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Introduction

One of the most important decisions made when training
neural networks, is how to represent the data. Despite the
large number of possible representations, the piano roll dom-
inates recent literature on modelling music [2, 3]. Further-
more, previous work suggests that modelling simpler condi-
tional probability distributions such as p(pitch|rhythm), may
be an advantageous approach to the complex task of mod-
elling music [5]. However, many alternate representations
are more difficult to implement than the piano roll. Moti-
vated by these factors, we propose an accessible framework
for symbolic musical data storage, and dataset construction,
which supports a variety of representations.

Representations

Base Representation

Information extracted from a MIDI file is stored in a
.tfrecords file, to be compatible with the Tensorflow [1]
Dataset API. We store the start time, end time, pitch, ve-
locity, channel number, and midi instrument of each note. In
addition, we store the start time, and length of each measure,
which is useful when a representation involves separating a
piece into measures. All time-based attributes are stored in
ticks, which allows the user to specify the degree of quan-
tization at run-time, and preserves the original MIDI data
without loss of information. Notablye, additional metadata
such as the title, composer, and bpm is also stored.

Univariate Representations

A univariate representation is a sequence of one-hot vec-
tors, encoding a sequence of hstate, valuei tuples. We repre-
sent each state and all valid state-transitions using a directed
graph, as shown in Figure 1. Figure 1 shows a generalized
version of the representation proposed by Liang and others,
where the pitches sounding in each timestep are delimited
by the step state [4]. Additionally, Liang and others specifies
that the pitches in each timestep must be arranged in ascend-
ing order. To accomodate these types of representations, we
provide a simple interface for specifying states, valid state-

transitions and constraints on the value of a state dependant
on the values of previous states. It is very straightforward
to construct more complex representations. Once a directed
graph has been specified, the conversion between a hstate,
valuei tuple and a one-hot vector is provided via a single
function call. Furthermore, sequences can be validated, en-
suring that there are no invalid state-transitions and that no
constraints are violated.
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Figure 1: A univariate representation.
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Figure 2: Fixed and variable resolution representation.

Multivariate Representations

A multivariate representation is a sequence of binary vectors
(stored as a matrix). The most common multivariate repre-
sentation is the piano roll. Typically, piano rolls are con-
structed using a fixed resolution (i.e. 16th note resolution),
however, we also support a variable resolution representa-
tion. The benefits of using a variable resolution are shown in
Figure 2. Consider a rhythm consisting of 1/4 note triplets
and standard 1/4 notes with the length of a single beat. A
fixed resolution representation would require 12 bits to rep-
resent the rhythm, however, 4 of these bits would never be
used. The variable representation would only require 8 bits.
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