TVB RUNGE-KUTTA LOCAL PROJECTION
DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
FOR CONSERVATION LAWS III: ONE DIMENSIONAL SYSTEMS

By

Bernardo Cockburn
San—Yih Lin
and

Chi—-Wang Shu

IMA Preprint Series # 415
April 1988
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DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
FOR CONSERVATION LAWS III:

ONE DIMENSIONAL SYSTEMS
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Abstract. This is the third paper in a series in which we construct and analyze a class of TVB
(total variation bounded) discontinuous Galerkin finite-element methods for solving conservation laws

u; + Ef___l (f:(u))z; = 0. In this paper we present the method in system of equations, stressing the
point of how to use the weak form in the component spaces but to use the local projection limiting in
the characteristic fields, and how to implement boundary conditions. One dimensional system is thus
chosen as a model. Different implementation techniques are discussed, theory analogous to scalar cases are
proven for linear systems, and numerical results are given illustrating the method on nonlinear systems.
Discussions of handling complicated geometries via adaptive triangle elements will appear in future papers.
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1. Introduction. In [3, 4] we constructed and analyzed a new class of finite element
methods—we call them RKAIIP*, or (k + 1)-th order TVB Runge-Kutta local projection
discontinuous Galerkin finite element method—for solving the hyperbolic conservation law

d
(1.1) ue+ Yy (fi(u))s, =0,
i=1

with suitable initial or initial-boundary conditions. In (1.1) u = (u,...,un)7,
x =(z1,...,24),and ZLI ;25 always has m real eigenvalues and a complete set of eigen-

vectors, with real &;. In [4] we presented the general framework in the case d = m = 1,
keeping in mind about the possibility of natural extensions for d > 1 and/or m > 1.
For details, history and related work, see [1+4, 8, 10, 11, 13-15]. As indicated in [4],
the main advantages of these methods over most other finite element methods are their
time explicitness, hence they can be equipped with high order TVD Runge-Kutta type
time discretizations in {15], and their TVB provableness in 1-D, scalar nonlinear case; the
main advantage over finite difference methods is the flexibility in handling complicated
geometries and boundary conditions. In this paper we carry out the generalization to
one dimensional system m > 1, d = 1. The multidimensional case d > 1 needs adaptive
triangle elements to handle complicated geometries, and will be discussed in future papers.
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Theories about (1.1) as well as about numerical methods solving (1.1) are far less
advanced for the system case m > 1 than for the scalar case m = 1. A numerical method
will be considered acceptable for practical purpose if it verifies a convergence theory for
the linear system case f(u) = Au (the scheme in this case is usually still nonlinear)
as well as for scalar nonlinear case, if it is easily implementable to nonlinear gystems,
and if it gives good results for solving nonlinear systems with discontinuities. We will
follow this conventional approach in this paper. In section 2 we will consider initial value
problems. We present the weak form and the general framework of the scheme, and
consider different possible avenues to apply monotone fluxes at the interfaces and the
local projection limiters. A total variation bounded estimate, similar to the scalar case
- =1, is proven for linear systems. In section 3 boundary condition implementation is
considered. A similar total variation bounded estimate is proven, again for linear systems.
Section 4 includes some numerical results, mainly for the (nonlinear) Euler’s equation
in gas dynamics, to illustrate the behavior of our schemes for nonlinear systems. The
test problems chosen are standard. For comparison with non-oscillatory finite difference
schemes and other finite element methods, we refer the readers to [5, 7, 14}.

2. Initial Value Problems. We consider in this section the equation (1.1) with
m >1,d =1, and with a pure initial condition (periodic or compact supported):

(2.1) u(z,0) = u’(a).

As in the scalar case m = 1, we shall first discretize (1.1)-(2.1) in the spatial variable
x. Let I; = (z;-1/2,%;41/2), I = U;I; be a partition of the real line. Denote Az; =
Tjt1/2 — Zj-1/2 and h = supjAz;. The finite element method we are going to use is
a Galerkin method for which the finite dimensional space V) to which the approximate
solution u(#) belongs for ¢ € [0, T] is taken as

(2.2) V), =V} ={p: each of its components p; € BV N L' :
. pilr; is a polynomial of degree < k},

All the general framework developed in [4] for scalar case, except the choice of monotone
flux and the local projection limiting, can be applied here, just component-wisely. We have

_. K .
2.3 uf(z,t) = aru'? t)vw z} for z € I;,
j 4 j
£=0

where vgj )(m) form a local orthogonal basis over I;:

. . . 1
(2.4) vSJ)(a;) = 1, vgj)(z) =z - zj, véj)(;v) =(z—=z;)* - EAw?, cee
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the coeflicients as are

£+1
= A.TJ 5 3 i-e-:a()=1aa'1=_12—':a2=-1-8%,"',
I (@) do Azy. b
3]

(2.5) ag

and the degrees of freedom, ug-t)(t), are defined by

(2.6) ul® = ul0(t) = /I (e, P (c)dz,  L=0,1,...,k

A$§+1 ;
In order to determine the degrees of freedom of u* we proceed as in {4]. We multiply
(1.1) by v* € VI, integrate over I;, and integrate by parts formally to obtain

e g [ uE v @A D)

d
—/ f(u(z,1)) — v*(z) dr = 0,vv* € V¥,
Ij d$

where At are the usual difference operators Aira; = £(a;z1 ~ a;).

Next, we replace the exact solution u by its approximation u®, and f(u(z j_Jz.,t)) by
some monotone flux (whose choice in the current system case will be determined later)
h; , = h(uj__%,uj'_%), where u;.k__é = uh(mji_%,t) are defined by (2.3), subject to some
local projection limiting to be discussed later. We obtain, after some simple algebraic
manipulations,

d F4 1 ]
(28) = ul )+Aa,~‘i+1 (A (v (z;_4)h,_4]
J
1 A d 5
-Amf+1 I f(u (‘Tat))ggvl (.2‘,') d.’L‘=O, 820’1""’k'
i ;

The integration in (2.8) can be approximated by a suitable quadrature whose error is
at most O(h*¥+4+2), and (2.8) is solved in time by a TVD Runge-Kutta type method [4,
15]:

(2.9a)
i—1
(WO = 37 [aie(u") O + BieAMLa (WO, 8" + dedt)], i =1, 1,
£=0
(2.9b)

@O = (@h), (M) = (),
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For example

(2.10a)
second order (r =2):a10 = B0 = 1, a2 = ag = fp = 1
ﬁ20 - 0;d0=03d1=1; CFL:]-,
(2.10b)
third order (r = 3) :a10 = P10 = 1, ag = 2, P20 =0, a; =
Pa1 = 7, a3 = %, B30 = az = B3 = 0,
a2 =By = 4,do =0,dy =1, d, = 1,
CFL = 1.
etc. The starting point of (2.9)—(2.10) is (2.8) written in a concise ODE form:
(2.11) %uh = Lx(ut,f),

where we include the time variable ¢ in case there are time dependent forcing terms or
boundary conditions,

We now turn to the problem of choosing h j+4in (2.8), and applying the local projection
limiting. For this purpose we write (see (2.3)):

o~
-

- 0) , =~ 0
(2.12) uj+12_=u§-)+uj ; u;."__%=u§)—uj,

and apply the local projection limiting on #;, a j» as in the scalar case [4].

One simple way is to do everything just component-wisely. We define
018) 6 = (55,40, 4 ) E70 —m (&84, 4~ ),

where m is a vector minmod function with TVB correction:

m((a1)1,(a2)1,-++ ,(an)1)

(2.14) m(ay,as, -+ ,a8,) = : ,
m ((a1)m; (@2)ms*++ 5 (@n)m)
where a; = ((ai)1,(ai)2, -+, (ai)m)7, and
(2.15a)
b , if |by| < MA?,
m(by, -+ ,bp) = ¢ s -minj<icn |bi] , if [b] > MR2, and sign(b) =--- =sign(b,) = s,
0 , otherwise,
with
(2.15b)
= ag,
or




(2.15¢)
3,2

B2+ |(A+u)el + [(A-(u$P))el

2
M = Mj,g = §(3 + 10M2)M2

and M; = max;, J|-§;5(u°(x)),-|, the maximum being taken over a neighborhood J of
smooth critical points of u®(z) in (2.1).

We then use the (local) Lax-Friedrichs flux

(2.16a) hj ;= h( i+i ;_12.) = ";’ [f( J+l) + f( +2) T Y+ (u;'_i_% - u;_i_%)] ’

with

(2.16b) 0y = max (;,\( RPN |) (local Lax-Friedrichs),

or

(2.16¢) %jpy =0 = max .AS’_"_)Z (Lax-Friedrichs),

where )\(+1 ,p=1,---,m, are the m real eigenvalues of the Jacobian gfﬁl“=“?+1
%

Notice that we do not need to evaluate the Jacobian or its eigenvectors, just its eigen-
values. Thus computationally it is very simple. Unfortunately this simple version does not
have a TVB theory, even for linear systems. Computationally we do observe wriggles (see
section 4), although these wriggles are usually rather small for second order schemes.

To achieve better qualities at the price of more complicated computations, we use

characteristic field decompositions. We denote by Aj+12_ = (5—33)“__“ some “average”
B u(.o)-{-u(-o) . . . :
Jacobian, e.g., U 1 = ———2L (simple arithmetic mean), or (for Euler equations of

gas dynamics) u; ++ =R (ugo),uﬁ?l) where R is the Roe average [12]. We denote the

eigenvalues and left and right eigenvectors of Aj+12_ by )\(‘:L)J_, lg’_’:l, g‘i)%, p=1---,m,

normalized so that lg.’_? 1 (92 1 = bpg. Then, in computing h; 1, we project everything to
2

the eigenspace of A i+d

(2.17) a? =1P g

i+3

where we take a = 1, uJ.H, ; ,ug‘j}l, AL u(o) Ay u(o) A+u( ). We then apply the local
projection limiting in each characteristic ﬁeld

(?) (»
(2.18a) (1;)Pmod) ((ﬁj)(p), (36") 7, (8-u) ) ,

(2.18b)
(ﬁﬁ-l)(p)(mod) _ ((§j+l)(P) , (A+u§0)) (p) (A ug(l)l)(li)) ,
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(We will drop the superscript “mod” in the following.)
We form

(2.19) (u;+%)(p) _ (ugo)) (» +(@,)®, (u;%)(f’) _ (ug?l)(p) 3 (§j+1)(p),

return to the component space

L S WONe
(2.20) a—Zaer_,é_,
p=1

+% J‘+1,~)’
any scalar monotone flux or E-flux [11] in the p-th characteristic field, p=1,--- ,m. For

example, we may use the local Lax-Friedrichs flux

(p) (p) (p)
+ - (#) + \? - \@»
fj+%) + (fj+%) TY+1 ( (“i+%) - (uj+i-) )J ’

) (p)
by taking a = uji , compute f_,#.:;. 3 = f (u"“‘ compute ( fﬁ_ é) by (2.17), then use

(r) _ _1_
with
(2.21b) oy = max (NP, 1\ ),

(for convex case only, otherwise the maximum should be taken in the whole interval) or
the Roe flux with entropy correction

(#)
(f}:_;.) , No sonic point and ’\_(1'1;!—)1 <0,
2 2
(» (p)
(2:22) hj+12~ (f};%) , 1o sonic point and Aﬁ'i)% >0,
same as in (2.21) , otherwise.

We finally get h; 1 by (2.20) with a = hH_%:
_N 0
(2.23) hyy = Z;hjf"_%rjﬂ_%.
p:

Computationally this approach needs much more work. However it works better both
theoretically and numerically. Theoretically we have the following proposition, similar to
the results for scalar case [4], for linear systems
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PROPOSITION 2.1. Scheme (2.8)-(2.9)-(2.23) is TVBM (total variation bounded in the
means u(?)) and TVB, under the total variation definition (see (2.17) for notations)

(2.24)
( 5(21)(11) 3 (ugo))(p)

TV(u®) =
for linear system f(u) = Au where A is a constant matrix, hence has a convergent subse-

TV(u) = ZZI(” +1)® — (u))?],

i p=1 J p=l

quence in this case.

Proof. Since ,\(_H, l(+l, (p)

will satisfy a scalar TVB scheme in [4]. The same argument as in the scalar case [4] now
leads to TVBM and TVB. [

do not vary with j, in each characteristic field, (u(o)) (»)

Notice that the scheme in this case is still nonlinear. The result can be generalized to
A= A(z).

For numerical results see Section 4.

3. Imitial Boundary Value Problems. We now turn our attention to the initial
boundary value problems. For simplicity we take the interval (0,4o00) and consider one
boundary at # = 0 only. The general case of two boundaries can be handled similarly. if
at the boundary z =0

(3.1) A (D <. .- < A®) g < A(s4D) < o < )\(m),

where A(®) are the eigenvalues of % |z=0, then a well-posed boundary condition takes the
form (see (2.17) for notations):

(w)¢*D(0,1) (w)M(0, 1)
(3.2) : = B(t) : +9(1),
(w)™(0,1) (w))(0,1)

where B(t) is a (m—s) x s matrix with Lipschitz continuous components, g(t) isa (m—s)x1
vector with bounded variation.

We put the boundary at z_y; = 0, and implement the boundary condition (3.2) as
follows: '

(u:l)(p) ( +l)(P) (iig) P(mod) — oy ((ﬁo)(p), (A_!_u((]())) (P)) ’

2 2

(3.32) (50)(P)(mod) o ((:0)(1’) (A.,.ugo))(p)) |
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forp=1,--.,s;

oy (s41) (W)
(”—é) (“—%)

(3.3b) : = B(1) : + g(1),

(=)™ (173)°
(P~ ((ao)‘”sz(%ué"’)“” ,

(( (o)) (ZB — g(t)( ) f)_,_ (g(t))p_a))) ,
(ﬁo)(p)(mc}d) =m ((ﬁo)(”), (A.:,ug())) (p)) :

forp=s+4+1,--:,m
Notice that, as in the scalar case [4], accuracy is not affected by the limiters.

We then have the following proposition

PROPOSITION 3.1. Scheme (2.8)-(2.9)-(2.23)-(3.3) is TVBM, under the total variation

- definition for the mean uf® -
(p) (p)
(0 0
(2) " = ()

s ()= ¥ (034 30
with @ = max(1,2||B|;) = max (1, 2max, ., op Yorer’ Ing(t)I) and

k]

jz~1 p=1 p=s+tl
1<p<e
()
(0) =1....
O o) (") P b

Yot=1 Bp—s (1) ( (0)) + {¢(1)) pos o P=8+1 m,

and TVB under the total variation definition (2.24), for linear constant coeffciented system
f(u) =

Proof. We only need to prove the result for the Euler forward version of (2. 8) Following
the lines of proofs in [4, Proposition 3.1] we have

((uff))(p))n _ ((ugo))(zl))“ + C](.i)_lz_A+ ((ugm)(p))" _ D;”_)_;_A_ ((ugo)) (p))“’

forj>1,p=1,-~-,mand j=0,p=s+1,---,m, and

((ugo))(p)) n+1 _ ((ugg))(:})) n N Cép)A+ ((ugo))(l’))n,

8




for p=1,---,s, where all the C’s and D’s are non-negative, module 0(h?).

Following the lines of proof in [14, Theorem 3.1], we then have, for p=s 4 1,--- ,m,

A, ((u(_oz) (P)) n+1 _ (1 ~ Dg’%) A, ((u(_oz) (P))n

+ C'E;’)A_f. ((uﬁ")) (P))n _ (g(t“+1) _ g(tn))p—a

> (eny "1 o\ "
- Z (Bp—s,!(tnﬂ) ((“80)) ) — Bp—s,e(17) ((ut()U)) ) :

=1
Hence, after some technical manipulations similar to [14, Theorem 3.1], we arrive at

TV (0)1) = 3 (QZSZJF i) AL ((ugo))(p))m

jz-1 =1 p=s+1
L] m—g

<1 () - 32 (22 5] ) o [actu?)?)
p=1 =1

+ LAtV ((u®)") + mz_: [CenE g(tm),| + HAL,

p=1

where the LAtTV(u(®) term is related to the Lipschitz condition of B(t), it does not
appear if B(%) is a constant matrix. The HAt term is related to the TVB correction
constant M in (2.15); it does not appear if M = 0.

The remaining of the proof is straight forward. [J

Remark 3.2. As in [14], the total variation definition in (3.4) has different weights for
incoming and outgoing components. This is motivated by the differential equation theory,
and guarantees total variation diminishing of the boundary treatment (3.3) under this
definition of total variation, i.e., if B(%) is a constant matrix, ¢ = 0, M =0 in (2.15), then
TV((u(®)™*1) < TV((®)"). 1

4. Numerical Results.

Example 1. We consider the Riemann problems of the Euler equation of gas dynamics
for a polytropic gas:

b < 07
(4.1a) u, + f(u); = 0,u(z,0) = u’(z) = { HL
ug,z > 0,
(4.1b) u = (p,m, E)T, f(u) = qu+(0,p,¢p)7,

with



(41c) p=(r-1) (E - %pqz) ,™ = pg,

¥ = 1.4 is used in the following computation. For details of the Jacobian, its eigenvalues,
eigenvectors, etc., see [5, 12].

Two sets of initial conditions are considered. One is proposed by Sod [17]:

(4'28‘) (pr,qr,pr) = (1,0, 1);(pr, qr,pr) = (0.125,0, 0.10).
The other is used by Lax [9]

(4.2b) (pL,gr,pL) = (0.445,0.698,3.528); (pr, ¢&, Pr) = (0.5,0, 0.571).

We test our second order and third order schemes, i.e., k = 2, and 3 in (2.8), r =2
and 3 in (2.10). Both component-wise limiters (2.13)-(2.16a,b) and characteristic-wise
limiters (2.18)-(2.22) are tested. Local Lax-Friedrichs flux (2.16a,b) and (2.21) are used.
The results are in Figures 1-24. As expected, we see some wriggles in the component-wise
version (and the wriggles become more severe with the third order scheme), and good
behaviors in the characteristic-wise version.

We remark that the contact discontinuities and the corners of rarefaction waves are
smeared more than the shocks. Some artificial compression or “sub-cell resolution” [6, 16]
should help.

Example 2. We consider the interaction of blast waves of the Euler equation (4.1) with

uz,0 <z <01,
(4.3) u(zr,0) = ¢ up,0.1<z<90.9,
up,09<z<i,

where pr = py = pr =1, g1 = qu = qr = 0, py = 103, pr = 1072, pp = 102, A
reflecting boundary condition is applied to both ends. See [18, 5].

The results are in Figures 25-26. We see that the pictures are satisfactory, except for
the above mentioned smearing of contact discontinuities.

Example 3. We use our second order and third order methods (2.8)-(2.10), with the
boundary treatment (3.3), to solve the equation

- ()= (5 D E).

with the initial boundary conditions

u(z,0) = v(z,0) =sin27rz, 0 <z <1,
(4.5a) {

u(0,1) = —v(0,%),v(1,t) = —u(1,t),
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and

wl 2
1,1f§SIS§-,

o(z,0) -{

u(x,0) =0,z >0,
u(0,1) = v(0,1).

0, otherwise,
(4.5b)

The numerical errors at ¢t = 2 for (4.4)-(4.5a) are listed in Table 1. We can see that the
boundary treatment works very well for smooth problems.

The solutions of (4.4)-(4.5b), at t = 0.5 and ¢ = 1.0, are in Figures 27-32. We can see
that the boundary treatment is total variation stable. The smearing is again due to the
fact that the equation is linear, and we expect improvements by artificial compressions or
sub-cell corrections [6, 16]. '

Table 4.1 . L : Loc-error; Ly : Li-error; r = numerical order of convergence.

Az second order third order
Lo r L, r Lo r L, r

55 | 0-21 x 107! 0.13 x 1071 0.42 x 1078 0.17 x 10~3

ul 4 |049x107%[2.08 0.32x107% 12,07 |0.37 x 107* [ 3.51 | 0.17 x 107* | 3.28
& [0.12x 1072 2.03 | 0.77 x 1073 | 2.03 | 0.38 x 107 | 3.31 | 0.20 x 107° | 3.15
2 |0.21 x 107! 0.13x 1071 ] 029 x 1073 0.13 x 10~*

v| & [049%107%]2.08]|0.32x107% {2.07|0.35%x 10" | 3.06 | 0.15 x 10™* | 3.14
& [0.12x1072]2.03 | 0.77 x 107% | 2.03 | 0.42 x 10~ | 3.07 | 0.18 x 10~ | 3.06
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NOTES ABOUT THE FIGURES:

(1) Except in Figures 25-26, solid lines are for the exact solutions, and ‘4’ are for the numerical
solutions (just one point per cell is printed);

(2} In Figures 1-24, we solve (4.1)-(4.22) to t = 2.0, and (4.1)-4.2b) to t = 1.3, using 100 cells.
Density, velocity and pressure are pictured for each case;

(3) In figures 25a, 26a, the solid lines are for numerical results with 400 cells, and 47 for 200 cells.

(4) In figures 25b, 26b, the solid lines are for numerical results with 800 cells, and 4+’ for 400 cells.
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Figure 1: second order, component-wise limiter, (4.2a)}, density.
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Figure 2: second order, component-wise limiter; {4.2a), velocity.
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Figure 4: second order, component-wise limiter, (4.2b), density.
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Figure 5: second order, component-wise limiter, (4.2b), velocity.

Figure 6: second order, component-wise limiter, (4.2b), pressure.
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Figure 12: third order, component-wise limiter, (4.2b), pressure.
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Figure 13: second order, characteristic-wise limiter, (4.2a), density.
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Figure 14: second order, characteristic-wise limiter, (4.2a), velocity.
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Figure 15: second order, characteristic-wise limiter, (4.2a), pressure.
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Figure 16: second order, characteristic-wise limiter, (4.2b), density.
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Figure 17: second order, characteristic-wise limiter, (4.2b), velocity.
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Figure 18: second order, characteristic-wise limiter, {4.2b), pressure.
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Figure 19: third order, characteristic-wise limiter, (4.2a}, density.
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Figure 20: third order, characteristic-wise limiter, (4.2a), velocity.
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Figure 21: third order, characteristic-wise limiter, (4.2a), pressure.
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Figure 22: third order, characteristic-wise limiter, (4.2b), density.
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Figure 23: third order, characteristic-wise limiter, (4.2b), velocity.
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Figure 24: third order, characteristic-wise limiter, {4.2b), pressure.
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Figure 25a: second order, characteristic-wise limiter, 200 and 400 points, density.

Figure 25b: second order, characteristic-wise limiter, 400 and 800 points, density.
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Figure 28: third order, { = 0.5, u.

27



]lllllllllill!!]llrlIlll-

U1 11

1.G0O ":HHH:H.,.
-
|
0.75 — 4
i
0.50 —
- +
0.25
- +
K -
0.00 —
i I 1 1 1 1
o 0.2

1.00

0.75

0.50

0.25

0.00

Figure 30: third order, t = 0.5, v.
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Figure 32: third order, 1 =1, u.
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