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Abstract. Image texture is a complex visual perception. With the ever-
increasing spatial resolution of remotely sensed data, the role of image texture
in image classification has increased. Current approaches to image texture
analysis rely on a single band of spatial information to characterize texture. This
paper presents a multiscale approach to image texture where first and second-
order statistical measures were derived from different sizes of processing
windows and were used as additional information in a supervised classification.
By using several bands of textural information processed with different window
sizes (from 565 to 15615) the main forest stands in the image were improved
up to a maximum of 40%. A geostatistical analysis indicated that there was no
single window size that would adequately characterize the range of textural
conditions present in this image. A number of different statistical texture
measures were compared for this image. While all of the different texture
measures provided a degree of improvement (from 4 to 13% overall), the
multiscale approach achieved a higher degree of classification accuracy
regardless of which statistical procedure was used. When compared with
single band texture measures, the level of overall improvement varied between 4
and 8%. The results indicate that this multiscale approach is an improvement
over the current single band approach to analysing image texture.

1. Introduction

The visual interpretation of remotely sensed data has always relied on image

spatial properties to separate image components into similar groups (Lillesand and

Kiefer 2000). This visual process takes advantage of an interpreter’s ability to

perceive spatial and tonal differences rapidly and group areas with similar spatial

structure with little ambiguity (Franklin et al. 2001). Statistical classification

procedures have been successful at separating spectral classes from digital remotely

sensed data based on their spectral properties alone. These classification techniques

have been most successful at classing areas from images with relatively low spatial

resolutions (i.e. orbital satellite data). However, at high spatial resolutions, an area

that was formerly spectrally uniform will be composed of pixels with a higher
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degree of spectral variation. Furthermore, areas of complex terrain (e.g. moun-

tainous terrain) or more complex class structures associated with many emerging

environmental applications may not be adequately classified using standard per-

pixel classifiers operating on image tone alone (Peddle 1995).
The incorporation of spatial variation (image texture) in image classification

procedures is an increasingly important aspect of high spatial resolution remotely

sensed data analysis. Several studies have addressed this difficulty by calculating a

single spatial variable and adding it to a classification procedure. Overall

improvement in classification accuracy indicates that the addition of image texture

improves image classification (Jensen 1982, Franklin and Peddle 1987, 1989, 1990,

Cohen et al. 1990, Peddle and Franklin 1991, Gong et al. 1992, Franklin and

McDermid 1993, Ryherd and Woodcock 1996, Wulder et al. 1998, Franklin et al.
2001).

There are several standard approaches to texture processing. Recent research

has focused on texture measures derived from moving a fixed-size, odd-numbered

window through the image and calculating a variety of different pixel relationships

(Lillesand and Kiefer 2000). By far the most prevalent technique used for deriving

texture measures is the use of the grey-level co-occurrence matrix (GLCM). This

technique uses a spatial co-occurrence matrix that computes the relationships of

pixel values and uses these values to compute the second-order statistical properties
from these matrices (Haralick 1979, Hsu 1980, Jensen 1982, Franklin and Peddle

1987, 1989, 1990, Peddle and Franklin 1991, Barber and LeDrew 1991, Miranda

et al. 1992, Franklin and McDermid 1993, Jensen 1996).

The use of local image variation as a measure of texture has received relatively

little interest in the remote sensing community, compared with the use of GLCMs.

In one of the only studies to compare various techniques used for calculating

textural properties, Weszka et al. (1976) state that first- and second-order statistics

performed in a similar manner. The main difference is the simplicity of the first-

order calculations compared with the complexity of the second-order statistical
calculations. More recently, measurements of local variance have been used to

provide a measure of texture in studies involving simulated images or low-

resolution satellite imagery (Woodcock and Strahler 1987, Dobbertin and Biging

1996, Ryherd and Woodcock 1996, Collins and Woodcock 1999).

Geostatistical analysis has proved to be an essential tool for analysing the

spatial dependence of remotely sensed data. Many studies have demonstrated the

efficacy of this suite of quantitative techniques for estimating the optimum spatial

resolution for remotely sensed data (Curran 1988, Atkinson 1993), and they have
also been used as a tool to model the spatial variation within images (Woodcock

et al. 1988b, St-Onge and Cavayas 1995, Wulder et al. 1996, 1998). In this study,

the relationship between local image variance and semivariance was used to

demonstrate that image variance, used in a multiscale approach, is an alternative

measure of image texture. This approach to image texture analysis provided a

measure of image texture that is simple to compute and was able to characterize

textural information as well as more complex methods.

2. Image texture

Spatial information is more difficult to quantify than spectral information as it

involves measurements of variability, pattern, shape and size. Of all the spatial

information that can be extracted from remotely sensed data, texture may be the

most useful for segmenting images. Due to the importance of image texture for
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separating areas many different approaches to extracting textural information have

been developed. Texture has always been a primary visual cue for defining areas

and relates to the visual perception of coarseness or smoothness of image features.

When defined in a quantitative sense, texture is a property that relates to the nature

of the variability of pixel values. A visually smooth texture would contain only

slight changes in digital number (DN) values over an area while a visually coarse

texture would contain many abrupt changes in DN values over an area (Haralick

1979). Digital definitions of texture are, therefore, a surrogate for the visual

perception of texture.
There are many different methods used to extract textural information from

images. These approaches can be characterized as structural, model-based and

frequency-based. Structural approaches to texture analyses are based on the theory

that textures are composed of repeating elements called primitives (Haralick 1979).

Hay and Niemann (1994) presented a structural method for analysing texture from

forested scenes. While the results of their study indicated a good correspondence

between the classes and the ground data, the structural method is limited because of

the amount of information that is required to adequately characterize texture (Hay

and Niemann 1994).

Model-based approaches attempt to find stochastic processes that are able to

model texture (Cross and Jain 1983). These techniques (Markov random fields,

fractal models and autoregressive models) have had success in analysing micro-

textures but they are not as useful for macro-textures, situations where little is

known about the texture, or more than one texture exists (deSouza 1982, Mao and

Jain 1992).
Feature-based texture analysis derives texture measures directly from the image.

This approach to texture analysis relies on spatial information derived from local

operators, statistical attributes and from the examination of images in the frequency

domain (Van Gool et al. 1985, DuBuf et al. 1990, Reed and DuBuf 1993). This

method of texture processing is the most diverse and commonly implemented

approach to image texture processing. The main focus of remote sensing research

on texture analysis and classification has involved the use of second-order statistics

derived from the grey-level co-occurrence matrix (Haralick 1979, Hsu 1980, Jensen

1982, Franklin and Peddle 1987, Barber and LeDrew 1991, Miranda et al. 1992,

Franklin and McDermid 1993, Jensen 1996, Franklin et al. 2001). Relatively few

studies have focused on the use of lower-order statistical properties of images

(Weszka et al. 1976, Woodcock and Strahler 1987, Dobbertin and Biging 1996,

Ryherd and Woodcock 1996, Collins and Woodcock 1999).

2.1. Statistical analysis of image texture

Statistical procedures used to analyse image texture can be separated by level of

measurement. First-order statistics are used to characterize statistical properties

such as average, standard deviation, mode or variance within an area. Other

statistical approaches include the texture spectrum (Wang and He 1990), and

frequency-based contextual classifiers (Wharton 1982, Gong and Howarth 1992,

Eyton 1993). These statistical procedures analyse the properties of the distribution

over areas, are efficient to calculate and provide useful information about the pixel

neighbourhood under consideration.

Second-order statistics seek to characterize the changes in the distribution of

pixel values over space by describing the mutual dependence of sets of pixels. It is
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this property that has led to their use for the analysis of texture as image texture

(Julesz 1962, Haralick et al. 1973). The most popular second-order statistics for

texture processing are those calculated from the grey-level co-occurrence matrix

(GLCM) and measure a number of properties relating to the relationships between

pairs of pixels in a neighbourhood.

The texture spectrum approach of Wang and He (1990) is based on computing

pixel relationships from a 363 window. This technique compares the centre pixel to

each of the neighbouring pixels and records three logical relationships (smaller,

equal, greater). The summation of this neighbourhood produces a texture value.

Using this technique there are a total of 6561 possible relationships that make up

the texture spectrum (Wang and He 1990). Xu et al. (2003) modified the original

texture spectrum procedure to include only the closest four pixel values, decreasing

the number of possible combinations and increasing the efficiency of the procedure

with similar results.

The use of variance as a measure of texture has received relatively little attention

in the remote sensing community, compared with the use of GLCMs. In one of

the only studies to compare various techniques used for calculating textural proper-

ties, Weszka et al. (1976) stated that first- and second-order statistics performed

in a similar manner. The main difference was the simplicity of the first-order

calculations compared with the complexity of the second-order statistical

calculations. More recently, measurements of local variance have been used to

provide a measure of texture in studies involving simulated images or low-

resolution satellite imagery (Woodcock and Strahler 1987, Dobbertin and Biging

1996, Ryherd and Woodcock 1996, Collins and Woodcock 1999, Franklin et al.

2001). A few studies have compared the different techniques to evaluate the

differences between the approaches to developing spatial variables (Weszka et al.

1976, Haralick 1979).

2.2. Geostatistics

Geostatistical analysis techniques have grown in popularity for analysing

remotely sensed data. One of the most promising techniques is the implementation

of variograms to remotely sensed data as a means of classifying image texture

(Curran 1988, Jupp et al. 1988, Woodcock et al. 1988a, b, Lark 1996, Chica-Olmo

and Abarca-Hernandez 2000). While several studies have shown that semivariance

is useful for quantifying texture, few studies have assessed semivariance as a tool for

mapping image texture (Schachter et al. 1978, Miranda et al. 1992).

Variograms have been used to quantitatively estimate the optimum spatial

resolution for remotely sensed data (Curran 1988, Atkinson 1993). In a similar

manner, they have also been used as a tool to model the spatial variation within

images (Woodcock et al. 1988b, St-Onge and Cavayas 1995, Wulder et al. 1998,

Treitz 2001).

All statistical approaches to texture analysis require a method to define the size

of the convolution filter window. The size of the filter window is important as it

defines the area used for statistical calculations. Several studies have used

geostatistical tools, specifically the variogram, to describe the magnitude of

variation (sill) and the extent of spatial dependence (range) (Curran 1988,

Woodcock et al. 1988a, b). More recent research has found that range values are

useful for determining the maximum size of processing windows or limits to spatial

resolution (Cohen et al. 1990, Franklin and McDermid 1993, Wulder et al. 1998).
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3. Image data collection and study areas

3.1. Imaging system

The remotely sensed data were acquired using the Simon Fraser University

airborne remote sensing system and aircraft (Roberts 1995). This system can be

configured in a number of different modes to capture photographic or electro-

optical images. For this research, the electro-optical imaging system was used. This

system was composed of three Sony XC-7500 progressive-scan digital cameras that

produce an image 659 columns by 494 rows with square pixels (9.969.9 mm). The

signal from the Sony XC-7500 cameras was digitized using an Everex 32-bit

analogue-to-digital conversion board. For this research the spatial resolution of the

image produced was 4 metres.

These cameras were configured with a filtration set-up designed to replicate

colour infrared film. The specific filters used were the Kodak 88A (720–850 nm),

Nikon R60 (585–665 nm) and the Nikon X1 (490–565 nm). Exposure control for

the electro-optical system was performed by flying over the brightest target area

and adjusting the camera’s lens aperture (f-stop) to provide the optimum exposure

for that area with the assistance of a waveform monitor. Most electro-optical

camera systems have an automatic adjustment for controlling sensor gain

(automatic gain control or AGC). This feature was disabled, as it will adjust

the exposure of the sensor once a threshold over- or under-exposure setting is

reached. More information on the electro-optical system can be found in Roberts

(1995).

3.2. Study area

Ben Lake (52‡35’N 122‡05’W) is located in the Interior Plateau region of British

Columbia, Canada (figure 1). This region is characterized by relatively flat to rolling

topography formed in glacial deposits, with a relatively dry climate receiving

approximately 40 cm of precipitation per year (British Columbia Commission on

Resources and Environment 1994). The area contains a mixed Douglas fir

(Pseudotsuga menziesii) and lodgepole pine (Pinus contorta var. latifolia) forest

interspersed with stands of regenerated lodgepole pine.

Ground data were gathered for this site for classification accuracy assessment.

These reference data were compiled from field observations, existing forest cover

maps and photographic interpretation of the aerial image data. These data were

then combined to produce a reference map that was used as the relative measure of

‘truth’ for each area (figure 2).
Field data were collected as close to the imaging date as possible. As the size of

the study area was relatively small, detailed investigations of the forest stands were

possible. Data on the species composition, age and stand density were recorded

from a number of sample plots within each tree stand. Several plots were used to

provide a reliable estimate of the conditions present for each stand (table 1).

There were three different forest stands present in the image. The region is

dominated by mixed Douglas fir and lodgepole pine stands that are on average 100

years old and between 28 and 38 metres in height. These two dominant stands have

a slightly different species composition mix and have different stand densities

(table 1). The younger lodgepole pine stand in the area is regenerated and,

therefore, does not display the diversity of the older stand.
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3.3. Processing

For this study, a geostatistical analysis was conducted to characterize the image

textural differences and to establish the spatial parameters (window size) used to

derive texture variables. This analysis was used to derive the area over which the

Figure 1. Ben Lake study site. This image was acquired with the electro-optical imaging system
and has a ground resolution of 4 metres.
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texture was measured (range) and the amount of variation for each test area (sill).

The image was then processed using both variance measures and GLCM techniques

to assess the utility of the multiscale procedure.

3.3.1. Geostatistical data generation

Geostatistical data analysis was conducted on selected test areas extracted from

each image. The selection of the test areas was conducted in the same fashion as the

collection of training field data for supervised classification: for example, areas with

visually similar image textures were selected on-screen in the same fashion that

spectrally similar groups are defined in the training process with classical multi-

spectral supervised classification (Lillesand and Kiefer 2000).

The test areas were selected to represent the range of spatial variability present

for all visually identifiable texture groups within the image. Unlike spectral

Figure 2. The ground data map produced from field observations and visual interpretation.

Table 1. Summary table of information gathered from field investigation of the Ben Lake
image. All values are averages taken from a number of sites for each stand.

Species mix Age (years) Height (m) Stems hectare21

Douglas fir, lodgepole pine 60–40 100–140 28–38 2250
Lodgepole pine, Douglas fir 55–45 100–140 28–38 1500
Lodgepole pine 100 10–20 3–5 1850
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sampling, the size of the area under investigation is critical for geostatistical

investigations. In this study, the maximum number of points (1000) that the

geostatistical software package (Variowin 2.2) could process were used as the size of

the area under investigation. It should be noted that this limitation is a function of

the software and not the technique (Pannatier 1996).

Variograms can be measured in individual directions, or for all directions

(omnidirectional). The latter approach was used in this research to more closely

replicate variance measured within a window. The other reason for not measuring

semivariance with respect to a specific orientation was that, if there were a strong

directionality to the semivariance, the area would display a pattern of dominant

regularity. While pattern and texture are related, this research was focused on

texture. If areas showed a dominant direction to their spatial variability then they

are exhibiting pattern not texture.

To determine the values of semivariance at intermediate distances, a curve was

fitted to the semivariance points. This curve is the modelled variogram and was

used to determine the sill and range values. The spherical model was selected as it

produced the best fit for the experimental variogram.

3.3.2. Texture processing

For this research two different approaches to texture processing were utilized,

local variance and second-order statistics derived from a spatial co-occurrence

matrix. Window sizes from 565 to 15615 were used to process the textural

information from the image. Local image variation is a simple measure of

dispersion from the mean within the processing neighbourhood. The result of this

procedure is an image dataset that contains the variance values for all spectral

bands for the given window size. For each increasing window size (from 565 to

15615) a new image dataset was created. The maximum size of the processing

window was set using the range values from the geostatistical analysis. The dynamic

range of the data used for this research was not altered. Data from the imaging

system was quantized at 8-bit resolution while the variance data were represented as

32-bit data.

Image texture was also analysed using second-order statistics from a GLCM

using the same window sizes (565 to 15615). In this study, three second-order

texture measures were selected: angular second moment, entropy and contrast.

Angular second moment measures homogeneity and is smallest when all of the

GLCM probabilities are similar and largest when they are different. Entropy is a

measure of the amount of order and repeatability, and contrast is a measure of the

degree of spread of the values in the matrix (Haralick 1979, Sali and Wolfson 1992).

The image data used for computing the GLCM measures were not altered from the

original 8-bit data from the image capture card.

3.3.3. Classification

A standard maximum likelihood classification routine was used to classify all of

the images produced in this study. The training fields used in this supervised

classification procedure were identical for all of the classifications produced. A

series of classifications were produced for each of the four different texture

measures (local variance, angular second moment, entropy and contrast).

Classifications were conducted for each of the different window sizes from 565
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to 15615, as well as a classification that utilized all of the window sizes and one

classification that only incorporated the texture fields.

3.3.4. Accuracy assessment

Classification accuracy assessment was used to compare the effect of using

additional texture measures in the image classifications. Overall correct classifica-

tion provided a measure of agreement between the classifications produced and the

ground data map on a pixel-by-pixel basis. A kappa analysis was also conducted to

include the off-diagonal elements in the analysis.

One of the shortcomings of the confusion matrix approach is that the accuracy

assessment does not provide a direct measure of specific class improvement or

degradation between the different classifications. For this research, the kappa index

of agreement (KIA) was used to compare the specific class differences between the

classifications. This index measures the association between two images on a

category-by-category basis. The values produced vary from 21 to 1 for each

category (group) in the image. If the input images are in perfect agreement then

KIA equals 1; if there is no agreement then KIA equals 21. If the difference is

produced by chance then KIA equals 0 (Rosenfield and Fitzpatrick-Lins 1986).

The assessment of classification accuracy is an important step in any image

classification procedure. Sometimes, methods used to assess classification accuracy

can result in the over-estimation of the accuracy of the classification (Rosenfield

and Fitzpatrick-Lins 1986). For this research, the changes that resulted from the

addition of different texture measures were evaluated by comparing error matrices

from the different classifications. These matrices express the number of pixels that

are in agreement between the classed map and the ground data. To remove

potential sampling bias in the results, all pixels in the image were evaluated.

This full-image approach to accuracy assessment is not usually used for applied

remote sensing because it requires a detailed set of ground data (Lillesand and

Kiefer 2000). While no map represents every group with absolute precision or

accuracy, comparing all images to the same ground data map does provide a

common and consistent measure for comparison between the different classifica-

tions produced.

4. Results

4.1. Variance–semivariance relationship

Figure 3 shows the sill values for all of the major forest stands for all three

spectral bands. While all areas showed different degrees of variation for each

spectral band, the infrared band was selected as it showed the greatest degree of

variation for the spectral bands in this study. Figure 4 represents the variograms for

the infrared band for the three main forest stands in the image. The pine/Douglas

fir class had the greatest spatial variation while the younger pine group showed the

least spatial variation.

The differences in the sill values suggested that there were different degrees of

spatial variability (texture) between the groups. When the variance values for each

successively larger window are extracted and plotted, they showed a similar trend to

that of the variograms. Figure 5 shows the average variance measured for

successively larger window sizes for each area. The magnitude of the measures

was different because one measure was a difference from the mean (variance) and

the other was an absolute difference measure (semivariance).
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4.2. Classification results

Figure 6 shows the supervised classification results using only the spectral

information. This classification is typical of classifications produced from high

spatial resolution data in forested environments. The contingency table (table 2)

shows that the overall correct classification for this image was 61.24% and the

majority of the error in classification was between the different forest stands

(table 2).

While some of the groups were easily separated (water and road for example),

the main forest stands (Douglas fir/pine and pine/Douglas fir) were difficult to

separate as these classes represent differences in species mix (table 1) not differences

in tone. The correct classification of these two groups required the additional

spatial information provided through the addition of image texture in order to

improve the accuracy of the image classification.

The geostatistical analysis indicated that the optimum window size for analysing

Figure 4. Variograms computed from the infrared band for the major forest types. Range
values are indicated above each line.

Figure 3. Ben Lake image sill values for the major forest stands for all three spectral bands.
The difference in sill values indicated that there were differences in texture between bands.
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these data was between 11611 and 15615 (figure 3). Using each of the different

measures of image texture, an additional band of information was incorporated

into the image classification. Classifications were produced with image texture

measured with window sizes from 565 to 15615.

4.2.1. Local variance results

Figure 6(b) is the classification produced by including local variance computed

within a 565 window and shows that the addition of local variance improved the

visual appearance of the classification of smoother areas (young pine). Table 3

shows the contingency table for this classification and shows that the forest stands

received the greatest benefit from the addition of texture with improvements

between 4 and 15%.

As the window size was increased there was a further improvement in the

classification accuracy of the forest stands areas (figure 7(a)), but areas with lower

degrees of variation (water for example) displayed growth effects caused by the size

of the filter which decreased the accuracy of the classification for this group

(table 4). This demonstrated that there was not a single processing window that was

able to adequately characterize all the textures for this image.
In the multiscale procedure, all of the variance data (from 565 to 15615) were

used for a single spectral band (infrared in this example). Figure 7(b) shows the

resulting classification. While similar in appearance to the classification produced

with the larger window sizes (13613, 15615) it displayed less ‘edge-effect’. For

example, while the water area continued to decrease in size, it did not decrease to

the same degree with the multiscale approach.

For the majority of the classes, the classification accuracy increased with

increasing variance window sizes, with the highest degree of accuracy being attained

by the multiscale classification procedure. The overall correct classification for the

spectral classification was 61.24% while the multiscale classification was 74.59%, an

increase of approximately 13%. The difference in the Khat statistic was even

greater, with an improvement of 19% (table 5).

Figure 5. Multiscaled variance graphs for the Ben Lake image. The shape of the curves are
similar indicating that variance measured over distance can function as an analogue
to semivariance measures.
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Figure 6. Supervised classification results using only the spectral information (a) and the addi-
tion of variance computed for a 565 window (b).
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When the kappa index of agreement was analysed for each class in the

classification (figure 8) the class that had the largest improvement was the pine/

Douglas fir class. The difference between the Douglas fir/pine class and the pine/

Douglas fir class was mostly spatial (the pine/Douglas fir class has a coarser

texture) rather than spectral. Other classes declined in agreement as the window size

was increased, for example the young pine and water classes, but were improved

with the multi-spatial procedure. The road class showed a steady decline in

accuracy with increasing window size and with the multi-spatial procedure. The

shallow water class decreased in accuracy only with the addition of the multi-spatial

data.

By performing a classification with only the local variance data, the additional

information added by the inclusion of texture was assessed. Figure 9 shows the

resulting classification; this image shows that classes like pine/Douglas fir were

separable based on texture alone. While some of the classes were not correctly

classified using only the textural information, this classification demonstrated that

the additional information provided by image texture was beneficial for many

classes (table 6).

4.2.2. Second-order statistics results

The trends of the classifications incorporating GLCM texture measures were

similar to those achieved with local variance. The incorporation of multiple window

Table 3. The contingency matrix from the Ben Lake classification incorporating 565 local
variance as a measure of image texture. Improvements in forest stand classification
are between 4 and 10%.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 17 774 0 0 0 0 0 100.00
DF/pine 974 57 939 17 095 125 1518 112 74.51
Pine/DF 434 12 537 22 143 273 3164 231 57.10
Shallow water 704 2002 416 1054 22 8 25.06
Young pine 0 3295 5255 0 24 100 512 72.67
Road 145 1393 3347 73 5516 3493 25.01
Producer’s accuracy 88.73 75.08 45.89 69.11 70.22 80.19

Overall 68.13
Kappa 0.56

Table 2. The contingency matrix for the Ben Lake spectral classification. The ground data
are plotted in the columns and the classed data in the rows.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 17 778 0 0 0 0 0 100.00
DF/pine 506 55 339 21 733 156 2300 174 68.99
Pine/DF 1457 14 796 14 292 137 3034 182 42.16
Shallow water 405 2725 2130 1204 258 40 17.81
Young pine 6 3801 8102 5 22 535 365 64.73
Road 5 1526 2252 23 6607 3759 26.52
Producer’s accuracy 88.20 70.78 29.46 78.95 64.88 83.16

Overall 61.24
Kappa 0.468
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Figure 7. The supervised classification for the infrared 15615 variance (a) and infrared variance
at all window sizes (b).
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sizes with spectral information provided the highest degrees of improvement for the

forested classes (figure 10). The class that received the greatest increase as a result of

the addition of these texture measures was the pine/Douglas fir class. For the

entropy measure the KIA increased 0.21 as the window size increased; the

multiscale approach yielded the highest accuracy. Of the second-order statistical

measures, entropy and angular second moment texture measures yielded the largest

gains in classification accuracy in this study. As expected, the classes that derived

the greatest benefit from the addition of the texture were the forested classes.

Tables 7 and 8 show the contingency tables for these classifications. A maximum

improvement of 35% was achieved for the multiscale entropy classification of the

pine/Douglas fir group over the spectral classification.

This result is similar to the local variance classification results. While the

second-order statistical measures provided improvements in accuracy, the gains

were not as high as those from the local variance. Overall the classification

accuracies for the multiscale GLCM measures were 10% lower than those of the

local variance measure. The forest classes were generally lower for the GLCM

measures, but were still improvements over the spectral classification.

Table 4. The contingency matrix from the Ben Lake classification incorporating 15615
local variance. Further improvement of forest stand classification accuracy compared
with smaller window sizes, with some decreases in accuracy of groups caused by
filter size.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 15 459 0 0 0 0 0 100.00
DF/pine 775 55 209 7568 25 643 14 85.95
Pine/DF 556 11 227 28 676 180 2194 120 66.76
Shallow water 1892 1631 2026 1274 819 93 16.47
Young pine 619 2654 2665 1 19185 530 74.78
Road 66 2682 6397 45 8791 3137 14.85
Producer’s accuracy 79.82 75.21 60.58 83.54 60.65 80.56

Overall 69.39
Kappa 0.59

Table 5. Contingency matrix from the Ben Lake multiscale variance classification. Further
improvement of forest stand classification accuracy and a reduction of the effect of
the increasing filter size.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 15 292 0 0 0 0 0 100.00
DF/pine 346 56 417 7235 35 443 5 87.49
Pine/DF 300 11 799 32 853 264 2256 137 69.01
Shallow water 1835 1407 454 1166 200 53 22.80
Young pine 1182 1569 3131 0 22 373 917 76.69
Road 279 1418 3389 60 5820 2668 19.57
Producer’s accuracy 79.51 77.70 69.81 76.46 71.96 70.58

Overall 74.69
Kappa 0.654
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5. Discussion and conclusions

The standard approach to texture analysis is to process a single band of spectral

information with a fixed size processing window. In this study a multiscale

approach was investigated using four different texture measures. The results of this

study indicated that when a single band of textural information was added, image

classification results would improve. The amount of improvement depended on the

relationship between the size of the processing window and the nature of the

texture. For example, for areas that displayed lower degrees of spatial variation,

smaller window sizes performed better, while for areas with higher degrees of

spatial variation, larger windows improved these groups. For all of the texture

measures investigated, using more than one window size provided the highest

classification accuracies.

Image variance is related to information content in images and therefore

determines the ability to extract useful information about the image (Collins and

Woodcock 1999). The results indicated that local variance, when with more than

one window size and incorporated as a measure of texture in an image classification

procedure, can provide a useful measure of image texture and a close approxi-

mation to semivariance. While the two measurements were not identical, the

similarities provide insight into the utility of multiscale variance as a measure of

texture. In this study, local variance provided more accurate classification results

than the second-order statistics.

One of the major difficulties with producing texture information from moving

windows occurs at the boundary between two different textures. As the window

traverses the boundary it analyses a texture at the boundary that is a combination

of the two adjacent textures. This boundary problem, also known as the station-

arity problem, is most apparent as the window sizes increase and can lead to

misclassifications at the edges of features or the over-estimation of classification

accuracy for some features (i.e. if the boundary of the feature dilates to encompass

the ground data) (Csillag and Kabos 1996). Misclassifications were most common

Figure 8. Kappa index of agreement for the Ben Lake study site.
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at the edges of homogeneous spatial areas. For example, the lake decreased in size

and was most accurately represented (as expected) in the classification that used

only the spectral data (figure 8).

The classifications produced using the multiple scale approach showed an

Table 6. Contingency matrix from the Ben Lake multiscale classification using only the
variance data. This classification demonstrates that for the main forested groups
(pine/Douglas fir and Douglas fir/pine) the textural information aided class
discrimination.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 15 207 0 0 0 0 0 100.00
DF/pine 25 44 570 6981 17 6484 491 76.10
Pine/DF 57 8220 26 547 81 2918 273 69.68
Shallow water 1215 1513 1061 744 2575 389 9.92
Young pine 2288 15 278 4980 525 12 307 786 34.03
Road 442 3029 7593 158 6808 1841 9.26
Producer’s accuracy 79.06 61.38 56.29 48.79 39.58 48.70

Overall 57.70
Kappa 0.44

Figure 9. Classification produced from the use of only the variance data from 565 to 15615
windows.
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(a)

(b)

(c)

Figure 10. Kappa index of agreement for the second-order statistical texture measures for
(a) contrast; (b) entropy; and (c) angular second moment. The accuracy of the
classifications generally increased with increasing window sizes with the multiscale
approach yielding the largest improvements for the forested classes.
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improvement (up to 9% for kappa between the 15615 variance and the multiscale

variance classification) over classifications that only added a single spatial band of

information. For this image, the kappa index of agreement indicated that the class

that benefited the most from the addition of the multiscale variance was the pine/

Douglas fir class for all of the texture measures. The addition of texture to this class

(regardless of how it was included) resulted in improved classification accuracies.

This class is spatially different from the Douglas fir/pine, not spectrally different.

A multiscale approach yielded the best combination for these groups in an

overall perspective regardless of which method was used to produce the texture

measure. The multiscale variance measure of image texture achieved the highest

overall classification results for this study (74.69%). The highest accuracy achieved

for the second-order statistics was 63.27% for the multiscale angular second

moment measure. The differences in accuracy between the local variance measure

and the second-order statistical measures were greatest for the main forest stands

(Douglas fir/pine and pine/Douglas fir). While the local variance techniques

improved the classification of both groups, the second-order statistics improved one

or the other, but not both simultaneously.

Multiscale local variance provided additional discriminating power for separat-

ing forest stands that differ in terms of their structural properties. This multiscale

local variance approach to image texture processing represents a simple technique

for the addition of textural information. The local image variance approach gener-

ated better classification results than the second-order statistics used in this study.

Table 7. Contingency matrix from the Ben Lake multiscale entropy classification.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 17 685 0 0 0 0 0 100.00
DF/pine 1 38 147 10 888 100 1173 64 75.73
Pine/DF 0 27 312 30 689 98 5660 350 47.87
Shallow water 1636 1896 589 1251 133 19 22.65
Young pine 45 5411 3742 69 21 041 1037 67.13
Road 0 637 1452 7 3647 2374 29.25
Producer’s accuracy 91.32 51.97 64.80 82.03 66.47 61.76

Overall 62.76
Kappa 0.49

Table 8. Contingency matrix for the Ben Lake multiscale angular second moment
classification.

Water DF/pine Pine/DF
Shallow

water
Young

pine Road
User’s

accuracy

Water 16 224 0 0 0 0 0 100.00
DF/pine 1965 47 337 18 666 119 2887 200 66.51
Pine/DF 625 18 441 21 140 236 2084 115 49.58
Shallow water 552 1513 786 1156 18 6 28.68
Young pine 0 5599 5722 2 23 829 1121 65.69
Road 1 513 1046 12 2836 2402 35.27
Producer’s accuracy 83.77 64.49 44.64 75.80 75.28 62.49

Overall 63.27
Kappa 0.49

Multiscale texture analysis for forest stand classification 4305



For images that contain complex spatial structures, there is no ‘optimum’ window

size to extract the textural information. For these types of data, a processing tech-

nique that combines multiple scales of information performs best. As the spatial

resolution of remotely sensed data increases, multiscale processing techniques may

provide better overall performance in texturally complex environments.
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