
we vary the survival time of the dependent nodes after the failure
of the nodes in other networks on which they depend and the
survival time of the disconnected nodes. We conclude that the
final state of the networks does not depend on these details but
can be described by a system of equations somewhat analogous
to the Kirchhoff equations for a resistor network. This system
of equations has n unknowns xi. These represent the fractions
of nodes that survive in network i after the nodes that fail in
the initial attack are removed, and also the nodes depending
on the failed nodes in other networks at the end of cascading
failure are removed, but without considering yet the further
failing of nodes due to the internal connectivity of the network.
The final giant component of each network can be found from
the equation P1,i = xigi(xi), where gi(xi) is the fraction of the
remaining nodes of network i that belong to its giant component
given by equation (4).

First we shall discuss the more complex case of the no-feedback
condition. The unknowns xi satisfy the systemof n equations,

xi = pi
KY

j=1

[qjiyjigj(xj)�qji +1] (15)

where the product is taken over the K networks interlinked with
network i by the partial dependence links (Fig. 3) and

yij =
xi

qjiyjigj(xj)�qji +1
(16)

has the meaning of the fraction of nodes in network j that survive
after the damage from all the networks connected to network
j except network i is taken into account. The damage from
network imust be excluded owing to the no-feedback condition. In
the absence of the no-feedback condition, equation (15) becomes
much simpler as yji = xj . Equation (15) is valid for any case
of interdependent NON, whereas equation (16) represents the
no-feedback condition.

Four examples of a NON solvable analytically
In this section we present four examples that can be explicitly
solved analytically: (1) a tree-like ErdÆs–Rényi fully dependent
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Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant
component. The dark node represents the origin network on which failures
initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a
loop-like ErdÆs–Rényi partially dependent NON and (4) a random
regular network of partially dependent ErdÆs–Rényi networks.
All cases represent different generalizations of percolation theory
for a single network. In all examples except (3) we apply the
no-feedback condition.

(1) We solve explicitly96 the case of a tree-like NON (Fig. 6)
formed by n ErdÆs–Rényi networks92–94 with the same average
degrees k, p1 = p, pi = 1 for i 6= 1 and qij = 1 (fully interdependent).
From equations (15) and (16) we obtain an exact expression for the
order parameter, the size of the mutual giant component for all p, k
and n values,

P1 = p[1�exp(�kP1)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we
obtain the known result pc =1/k, equation (11), of an ErdÆs–Rényi
network and P1(pc) = 0, which corresponds to a continuous
second-order phase transition. Substituting n= 2 in equation (17)
yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values
of n. The special case n= 1 is the known ErdÆs–Rényi second-order
percolation law, equation (12), for a single network. In contrast,
for any n> 1, the solution of (17) yields a first-order percolation
transition, that is, a discontinuity of P1 at pc.

Our results show (Fig. 7a) that the NON becomes more vul-
nerable with increasing n or decreasing k (pc increases when
n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc � 1, meaning
that for k < kmin(n) the NON will collapse even if a single
node fails96.

(2) In the case of a tree-like network of interdependent random
regular networks97, where the degree k of each node in each network
is assumed to be the same, we obtain an exact expression for the
order parameter, the size of the mutual giant component for all
p, k and n values,

P1 = p
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Numerical solutions of equation (18) are in excellent agreement
with simulations. Comparing with the results of the tree-like
ErdÆs–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than
that of the n interdependent ErdÆs–Rényi networks of average
degree k. Moreover, whereas for an ErdÆs–Rényi NON there exists
a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin
for the random regular NON system. For any k > 2, the random
regular NON is stable, that is, pc < 1. In general, this is correct
for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or
singly connected nodes97.

(3) In the case of a loop-like NON (for dependences in
one direction) of n ErdÆs–Rényi networks96, all the links are
unidirectional, and the no-feedback condition is irrelevant. If the
initial attack on each network is the same, 1�p, qi�1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP1 satisfies

P1 = p(1�e�kP1)(qP1 �q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution
P1 = 0, whereas for q = 0 it yields the known giant component
of a single network, equation (12), as expected. We present
numerical solutions of equation (19) for two values of q in
Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures
equations (17) and (18) depend on n, for loop-like NON structures
equation (19) is independent of n.

(4) For NONs where each ER network is dependent on exactly
m other ErdÆs–Rényi networks (the case of a random regular
network of ErdÆs–Rényi networks), we assume that the initial attack
on each network is 1� p, and each partially dependent pair has
the same q in both directions. The n equations of equation (15)
are exactly the same owing to symmetries, and hence P1 can be
obtained analytically,

P1 = p
2m

(1�e�kP1)[1�q+
p
(1�q)2 +4qP1]m (20)

from which we obtain

pc =
1

k(1�q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold
and the giant component are independent of the number of
networks n, in contrast to tree-like NON (equations (17) and (18)),
but depend on the coupling q and on both degrees k and
m. Numerical solutions of equation (20) are shown in Fig. 7c,
and the critical thresholds pc in Fig. 7c coincide with the
theory, equation (21).

Remark on scale-free networks
The above examples regarding ErdÆs–Rényi and random regular
networks have been selected because they can be explicitly
solved analytically. In principle, the generating function formalism
presented here can be applied to randomly connected networks
with any degree distribution. The analysis of the scale-free networks
with a power-law degree distribution P(k) ⇠ k�⌦ is extremely
important, because many real networks can be approximated
by a power-law degree distribution, such as the Internet, the
airline network and social-contact networks, such as networks
of scientific collaboration2,10,51. Analysis of fully interdependent
scale-free networks73 shows that, for interdependent scale-free
networks, pc > 0 even in the case ⌦  3 for which in a single
network pc = 0. In general, for fully interdependent networks,
the broader the degree distribution the greater pc for networks
with the same average degree73. This means that networks with a
broad degree distribution become less robust than networks with
a narrow degree distribution. This trend is the opposite of the
trend found in non-interacting isolated networks. The explanation
of this phenomenon is related to the fact that in randomly
interdependent networks the hubs in one network may depend on
poorly connected nodes in another. Thus the removal of a randomly
selected node in one network may cause a failure of a hub in
a second network, which in turn renders many singly connected
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Figure 7 | The fraction of nodes in the giant component P1 as a function of p for three different examples. a, A tree-like fully (q = 1) interdependent
NON; P1 is shown as a function of p for k = 5 and several values of n. The results are obtained using equation (17). Note that increasing n from n = 2 yields
a first-order transition. b, A loop-like NON; P1 is shown as a function of p for k = 6 and two values of q. The results are obtained using equation (19). Note
that increasing q yields a first-order transition. c, A random regular network of Erdős–Rényi networks; P1 is shown as a function of p, for two different values
of m when q = 0.5. The results are obtained using equation (20), and the number of networks, n, can be any number with the condition that any network in
the NON connects exactly to m other networks. Note that changing m from 2 to m > 2 changes the transition from second order to first order (for q = 0.5).

nodes non-functional, and the multiplying damage travels back
to the first network. This explanation is corroborated by the
analytical proof in ref. 82, which shows that if the degrees of the
interdependent nodes coincide, then a network with a broader
degree distribution will become more robust than a network with
a narrower degree distribution, that is, the behaviour characteristic
of non-interacting networks is restored. Ref. 82 also reports that,
for fully interdependent scale-free networks with equal degrees of
interdependent pairs, pc = 0 for ⌦ < 3. Moreover, the percolation
transition is a discontinuous first-order phase transition if and only
if H 0

i (1)< 1, that is, if the degree distribution has a finite second
moment. For fully interdependent networks with uncorrelated
degrees of interdependent nodes, the percolation transition is
always a discontinuous phase transition73,76. These results, as well as
the results of ref. 79, show the need to studymore realistic situations
in which the interdependent networks have various correlations
in the dependences and connectivities. A recent study of partially
interdependent scale-free networks shows that, although the giant
component decreases significantly owing to cascading failures, pc is
always zero as long as q<1 (D. Zhou et al., unpublished).

Remaining challenges
We have reviewed recent studies of the robustness of a system of
interdependent networks. In interacting networks, when a node
in one network fails it usually causes dependent nodes in other
networks to fail, which, in turn, may cause further damage in the
first network and results in a cascade of failures with catastrophic
consequences. Our analytical framework enables us to follow the
dynamic process of the cascading failures step by step and to
derive steady-state solutions. Interdependent networks appear in
all aspects of life, nature and technology. Transportation systems
include railway networks, airline networks and other transportation
systems. Some properties of interacting transportation systems
have been studied recently79,80. In the field of physiology, the
human body can be regarded as a system of interdependent
networks. Examples of such interdependent NON systems include
the cardiovascular system, the respiratory system, the brain neuron
system and the nervous system. In biology, the function of each
protein is determined by its interacting proteins, which can be
described by a network. As many proteins are involved in a
number of different functions, the protein-interaction system can
be regarded as a system of interacting networks. In the field of
economics, networks of banks, insurance companies and business
firms are interdependent.

Thus far, only a very few real-world interdependent systems have
been analysed using the percolation approach71,79,80. We expect our
present work to provide insights leading to a further analysis of
real data on interdependent networks. The benchmark models we
present here can be used to study the structural, functional and
robustness properties of interdependent networks. Because, in real
NONs, individual networks are not randomly connected and their
interdependent nodes are not selected at random, it is crucial that
we understand themany types of correlation that exist in real-world
systems and that we further develop the theoretical tools to include
such correlations. Further studies of interdependent networks
should focus on an analysis of real data from many different
interdependent systems and on the development of mathematical
tools for studying real-world interdependent systems.

Many real-world networks are embedded in space, and the
spatial constraints strongly affect their properties30. We need to
understand how these spatial constraints influence the robustness
properties of interdependent networks79,80. Other properties that
influence the robustness of single networks, such as the dynamic
nature of the configuration in which links or nodes appear and
disappear and the directed nature of some links, as well as problems
associated with degree–degree correlations and clustering, should
be also addressed in future studies of coupled network systems. It is
also important to investigate the case when a node in one network
is supplied by multiple nodes in an interdependent network. In
realistic interdependent pairs of networks i and j, a node in network
imay depend on s supply nodes in network j and the total supply of
a commodity received by this node from network j must be greater
than a certain threshold sc. In the case of sc =0 and random selection
of the supply nodes, this problem was solved in ref. 78 for two in-
terdependent networks, and this solution can be straightforwardly
generalized for an arbitraryNONby replacing equation (15)with

xi = pi
KY

j=1

{1�qjiGji[1�xjgj(xj)]} (22)

where Gji(x) is the generating function of the distribution of the
supply degree s of nodes in network i that depend on the supply
from nodes in network j. When s= 1 for all such nodes, Gji(x)= x
and equation (22) reduces to equation (15) with yji = xj , that is, in
the absence of the no-feedback condition. More complex cases of
multiple supply nodes await further investigation.

It is very important to find a way of improving the robustness
of interdependent infrastructures. Our studies thus far show that
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there are three methods to achieve this goal: increase the fraction of
autonomous nodes76, particularly nodes with high degree95; design
the dependence links such that they connect the nodes with similar
degrees79,82 and protect the high-degree nodes against attack95.

A coupled network in which the interlinks, that is, the links
between different networks, are connectivity links was studied in
ref. 66. The robustness of this system is greatly improved when
compared with a system in which the interlinks are dependence
links. A systematic study of the competing effects of aNON inwhich
the interlinks are both dependence and connectivity interlinks is
needed. Interesting results on a model containing both dependence
and connectivity interlinks have been obtained83. Finally, we
mention an early study of the Ising model on coupled networks98.
Also, interacting networks with respect to climate systems were
studied in ref. 99.
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71. Yaǧan, O., Qian, D., Zhang, J. & Cochran, D. Optimal allocation of
interconnecting links in cyber-physical systems: Interdependence, cascading
failures and robustness. http://www.ece.umd.edu/⇠oyagan/Journals/
Interdependent_Journal.pdf (2011).

72. Vespignani, A. The fragility of interdependency. Nature 464, 984–985 (2010).
73. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S.

Catastrophic cascade of failures in interdependent networks. Nature
464, 1025–1028 (2010).

74. Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

75. Shao, J., Buldyrev, S. V., Braunstein, L. A., Havlin, S. & Stanley, H. E. Structure
of shells in complex networks. Phys. Rev. E 80, 036105 (2009).

76. Parshani, R., Buldyrev, S. V. & Havlin, S. Interdependent networks: Reducing
the coupling strength leads to a change from a first to second order percolation
transition. Phys. Rev. Lett. 105, 048701 (2010).

77. Huang, X., Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness
of interdependent networks under targeted attack. Phys. Rev. E (R) 83,
065101 (2011).

78. Shao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Cascade of failures
in coupled network systems with multiple support-dependence relations.
Phys. Rev. E 83, 036116 (2011).

79. Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C. & Havlin, S. Inter-similarity
between coupled networks. Europhys. Lett. 92, 68002–68006 (2010).

80. Gu, C. et al. Onset of cooperation between layered networks. Phys. Rev. E 84,
026101 (2011).

81. Cho, W., Coh, K. & Kim, I. Correlated couplings and robustness of coupled
networks. Preprint at http://arxiv.org/abs/1010.4971. (2010).

82. Buldyrev, S. V., Shere, N. W. & Cwilich, G. A. Interdependent networks with
identical degrees of mutually dependent nodes. Phys. Rev. E 83, 016112 (2011).

83. Hu, Y., Ksherim, B., Cohen, R. & Havlin, S. Percolation in interdependent and
interconnected networks: Abrupt change from second to first order transition.
Phys. Rev. E (in the press). Preprint at http://arxiv.org/abs/1106.4128 (2011).

84. Sachtjen, M. L., Carreras, B. A. & Lynch, V. E. Disturbances in a power
transmission system. Phys. Rev. E 61, 4877–4882 (2000).

85. Motter, A. E. & Lai, Y. C. Cascade-based attacks on complex networks.
Phys. Rev. E 66, 065102 (2002).

86. Moreno, Y., Pastor, S. R., Vázquez, A. & Vespignani, A. Critical load
and congestion instabilities in scale-free networks. Europhys. Lett. 62,
292–298 (2003).

87. Motter, A. E. Cascade control and defense in complex networks. Phys. Rev. Lett.
93, 098701 (2004).

88. Parshani, R., Buldyrev, S. V. & Havlin, S. Critical effect of dependency
groups on the function of networks. Proc. Natl Acad. Sci. USA 108,
1007–1010 (2011).

89. Bashan, A., Parshani, R. & Havlin, S. Percolation in networks composed of
connectivity and dependency links. Phys. Rev. E 83, 051127 (2011).

90. Bashan, A. & Havlin, S. The combined effect of connectivity and dependency
links on percolation of networks. J. Stat. Phys. 145, 686–695 (2011).

91. Molloy, M. & Reed, B. The size of the giant component of a random graph with
a given degree sequence. Combin. Probab. Comput. 7, 295–305 (1998).

92. ErdÆs, P. & Rényi, A. On random graphs I. Publ. Math. 6, 290–297 (1959).
93. ErdÆs, P. & Rényi, A. On the evolution of random graphs. Inst. Hung. Acad. Sci.

5, 17–61 (1960).
94. Bollobás, B. Random Graphs (Academic, 1985).
95. Schneider, C. M., Araújo, N. A. M., Havlin, S. & Herrmann, H. J.

Towards designing robust coupled networks. Preprint at http://arxiv.org/abs/
1106.3234 (2011).

96. Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness of a network of
networks. Phys. Rev. Lett. 107, 195701 (2011).

97. Gao, J, Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness of a tree-like
network of interdependent networks. Preprint at
http://arxiv.org/abs/1108.5515 (2011).

98. Suchecki, K. & Holyst, J. A. Ising model on two connected Barabasi–Albert
networks. Phys. Rev. E 74, 011122 (2006).

99. Donges, J. F., Schultz, H. C. H., Marwan, N., Zou, Y. & Kurths, J. Investigating
the topology of interacting networks. Eur. Phys. J. B (2011, in the press).

Acknowledgements
We thank R. Parshani for helpful discussions. We thank the DTRA (Defense Threat
Reduction Agency) and the Office of Naval Research for support. J.G. also thanks the
Shanghai Key Basic Research Project (grant no 09JC1408000) and the National Natural
Science Foundation of China (grant no 61004088) for support. S.V.B. acknowledges the
partial support of this research through the B. W. Gamson Computational Science
Center at Yeshiva College. S.H. thanks the European EPIWORK project, Deutsche
Forschungsgemeinschaft (DFG) and the Israel Science Foundation for financial support.

Additional information
The authors declare no competing financial interests. Reprints and permissions
information is available online at http://www.nature.com/reprints. Correspondence and
requests for materials should be addressed to H.E.S.

48 NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics

© 2012 M acmillan Publishers Limited.  A ll rights reserved. 


