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Abstract

A variational approach for filling-in regions of missing data in digital images is intro-
duced in this paper. The approach is based on joint interpolation of the image gray-levels
and gradient/isophotes directions, smoothly extending in an automatic fashion the isophote
lines into the holes of missing data. This interpolation is computed solving the variational
problem via its gradient descent flow, which leads to a set of coupled second order partial
differential equations, one for the gray-levels and one for the gradient orientations. The
process underlying this approach can be considered as an interpretation of the Gestaltist’s
principle of good continuation. No limitations are imposed on the topology of the holes, and
all regions of missing data can be simultaneously processed, even if they are surrounded by
completely different structures. Applications of this technique include the restoration of old
photographs and removal of superimposed text like dates, subtitles, or publicity. Examples
of these applications are given. We conclude the paper with a number of theoretical results
on the proposed variational approach and its corresponding gradient descent flow.

Keywords: Interpolation, filling-in, image gradients, image gray-levels, variational approach,
partial differential equations, Gestalt principles.

1 Introduction

Filling-in missing data in digital images has a number of fundamental applications. They range
from removing objects from a scene all the way to re-touching damaged paintings and pho-
tographs. The basic idea is to fill-in the gap of missing data in a form that it is non-detectable
by an ordinary observer. In art, this process is called inpainting [38, 16, 25, 6, 7].

Since the early days of art and photography, filling-in and inpainting has been done by pro-
fessional artists. Imitating their performance with semi-automatic digital techniques is currently
an active area of research, see for example [23, 27, 28, 8] and the papers discussed below. The
goal of this work is to introduce a novel algorithm for automatically filling-in gaps in the image.

In this article we follow the suggestions in the conclusions section in [6] and introduce an energy
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functional based on an interpretation of Gestaltist’s good continuation principle. Suppose that
we are given an image ug : R — [a, b], where R is a square of IR? and a < b, and © is an open
bounded subset of R with Lipschitz continuous boundary. We shall call 2 the hole or gap. We
want to fill-in the hole 2 based on the geometric and photometric information outside the hole.
For that we use what we call a band around {2, i.e., we consider an open region Q of R such
that © C €. The band we refer to will be the set B = Q\ Q. To fill-in the hole Q we use
the information of ug contained in B, mainly gray level and the vector field of isophotes (level
sets) directions of ug in B. We attempt to continue the level sets of w in B inside 2 taking into
account the principle of good continuation. We propose an energy functional which takes into
account these principles interpreted in a suitable way. The energy functional we propose has to
be minimized with respect to two variables : a vector field § which represents the directions of
the level lines of u, and the gray level u. 6 and u are constrained in the band B by their known
values there. The use of the vector field of directions # is one of the main points of the algorithm
presented in this paper, which permits the level sets to smoothly continue inside the hole. We
are then continuing both the geometric and photometric properties of the image inside the hole.

Let us finally say that the only user interaction required by the algorithm here introduced is
to mark the regions to be filled-in. Although a number of techniques exist for the semi-automatic
detection of image defects (mainly in films), addressing this is not part of the scope of this paper.
Since the algorithm here presented can be used not just to restore damaged photographs but
also to remove undesired objects and writings on the image, the regions must be marked by the
user, since they depend on his/her subjective selection.

1.1 Closely related approaches

Before proceeding with the detailed description of our algorithm, let us comment on related
work. Note that image denoising is different to filling-in, since the regions of missing data are
usually large. That is, regions occupied by top to bottom scratches along several film frames,
long cracks in photographs, superimposed large fonts, and so on, are of significant larger size
than the type of noise assumed in common image enhancement algorithms. In addition, in
common image enhancement applications, the pixels contain both information about the real
data and the noise (e.g., image plus noise for additive noise), while in our application there is
no significant information in the region to be inpainted.

A very active area related to the work here presented is the restoration of damaged films.
The basic idea here is to use information from past and future frames to restore the current one,
e.g., [23, 28]. Of course, this general approach can not be used when dealing with still images.

Another area related to the work here described is texture synthesis. The basic idea here
is to select a texture and synthesize it inside the region to be filled-in (the hole). Although
outstanding texture synthesis results have been reported in the literature, e.g., [22, 14, 19, 35],
these algorithms require the user to select the texture to be copied into the hole. For images
where the region to be replaced covers several different structures, the user would need to
go through the tremendous work of segmenting them and searching corresponding replacements
throughout the picture. Although part of this search can be done automatically, this is extremely



time consuming and requires the non-trivial selection of many critical parameters, e.g., [14].

Last, a number of fundamental works on disocclusion and line continuation have been re-
ported in the literature, and these are the closest to our approach. A pioneering contribution in
this area is described in [33]. The authors presented a technique for removing occlusions with
the goal of image segmentation. Since the region to be filled-in can be considered as occluding
objects, removing occlusions is analogous to image inpainting. The basic idea suggested by the
authors is to connect T-junctions at the same gray-level with elastica minimizing curves (see later
in this paper for the exact definition of elastica curves). The technique was mainly developed
for simple images, with only a few objects with constant gray-levels, and will not be applicable
for the examples with natural images presented later in this paper. (Other researchers, e.g., D.
Jacobs, R. Basri, S. Zucker, etc, have followed this interesting research area, mainly developing
techniques for smooth curve continuation.) Masnou and Morel [31, 32] recently extended these
ideas, presenting a very elegant and inspiring general formal variational formulation for disoc-
clusion and a particular practical algorithm implementing some of the ideas in this formulation.
The algorithm fills-in by joining with geodesic curves the points of the isophotes arriving at the
boundary of the region to be inpainted. The holes in their algorithm are limited to having simple
topology. In addition, the angle with which the level lines arrive at the boundary of the holes
are not (well) preserved, and the algorithm uses straight lines to join equal gray value pixels.
On the other hand, we should note that this work has motivated in part and inspired our work.

Recently, we have addressed the concept of smooth continuation of information in the level-
lines direction in [6, 7]. We proposed an algorithm, inspired in partial differential equations,
that propagates the image Laplacian in this direction. The algorithm attempts to imitate basic
approaches used by professional restorators. The algorithm also introduced the importance of
propagating both the gradient direction (geometry) and gray-values (photometry) of the image
in a band surrounding the hole to be filled-in. It is part of the goal of the current paper to
adopt some of the ideas of [6, 7], while deviating from the particular model in order to be able
to define a formal variational approach to the filling-in problem.

The work in [6, 7] inspired a very elegant approach to the filling-in problem recently reported
in [9] (this work was performed independently to the one reported in this paper).! The authors
present a clear and very intuitive axiomatic approach to the problem. The main algorithm
they propose after an interesting discussion of the inpainting problem is to minimize the Total
Variation (TV), [34], of the image inside the hole (they also use, as proposed in [6, 7] and further
studied in this paper, a band surrounding the region). They address in addition the interpolation
and filling-in in the presence of noise, a very important additional contribution. As in the work
of Masnou and Morel, their interpolation is limited to creating straight isophotes, not necessarily
smoothly continued from the hole boundary, and mainly is developed (as the authors clearly
state) for small holes. Although straight connections give visually pleasant results for small
holes, it is important to develop a theory that permits interpolation of level lines across large
gaps. As we will argue later in this paper, in order to obtain such a smooth interpolation of
isophotes, it is necessary to go into high order PDE’s or systems of PDE’s, as done in [6, 7] and

!We thank the authors for providing us with a preliminary report of their work.



here.

To conclude this section, the interested reader is referred to the works of Nitzberg-Mumford-
Shiota, Masnou-Morel, and Chan-Shen (as well as our previous work) to study other interesting
and very related techniques for filling-in.

Let us conclude with the plan of the paper. In Section 2 we introduce the problem, the
functional spaces and the energy functional for image inpainting. To clarify the meaning of the
functional, we also discuss the particular case where we interpolate the gray level, knowing the
vector field of directions. Section 3 is devoted to numerical experiments. Section 4 contains
some conclusions. Finally, the Appendix is devoted to the proof of existence of minimizers for

the energy functional introduced in this paper.

2 Joint interpolation of vector fields and gray values

Let ug : R — IR be an image defined on a domain R of IR?, which we may suppose to be a
square. Let €, Q be two open bounded domains in JR? with Lipschitz boundary and suppose
that @ C Q cc R. To simplify our presentation we shall assume that Q does not touch the
boundary of the image domain R. Let B := Q \ Q. B will be called the band around €. Suppose
that a function ug is given in B which, for the moment being, we shall assume to be smooth
in B (later we shall assume that ug is of bounded variation, i.e., ug € BV (B)). Let 8y be the
vector field of directions of the gradient of ug on B, i.e., 6y is a vector field with values in IR?
satisfying 0y(z) - Vug(z) = |Vup(z)| and |0p(z)| < 1 (ideally 1 or 0, see below). This is the
information we shall use on B.

We pose the image inpainting problem in the following form: Can we extend (in a reasonable
way) the pair of functions (ug,6g) from the band €\ Q to a pair of functions (u,#) defined
inside Q 7 Of course, we will have to precise what we mean by a reasonable way. We shall
discuss and analyze a variational formulation of this filling-in problem and discuss possible
energy functionals, and their corresponding gradient descent flows, which give a solution to it.
The data are given on the band B and we should constraint the solution (u, ) to be near the
data on B. The vector field 8 should satisfy |#| < 1 on © and should be related to u by trying
to impose that 6 - Vu = |Vu|, i.e., we should impose that € is related to the vector field of
directions of the gradient of u. The condition |§(z)| < 1 should be interpreted as a relaxation
of this. Indeed, it may happen that 6(z) = 0 (flat regions) and then we cannot normalize the
vector field to a unit vector. We should have in mind that the ideal case would be that 6 = g—m,
u being a smooth function with Vu(z) # 0 for all z € Q. Finally, we should impose that the
vector field 8y in the band tries to continue smoothly to 6 inside 2. We shall impose this by
observing that, in case 6 represents the directions of the normals to the level lines of u, i.e., of
the curves u(z1,z2) = A, A € IR, then a term like div(6) represents its curvature. Motivated
by the principle of smooth continuation, our energy functional should contain terms integrating
div(@). Indeed, collecting all the observations above, we propose to minimize a functional of the
form

Minimize / \div(0)[P (@ + b|Vk * u|)dz + a / (|Vu| — 0 - Vu)da, (1)
Q Q
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where a, b, and « are positive constants and k is a smoothing kernel. We need to give a sense
to the integrals appearing in the above expression and to make precise the admissible class
of functions where the functional has to be minimized. For that, we need to introduce some
function spaces. This is done in the following section. Once this has been formally addressed,

we will further discuss the underlying concepts of the above functional.

2.1 Function spaces

Let us first recall the definition of BV functions and total variation. Let ) be an open set. A
function v € L'(Q) whose partial derivatives in the sense of distributions are measures with
finite total variation in @ is called a function of bounded variation. The class of such functions
will be denoted by BV (Q). Thus u € BV (Q) if and only if there are Radon measures p1, ..., uy
defined in ) with finite total mass in () and

/ uDjpdz = — / pdp; (2)
Q Q

for all p € C§°(Q), 2 = 1,...,N. Thus the gradient of u is a vector valued measure with finite

total variation
IV ||= SHP{/Q udivpds : ¢ € C3°(Q, R"), |p(x)| <1 for z € Q}. (3)
The space BV (Q) is endowed with the norm
lullBv=Ilullzy g + I Vul (4)

We say that a measurable set £ C @) has finite perimeter in @ if its indicator function yg €
BV(Q). If u € BV(Q) almost all its level sets [u > A\] = {z € Q : u(zx) > A} are sets of finite
perimeter. For sets of finite perimeter £ one can define the essential boundary 0* E, which is
rectifable with finite V! measure, and compute the normal to the level set at HV 1 almost
all points of 9* E. Thus at almost all points of almost all level sets of u € BV (Q) we may define
a normal vector #(z). This vector field of normals 6 can be also defined (hence extended to all
@) as the Radon-Nikodym derivative of the measure Vu with respect to |Vul, i.e., it formally
satisfies 0 - Vu = |Vu| and, also, |§| < 1 a.e.. For further information concerning functions of
bounded variation we refer to [1, 17, 39].

Let us now introduce the function spaces for §. Let Q be an open bounded subset of IR?
with a Lipschitz boundary. We define

WP (div, Q) = {0 € LP(Q)? : div(0) € I*(Q)}, 1< p < o0,

and
M(div, Q) = {0 € L'(Q)? : div() is a Radon measure in Q}.

The Trace Theorem ([2],[10]) guarantees that the normal component 6 - n|sq, is well defined for
vector fields 0 in W'P(div, Q), or in M(div, Q). To simplify our notation we shall assume that
Whl(div, Q) represents the space M (div, Q).



Next, we shall give a sense to the integrals of bounded vector fields with divergence in L
integrated with respect to the gradient of a BV function. For that, we shall need some results
from [2] (see also [26] and [11]). Let @ be an open bounded subset of IR" with Lipschitz
continuous boundary. Let p > 1 and ¢ > 1 be such that }l) + % = 1. Following [2], let

X(Q)p ={z € L*(Q, R") : div(z) € LP(Q)}. (5)

If z € X(Q)p and w € BV(Q) N LY(Q) we define the functional (z, Vw) : C§°(Q) — IR by the

formula

< (2, Vw), ¢ >:—/ w(pdz'v(z)da:—/ wz - Vedz. (6)
Q Q

Then (z, Vw) is a Radon measure in @Q,

/ (2, Vw) = / z-Vwdz (7)
Q Q
for all w € WH1(Q) N LP(Q) and

[ v < [ 160 < el [ 1901 ®

for any Borel set B C Q).
In [2], a weak trace on JQ) of the normal component of z € X(Q), is defined. Concretely, it
is proved that there exists a linear operator 7 : X(Q), — L*(0Q) such that

[7(2)]loo < ll2]loo
v(2)(z) = 2(z) - v(z) forall z € 8Q if ze CHQ,RN).

We shall denote ~y(z)(z) by [z,v](z). Moreover, the following Green’s formula, relating the
function [z, v] and the measure (z, Vw), for z € X(Q), and w € BV (Q)NLY(Q), is established:

/ w div(z) dz + / (z, Vw) :/ [z, v]w dHN L. (9)
Q Q oQ
If no confusion arises, we shall denote z-Vw instead of (z, Vu) for z € X(Q),, w € BV(Q)NLY(Q)

2.2 The energy derivation and interpretation

One of the key concepts above was the band around the hole. The band is of local character but
in principle it could be extended to all the known part of the image. Obviously, what happens at
distant parts can be independent or not from what happens at the hole, but, in our construction
below, we suppose that only a narrow band around the hole influences what happens inside the
hole. Could we fill-in without the band ? To discuss this suppose that we are given the image
of Figure 1.a which is a gray band on a black background partially occluded by a square 2. We
suppose that the sides of the square hole Q) are orthogonal to the level lines of the original image.
In these conditions, the normal component of the vector field 8y outside 2 is null at 92. Thus
if the boundary data is just 0y - n|sq, we would have that 6y - n|sq = 0. In particular, the vector



field 8 = 0 satisfies this condition. If we are not able to propagate 6 inside {2 this may become
an unpleasant situation, since this would mean that we do no propagate the values of u at the
boundary. If we write the functional (1) with § = 0, it turns out to be the Total Variation [34].
The decision of extending the gray band or filling the hole with the black level would be taken
as a function of the perimeter of the discontinuities of the function in the hole. To overcome this
situation we introduce the band which ensures that the vector field outside €2 is present in the
functional. In Figure 1.b we display the result of the interpolation with 8 = 0 on 2. In Figure
1.c we display the result of the interpolation using the functional we shall completely describe
below, which takes into account the band B and computes the vector field 6 in Q = QU B.

Figure 1.a. Figure 1.b. Figure 1.c.

Thus, let B be a band around €2 with a Lipschitz boundary containing the boundary of (2
(see Figure 2). As we made explicit above, B = Q \ Q. Given the band B and the function ug
of bounded variation in B, we define the space

BV (Q, B,uy) = {u € BV(Q) : u = ug in B}.

Let 8y : B — IR? be a vector field of directions of the gradient of ug, i.e., |fg] < 1 and
0o - Vug = |Vuyg| a.e. in B. In practice we shall constraint the vector field 8 to be the vector
field of directions of ug only indirectly, through the functional. We could also introduce this as
a constraint or with a penalty term [5(0 — 6p)? (see also [9, 34] for penalties of this form in the

gray values).

Figure 2.



Combining the previous elements, the band, the relations between # and u, and the smooth-
ness term on 6, we propose to interpolate the pair (6, ) in Q by minimizing the functional:

Minimize/~ \diu(e)v’(a+b|Vk*u|)dx+a/(|vu| —0-Vu)dz
Q Q
6 € WP (div, )

u € BV (Q, B, u) (10)
0-n|y5 =00 n|yq
] <1

lul < fluol|ze(B)-

where a,a > 0, b > 0 and k denotes a regularizing kernel of class C! such that k(z) > 0 a.e.. The
previous functional is coercive and admits a minimum in the class of functions described above
if p > 1. The case p = 1 is under study. The functional can be interpreted as a formulation of
the principle of good continuation and amodal completion as formulated in the Gestalt theory
of vision. The following remarks contain heuristic arguments which may help to understand our

choice. In next subsection we shall explain in more detail the role of the term coupling 6 and .
Remarks.

1. The constant b is > 0. If u is the characteristic function of the region enclosed by a curve
C then a term like

| 1div(@)|Vul (1)
Q

is related to [ |x|Pds, where & is the Euclidean curvature (of the level-sets). If p = 2, this

term appears in Euler’s elastica,
/ (a+ BK%)ds, a,B > 0. (12)
(&

Euler’s elastica (12) was proposed in [33] as a technique for removing occlusions with the
goal of image segmentation, since this criterion yields smooth, short, and not too curvy

curves. In terms of characteristic functions, Euler’s elastica can be written as

[1vul (a + 3 |div <|§—ZI> )2. (13)

In [5], it was shown that this functional is not lower semicontinuous. The functional

proposed by Masnou and Morel [31], [32] can be interpreted as a relaxation of it, since
it integrates functionals like the elastica (plus the angle that the curve makes with the
corresponding level line arriving at the boundary) along the level lines of the function w.
Our functional can be also considered as a relaxed formulation of the energy of the elastica.
For that, we introduced @ as a independent variable, and we tried to couple it to u with
the term

/ﬁ\w —0-Vu, (14)

so that, heuristically, we try to impose that 6 - Vu = |Vu| (see next Subsection for a
detailed discussion of this term). Finally, let us say that for mathematical reasons we have



convolved the Vu term of (11) to be able to prove the existence of a minimum for (10).
From a theoretical point of view, this may invalidate our previous comments. But, from a

practical point of view, it gives a weight to the curve of discontinuities of the image.

. The constant a has to be > 0. Otherwise we do not get compactness on . Now, let us
comment on the two terms containing div(#). Heuristically, if we do not compute 6 in
a proper way, in a continuous image like in Figure 1, 6 could be zero except on a set of
curves. Then 6 = 0 a.e. on B (or on ) and a term like

/f2 \div () [Pdz (15)

would produce a null value since div(f) = 0. On the other hand, a term like (11) would
integrate a power of the curvature on the level line corresponding to the discontinuity of
the image and it would guarantee that the functional is not null. This argument is only
heuristic and not completely justified. Indeed, we believe that in such example as in Figure
1, a term like (15) would induce a regularizing effect on 6 and the support of  would not

be a curve any more. In that case, the integral (15) would not be null.

. Related to the question discussed in the last comment is the possibility to compute a
regularized vector field of directions for images which are constant except at jump discon-
tinuities. A direct computation of the vector field outside the hole in an image like Figure
1.a gives a null vector field at all points except the points on the level line separating
the black from the white region. This may be not be a good starting point to extend
reasonably the vector field # inside €2. To initialize the algorithm of steepest descent, a
regularization of # outside 2 may be constructed as the vector field of directions of the

image Uy(t, z) obtained by regularizing uo(z), z € B, with the equation

Ou = div (V—Z> in @ = (0,00) x B

ot |Vl

ou _, in § = (0,00) x 8B (16)
an ’

u(0,z) = up(z) for z € B.

As it is shown in [3], this equation permits a regularization of the vector field of directions
of the gradient of u, i.e., there is a vector field z, |z| < 1, such that u; = div(z) and
Jgz+Vu = [5|Vu|. Moreover, for each t > 0, div(z(t)) € LP(B) if uyp € LP(B) for
all p > 1. In this way, we initialize the steepest descent algorithm described in Section
3 with a regularized vector field #. This again raises a question, namely, if this ad-hoc
regularization is really needed or a regularization takes place with the algorithm itself, if

we use an implicit numerical scheme to solve (10).

. The bound |u| < ||ug|(p) can be replaced by a constant depending on |lug ||z (p)- The
constraint that u = ug in B could be relaxed by adding a penalty term like [p(u — ug)?.



Similarly, we could add a penalty term to constraint € to be near 8y inside B. In this
case, we should regularize 6y in B using the equation described in Remark 3. This type of

approach is addressed in the work of Chan and Shen mentioned before [9].

. In practice, functional (10) is used to interpolate shapes, i.e., to interpolate level sets. The
image is decomposed into upper level sets [ug > A], which are interpolated using (10) to
produce the level sets Xyu of the function u which reconstructed inside 2 by using the
reconstruction formula

u(z) = sup{A : z € X)u}.

In principle, (10) could be used directly to interpolate functions. But, discontinuities of
the image have a contribution to the energy which is proportional to the jump. This gives
different weights to discontinuities of different sizes and, as a consequence, they are not
treated in the same manner. This is not reasonable if we want to interpolate the shapes
of the image, independently of their contrast. When taking level sets, we treat all shapes
equally, and the parameters of the functional should only weight geometric quantities (like
length, total curvature) and decide which interpolation is taken as a function of them.
Which are the precise geometric quantities is not known precisely. The functional was
introduced on a heuristic basis, but relaxations may occur as they occur in (16), where

t perimeter

dz"u(|g—5|) may represent P when computed on a flat region ([3, 36]). This requires

further study and we shall pursue it elsewhere.

. The choice made in Remark 5 of decomposing the image ug into upper level sets, inter-
polating them and reconstructing the function u, introduces a lack of symmetry. Indeed,
we are giving more weight to upper level sets than to lower level sets. This can be seen in
Figure 3. Figure 3.a displays the image to be interpolated. It is clear that several reason-
able solutions are possible and no one of them is preferable to the others. The choice we
made gives Figure 3.b as solution, favoring that the object whose level is 210 goes above
the object whose level is 0. But, in that case, the “true” information is lacking and we

selected one of the possible reasonable solution.

-

Figure 3.a. Figure 3.b.
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2.3 Interpolating gray values along the integral curves of a vector field

Our purpose in this section is to further discuss the term

/ﬁ|vu| —9-Vu. (17)

in functional (10) (see also [24] for a related, Lo and Poisson-equation based, approach of gray
value reconstruction from image gradients). We shall see that (when 6 is known), when min-
imizing (17), we are constructing the function u whose values on the boundary are given and
whose direction of the gradient is given by 6. We shall discuss this from a general point of view.
Thus, suppose that € is an open bounded domain with a Lipschitz boundary and ¢ € L*°(052).
Let v : Q — IR? be a vector field whose smoothness will be detailed below. We ask the following
question: can we interpolate the boundary data ¢ along the integral curves of v 7 In the case
discussed in last Section, v = 61, and we propagate the boundary data ¢ along the integral
curves of 8+. Heuristically, # is orthogonal to the level lines of u. Coming back to our general
discussion, we want to construct a function u : Q& — IR such that u|sq = ¢ and u being constant

along the integral curves of v, i.e., the solutions of the system of ordinary differential equations

dX

— =v(X). 1

= = v(X) (18)
This amounts to say that

v-Vu=0, (19)

a first order transport equation whose characteristic curves are the solution of the system (18).
Let us discuss the difficulties posed by this formulation. First of all, existence and uniqueness
of solutions of (18) is guaranteed when v is a Lipschitz vector field, a very strong regularity
assumption, which excludes any singularity for v. More general existence results have been
obtained in [13] via the study of transport equations, indeed, via formulations analog to (19).
Typically, they are assuming that v is in some Sobolev space like € Wﬁ)’cl (IRN), with some other
integrability assumptions, and div(v) € L®(IRY). These results have been further extended in
[12], [30]. In particular, P.L. Lions in [30] proves a.e. existence of solutions of (18) for vector
fields which are piecewise in W ! in a precise sense defined by the author. As observed in these
papers, it is not known if the previous result is true for BV vector fields. On the other hand,
even for a vector field in W11, for which we have existence a.e. of solutions of (18), the problem
of constructing u satisfying (19) and such that u|sg = ¢ is not obvious. Indeed, consider a
smooth vector field v defined on a simple domain, like D := {z € IR? : |z| < 1} and suppose
that the integral curves of v are curves that foliate D and such that at any point of D we start
a curve that ends in another point of D. Then the only possibility to extend u to 2 so that
u|an = @ in a classical sense is that ¢ takes the same values at the beginning and endpoints of
the integral curves of v. A possibility to overcome this difficulty, would be to use the vanishing

viscosity method, i.e., to solve the elliptic equation

v-Vue+ eAue =0, (20)

11



and let € — 0. Then, we hope the sequence u, to converge to some bounded function u which
solves the problem in a distributional sense. We do not have further information on the regularity
of u. On the other hand we do not know in which sense the boundary conditions hold.

Let us consider the problem from the algorithmic point of view, i.e., we want to design an
effective algorithm to solve it. Since the problem may be ill-posed, because of incompatibility
of boundary data joining two integral curves of the vector field v, we propose a variational
formulation of the problem. Let # = v*. Assume that |@| < 1. If a solution exists, then @ should
point in the normal direction to the level lines of u. We implicitly assume that 6 should be
constructed as the vector field normal to the level curves of u. Then, formally, 6 - Vu = |Vul.

Thus, it seems reasonable to minimize the functional

F(u)z/Q|Vu|—/Q€-Vu,

(exactly the one introduced above) defined in the set of functions of bounded variation BV (€2)
whose trace at the boundary is given by ¢. Let us formally integrate by parts in the second
term of F'(u) to obtain
F(u):/|Vu|+/dz'v(9)-u— 0 - fiu,
Q Q a0
Since u, # are known at the boundary, minimizing F' amounts to minimize

E(u) :/Q|Vu|+/ﬂdz'v(0) - U

Let us make precise the class of admissible functions where E is minimized. We assume that
div(0) € L'(2) and ¢ € L>(8N). It seems reasonable to impose that the solution u is a
bounded function with an L® bound given by |||/« (or a constant related to ||¢||o and the
size of 2). Then the second integral in the definition of E(u) is well defined. The first integral
requires the use of the space of bounded variation functions. Thus our admissible class is
A={ue BV(Q): |u(z)| < ¢l ae ulsgo = ¢} We propose

Minimize/ |Vu| +/ div(0) -u
Q Q
ueA

(21)

As it is well known ([21], [15]) the solution of this problem has to be understood in a weak sense

as the solution of the problem
Minimize/ |Vul +/ div(0) - u —I—/ lu — p|dH!
Q Q a0
u € BV(Q) (22)
|ul < [l oo-

Then we have the following result.

Theorem 1 Let 6 € L} (Q)?, with div(0) € L'(), ¢ € L>®(00N). Then there is a function

loc

u € BV (Q) such that |u(z)| < ||¢|lec a.e. minimizing (22).

Proof. The result is contained in ([21]), Theorem 1.4.

This clarifies the role of the term (17) in (10).
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3 Numerical experiments

To minimize (21) we use the steepest descent method. For that, we formally compute the
Euler-Lagrange equation for u, namely,

_div (é—Z') + div(0) = 0 (23)

supplemented with Dirichlet boundary conditions for u. In practice, we use the evolution equa-

tion

uy = div (;—Z) — div(0)
with Dirichlet boundary data and initial condition constructed as an ad-hoc interpolation that
will be corrected by the equation. General existence results which can be adapted to this case
can be found in ([4]). Note that the vector field 6 is assumed to be known in this case. This
limits the usefulness of this model. But we present some experiments below to illustrate the role
of this term.
To minimize the functional (10) we used the steepest descent method. For that, we formally

compute the Euler-Lagrange equations for (6, u). The equations for 8 are
VeE(0,u) = —pV|(a + b|VE * u|)|div(0) P~ 2div(0)] — Vuxa — Vuoxs =0 in Q. (24)
The equation for w is

VEk \Y
VuE(0,1) = —div (k * gﬁ) — adiv (\V—Z> Fdiv(0) =0 inQ, (25)
where g = b|div(0)|P. In our experiments, we take k a Gaussian kernel with small variance,
say one or two pixels. In practice, one can also dismiss the kernel k. These equations have
to be complemented with the corresponding boundary conditions for § and u specified by the
admissible class, i.e., we specify the normal component of € in 00 and the Dirichlet boundary

condition for u in 92, since u = ug in B. Thus, we solve the evolution problems
Ot = —VQE(H,U)

and
Ut = _qu(g, u),

supplemented with the corresponding boundary data and initial conditions. The initial condi-
tions are ad-hoc interpolations, for instance, we can take u inside ) as the average value of ug in
B, 0 inside (2 being the direction of the gradient of u. One can also take a geodesic propagation
inside 2 of the values of ug in B, with 0 being again the direction of the gradient of u. In the ex-
periments below, this algorithm is used to interpolate level sets. In this, we follow the approach
in [31], [32]. The image in B is decomposed into level sets and we get a family of binary images
UoA = X[uo>Ap A = 0,1,2,..,255. These functions are interpolated inside {2 and we obtain a
family of level sets X . Then the function u is reconstructed using the reconstruction formula

u(z) = sup{A € {0,1,...,255} : z € X, }.

13



With this approach, we diminish the diffusive effects of the above algorithm and we better
capture the shapes and discontinuities on the interpolated image. The constraints on 8 and

|lu||oo can be introduced after each iteration of the above equations.

Figure 4.a. Figure 4.b.

Figure 4.c.

Let us describe the experiments. First, in Figure 4 we display some experiment to illustrate
functional (21). Figure 4.a displays the full image without the hole. Figure 4.b displays the
image with the hole. The vector field # has been computed on Figure 4.a and we see in Figure
4.c the result of interpolating the gray level knowing the vector field inside 2. We see that the
shape of the eye is recovered but not the gray level. This is not a surprise since the gray level

14



inside the eye cannot be recovered from the gray level on the boundary of Q. The algorithm is
able to capture the shapes inside the eye by integrating the vector field 6.

In the following experiments we show the results of the joint interpolation of gray level and
the vector field of directions using functional (10). The experiments have been done with p =1
and/or p = 2. The results are quite similar. Unless explicitly stated, we display the results
obtained with p = 1. Figure 5.a displays an image made of four circles covered by a square. In
Figure 5.b we display the result of the interpolation. In Figure 6.a, we display an example where
the hole is not simply connected. The interpolation is displayed in Figure 6.b. Figure 7.a is the
image of Lena with two holes, a lower one in the hat and an upper one. Figure 7.b displays
the result of the interpolation. Figure 8 displays a zoom of the region around the lower hole.
In Figure 9.a we display a level set of uy corresponding to the region around the lower hole.
Figures 9.b and 9.c display the corresponding interpolation with p = 1 and p = 2, respectively.
Figure 10.a displays an image with text to be removed. Figure 10.b displays the corresponding
reconstruction result. Figure 11.a displays a portion of an image with text. Figure 11.b displays

the corresponding reconstruction result, obtained with p = 2.

Figure 5.a. Figure 5.b.

Figure 6.a. Figure 6.b.
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Figure 7.a. Figure 7.b.

Figure 8.a. Figure 8.b.

Figure 9.a.

% K

Figure 9.b. Figure 9.c.
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Figure 10.a.

Figure 10.b.

Figure 11.a. Figure 11.b.
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4 Concluding remarks

In this paper we have proposed a formal variational approach for filling-in regions of missing
data in still images. The basic idea is to smoothly extend inside the hole both the vector field
obtained from the image gradient and the corresponding gray values. We have presented a
number of examples and showed theoretical results regarding the proposed formulation.

A number of research directions are suggested by the work here presented. First of all,
we need to complement this algorithm by a technique capable of filling-in textured regions.
Secondly, the extension of the framework to the filling-in of other type of missing imagery data
is of great interest for a number of applications. Last, we would like to study these ideas for

interpolation in video data. These topics will be the subject of subsequent reports.

Appendix: Existence of minimizers

Recall that Q@ = QU B is an open bounded set whose boundary is Lipschitz. For simplicity,
let us define the class B of admissible pairs (6,u) where § € W'P(div,Q), v € BV(Q, B,u),
0] <1, |u| < ||luollreo(my and 8- nfye = 6o - 15

Theorem 2 If p > 1, there is a minimum (0,u) € B for the problem (10).

Proof. Let us denote by E(f,u) the energy defined in (10). Let (6,,u,) be a minimizing

sequence for F(f,u). Since
/ |Vuy| — 6 - Vu, >0,
Q

and E(6p,uy) is bounded, we obtain that

| div(@)p

is bounded. Since |0,| < 1, we have that 6, is weakly relatively compact in all spaces L7(Q)?

for all 1 < ¢ < oo and we may assume that 6, — 0 weakly in L4(Q)? for all 1 < ¢ < oo and in
WP (div, Q). Now, integrating by parts the term /& 0n - Vug, we obtain

/_Hn-Vun = —[ div(0p,)un, —I—/~[0n,n]un
Q Q a0
= —/ div(6p)un +/~[90,n]u0
9) a0

The integration by parts is possible by results of Anzellotti ([2]) given above. From the above

identity, we obtain
| 0n- Vol < ldiv@lpllunlly + [ _ fuo
Q o

since u, = ug in 0, where p' is the exponent conjugated to p. Since we minimize the energy

E(0,u) for functions with an L* bound, we obtain that

|/9n-Vun|
Q

18



is uniformly bounded in n. The consequence of this observation is that

/~ V|
Q

is also bounded. Then, modulo a subsequence,we may assume that u,, converges to some function
u in L'(9). Note that u € BV(Q, B, ug). Since we have an L* bound on u,, we also have that
up, converges to u in L(Q) for all 1 < ¢ < co. Then VEk * u, — Vk * u uniformly in Q. In
particular, we obtain

/_\div(9)|p(a+b|Vk*u|)dw < lin%linf/_ |div(0y)|F (@ + b|VE * up|)dx
9) Q

and

/~|Vu| < liminf/~ V.
Q noJa

Finally, since div(6,) weakly converges to div() in LP(Q) and u, — u in L?' (Q), passing to the

limit in

/~0n -Vu, = —/ div(0,)uy, + /~[90,n]u0
Q Q a0

we get that [0, - Vu, converges to

—/~ div(&)u—{—/j@o,n]uo :/G-Vu.
Q a0 Q
Thus, collecting all these facts, we obtain that

E6,u) < lin%infE(Hn,un).

The pair (#,u) is a minimum of E in the class of admissible functions for this functional.
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