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Abstract

We propose CAEMSI, a cross-domain analytic eval-
uation methodology for Style Imitation (SI) systems,
based on a set of statistical significance tests that allow
hypotheses comparing two corpora to be tested. Typ-
ically, SI systems are evaluated using human partici-
pants, however, this type of approach has several weak-
nesses. For humans to provide reliable assessments of
an SI system, they must possess a sufficient degree of
domain knowledge, which can place significant limi-
tations on the pool of participants. Furthermore, both
human bias against computer-generated artifacts, and
the variability of participants’ assessments call the re-
liability of the results into question. Most importantly,
the use of human participants places limitations on the
number of generated artifacts and SI systems which
can be feasibly evaluated. Directly motivated by these
shortcomings, CAEMSI provides a robust and scalable
approach to the evaluation problem. Normalized Com-
pression Distance, a domain-independent distance met-
ric, is used to measure the distance between individual
artifacts within a corpus. The difference between cor-
pora is measured using test statistics derived from these
inter-artifact distances, and permutation testing is used
to determine the significance of the difference. We pro-
vide empirical evidence validating the statistical signif-
icance tests, using datasets from two distinct domains.

Introduction

There is growing demand for creative generative systems
in the entertainment industry, which has prompted an abun-
dance of research in the area of Style Imitation (SI). Given
a corpus C = {¢1,...,¢, }, SI systems aim to generate new
artifacts that emulate the stylistic characteristics of C. Many
of these SI systems generate some form of musical content,
including; harmonic progressions, melodies (Yang, Chou,
and Yang 2017), and polyphonic compositions (Liang et
al. 2017). A more comprehensive overview of the work
in the domain can be found elsewhere (Pasquier et al. 2017;
Briot and Pachet 2017). In the visual art domain, the Cre-
ative Adversarial Network (CAN) is trained to generate vi-
sual art that deviates from the styles it has already learned
(Elgammal et al. 2017). Moreover, many Natural Language
Generation (NLG) systems have been developed that gen-
erate jokes, poetry, and narratives in a particular style (Gatt

and Krahmer 2017). To accommodate the large influx of
generative systems in recent years, we propose CAEMSI !.

Ritchie mentions two conditions for determining if cre-
ativity has occurred: novelty, the degree to which an artifact
is dissimilar to other examples within the corpus and quality
(Ritchie 2007). He also emphasizes the notion of typical-
ity, the degree to which a generated artifact is representative
of the source corpus (C). In the context of style imitation,
measuring typicality is of critical importance, as the perfor-
mance of an SI system hinges on its ability to emulate the
stylistic characteristics of the source corpus. As a result,
CAEMSI focuses on measuring the typicality of a generated
corpus, with respect to the source corpus. Although nov-
elty is also an important indicator of the system’s quality,
as it is generally undesireable for an SI system to plagiarize
large sections from the source corpus, we leave this aspect
of evaluation for future work.

Traditionally, participants assess the capacity of a particu-
lar system to emulate a particular style, allowing researchers
to make claims about the success of that system. Unfortu-
nately, this is not a scalable solution, and can make it dif-
ficult to compare SI systems. With the long-term goal of
creating highly capable SI systems, it is necessary to de-
velop robust methods for the evaluation of these systems,
as a lack of methodical evaluation can have a negative effect
on research progress (Pearce, Meredith, and Wiggins 2002).
The approach described in this paper is domain independent,
harnessing the power of Normalized Compression Distance
(NCD) (Cilibrasi and Vitdnyi 2005) and permutation testing
to provide a scalable solution to the problem of SI system
evaluation. In order to demonstrate the effectiveness of this
approach, we conduct experiments on datasets in two differ-
ent domains; the Wikiart image dataset? and the Classical
Archives MIDI dataset®.

Background
Evaluation Methodologies

Although many methodologies that evaluate the creative ca-
pacity of a generative system have been proposed, we will
limit our discussion to those which have been used to mea-
sure typicality. In general, we can divide these methodolo-

!The code is available https://goo.gl/ej]N1RM
Zhttps://www.wikiart.org/
*https://www.classicalarchives.com/midi.html



gies into two categories, those which rely on human partic-
ipants, and those based purely on computation. Unto our
knowledge, the only statistical evaluation methodology for
typicality was proposed by Gonzalez Thomas et al., how-
ever it is only capable of evaluating melodic composition
systems (Gonzalez Thomas et al. 2013).

The Consensual Assessment Technique (CAT) (Amabile
1982) is based on the notion that experts are the most capa-
ble of distinguishing creative artifacts within their respective
domain. To account for discrepancies, which arise given the
subjective nature of these assessments, the CAT averages the
assessments of several experts. Pearce and Wiggins employ
the CAT to evaluate the success of melodic generation algo-
rithms (Pearce and Wiggins 2007).

Another approach, inspired by the Turing-test, mea-
sures participants ability to discriminate between computer-
generated artifacts and artifacts from the source corpus. This
evaluation methodology has been used to evaluate many SI
systems, including a Deep LSTM Network that generates
Bach chorales (Liang et al. 2017), and a Generative Ad-
versarial Network that generates images (Elgammal et al.
2017).

Related Work

To the best of the authors’ knowledge, there are no domain
independent metrics for typicality, however, several quanti-
tative metrics for creative systems have been proposed. Ma-
her has proposed two metrics for measuring creativity quan-
titatively. The first, equates novelty with distance from pre-
dominant clusters of artifacts, measures surprise using pat-
tern matching algorithms, and calculates value using a fit-
ness function (2010). However, it is not clear how the pro-
posed metrics would be applied to an arbitrary domain, and
no proof of concept is provided. The second, uses Bayesian
inference to measure the novelty of an artifact, which is used
to evaluate potential designs for laptop computers (Maher
and Fisher 2012).

Burns measures creativity as the combination of psycho-
logical arousal, which is computed using Shannon entropy,
and appraisal, which is computed using Bayesian theory
(Burns 2015). The Regent-Dependent Creativity (RDC)
metric measures value and novelty. Artifacts are represented
by a set of pairs (P(regent, dependent)), where regent is an
action or attribute, and dependent is a state or target for an
action (Rocha, Ribeiro, and El 2016). Using a graph, which
includes associations between artifacts, they propose metrics
to measure synergy, the value produced by various elements
acting cooperatively, and Bayesian surprise, the degree to
which an artifact is unexpected or novel. Although this met-
ric seems to work well for the low dimensional problems
presented in the paper, it is not clear that this approach could
efficiently handle artifacts which require a large number of
pairs for representation. Furthermore, it relies on the do-
main knowledge of synergy, which is difficult to determine
in some domains.

Motivation

Although human-based evaluation methodologies are not
without their strengths, the shortcomings of these method-
ologies directly motivated the development of the statistical
tests proposed in this paper.

Domain Knowledge

Accurately assessing the typicality of an artifact with re-
spect to a source corpus, requires a significant amount of
domain knowledge, as the participant must be familiar with
the stylistic characteristics of the source corpus. This issue
is exacerbated when performing a CAT, since participants
must have an expert level knowledge of the source corpus.
Undoubtedly, this is one of the primary reasons an abun-
dance of musical SI systems have focused on imitating Bach
chorales, as there is a large pool of experts, and most peo-
ple are familiar with Bach’s work. Since a lack of domain
knowledge undermines the reliability of the evaluation pro-
cess, the types of scientific inquiries which have been ex-
plored are biased by restrictions on the source corpora, plac-
ing limitations on scientific progress in this area.

Bias Against Generative Systems

Previous research has shown that when participants were
asked to distinguish between two folk melodies, some of
which were human-composed and others which were recom-
binations of the human-composed melodies, participants at-
tributed unusual or disagreeable human compositions to the
computer (Dahlig and Schaffrath 1997). Norton, Heath, and
Ventura found a significant bias against images labeled as
being generated by a computer (2015). In contrast, sev-
eral studies have demonstrated that the knowledge that a
computer created a piece of music, does not significantly
affect the participants’ evaluation and enjoyment of the
piece (Moffat and Kelly 2006; Friedman and Taylor 2014;
Pasquier et al. 2016). Although Moffat and Kelly’s study did
not explicity test the same hypothesis as Dahlig and Schaf-
frath, their results corroborate the same conclusion, as par-
ticipants attributed compositions they disliked to the com-
puter, independent of their actual authorship.

When participants are tasked with making the distinc-
tion between human-generated and computer-generated art-
works, they may in fact be searching for features which they
expect to be generated by a computer, rather than focusing
on the broader style of the composition (Ariza 2009). As a
result, the test degenerates to one which is focused on count-
ing perceived mistakes. This issue has been highlighted by
Pearce in his discussion on the evaluation of musical com-
position systems (2005). Clearly, this type of bias is very
problematic when attempting to evaluate an SI system that
imitates artifacts that humans tend to find disagreeable, such
as the atonal works of Arnold Schoenberg.

Variability

The subjective nature of creativity-based assessments poses
problems for the systematic evaluation of creative systems
in general. There is evidence that cultural background can
have an effect on how an artifact is perceived. For example,
Eerola et al. found that western and African listeners per-
ceived musical attributes differently (2006). Furthermore,
environmental factors will affect the reliability of these as-
sessments, including the equipment used to observe the arti-
fact, and the physical condition of the participant. Although
those who design experiments take many steps to mitigate
the effects of these factors, Schedl at al. (Schedl, Flexer, and
Urbano 2013) provide evidence that inter-rater agreement is
still limited in a practical setting. In one case, non-experts’



assessments of poetry were found to be negatively correlated
with the assessments of experts (Lamb, Brown, and Clarke
2015). Similarly, Kaufman, Baer, and Cole found that ex-
perts were far more reliable than non-experts, when asked
to judge the creativity of a short story, as measured by inter-
rater reliability for both groups (2009).

Scalability

Unfortunately, using human participants places limitations
on the total number of assessments that can be collected.
Participants are only capable of making so many assess-
ments before fatigue will begin to degrade the quality of
their responses. Notably, this problem is exacerbated by the
limited number of participants involved when conducting a
CAT. Although crowdsourcing does make it easier to collect
a large number of assessments, there are still monetary and
time limitations that place restrictions on the the total num-
ber of assessments that can be feasibly collected. Clearly,
the limited scalability of these evaluation methods is in di-
rect conflict with the large number of artifacts which gener-
ative systems can produce.

In many cases, a small subset of the generated artifacts
is used to evaluate the system, decreasing the number of
assessments required. However, issues will naturally arise
when the selected subset is not adequately representative of
the system’s output as a whole (Ariza 2009). Moreover, it is
not trivial to determine if a subset of artifacts is representa-
tive of the systems output a priori. Most importantly, these
limitations make it increasingly difficult to evaluate a large
number of systems.

The Proposed Solution

In contrast to human-based evaluation methods, CAEMSI
eschews the issues of domain knowledge, human bias, and
variability. Admittedly, there are still limitations with re-
spect to the size of corpora, which will be addressed in future
work. However, computation based methods of evaluation
are far more scalable than human-based solutions, as com-
puters can process artifacts much faster than humans can.

Statistical Tests for Typicality

In what follows, X = [z;,7 = 1,...,n] denotes a vector X,
containing n elements. X @ Y denotes the concatenation of
two vectors. We use the term corpora to denote a vector of
binary strings. 1(X) denotes the mean of a vector X, while
(X)) denotes the median. pgir and peqy denote the signif-
icance of the statistical test for difference and equivalence
respectively.

Given two corpora, A = [a;,i = 1,...,n] and B =
[biyi = 1,...,m], we test the null hypothesis Hpg : A = B
(paier > «) against Hpy : A # B (par < «) and the null
hypothesis Hgo : A # B (peqy > ) against Hgy : A= B
(Peqy < «). When the result of a statistical test is in-
significant, we accept the null hypothesis, which only in-
dicates that there was insufficient evidence to support the
alternate hypothesis, and does not validate or invalidate the
null hypothesis. As a result, accepting the null hypothesis
Hpp : A = B is not the same as rejecting the null hypoth-
esis Hgo : A # B and accepting the alternative hypothesis
Hgi : A = B, as only the latter indicates that A = B.

Consequently, we can determine if A = B using peqy and if
A # B using pqifr.

Normalized Compression Distance

Put simply, the Kolmogorov complexity (K (x)) of a finite
length binary string x is the minimum number of bits re-
quired to store x without any loss of information. More
formally, K (z) denotes the length of the shortest Univer-
sal Turing Machine that prints z and stops (Solomonoff
1964). Intuitively, the minimum number of bits required to
store a random string would be close to the number of bits
used to represent the original string. As a result, a random
string would have a high Kolmogorov complexity. In con-
trast, a string with a large number of repeated subsequences,
would have a low Kolmogorov complexity. Although Kol-
mogorov complexity provides an absolute lower bound on
the compression of a string, K (x) is non-computable (Li et
al. 2004), so a real-world compressor is used to approximate
K () in practice.

The conditional Kolmogorov complexity (K (z|y)) of a
string «x relative to a string y, denotes the length of the short-
est program that prints z and stops, with y provided as ad-
ditional input to the computational process. For example, if
z ~ y, K(z|y) would be very small, as the program could
reproduce x from y without requiring much additional infor-
mation. In contrast, if 2 and y are highly dissimilar, K (x|y)
would be quite large.

Information distance is the length of the shortest binary
program that can compute x from y and y from x. As a
result, when x and y have a lot of mutual information, the
length of this program will be fairly short. Li et al. propose
the normalized information distance (1).

d(z,y) = max (K (z]y), K (y|)) 0
max (K (z), K(y))

Since K (z]y) ~ K(xy) — K(z) (Li et al. 2004), where
zy denotes the concatenation of strings x and y, we can re-
formulate (1) to arrive at a computable normalized compres-
sion distance (NCD) (2). In practice, K(z) is the length
of string produced by a real-world compression algorithm,
such as zlib. Although we tested several compression algo-
rithms, we did not notice significant variation in terms of
performance.

K(ry) — min(K(0). K@)
max (K (z), K(y))

Li et al. demonstrate that NCD is a universal distance

metric, satisfying the following constraints.

1. D(z,y) = 0iffz = y (Identity)

2. D(z,y) + D(y, z) > D(xz, z) (Triangle Equality)
3. D(z,y) = D(y,x) (Symmetry)

Notably, NCD has been applied to problems in a vari-
ety of domains, including music classification (Cilibrasi,
Vitdnyi, and De Wolf 2004; Li and Sleep 2005), protein se-
quence classification (Kocsor et al. 2006), image registra-
tion (Bardera et al. 2010), and document classification (Ax-
elsson 2010). Vidyrynen and Tapiovaara use NCD to eval-
uate machine translation (MT) by measuring the distance
between the predicted translation and the ground truth trans-
lation (Vayrynen and Tapiovaara 2010).

D(x’y) =




Distance Matrix Construction

Given a valid distance metric D and two corpora (A =
[a;,i = 1,..,n] and B = [b;,i = 1,...,m]), we can
construct a pairwise distance matrix M, where M;; =
D(ci,cj),and C = AP B = [¢;,i = 1,...,n+m]. We
use several subsets of M to perform the proposed statistical
tests. In the formula below, w4 and wp are vectors con-
taining all distinct within group distances for corpora A, and
B respectively, while b4 g contains all between group dis-
tances. Notably, | = n + m in the equations below.

wa =[M;,i=1,..,n7=1,..,n;j>1 3)
wp = [Mij,i=n+1,...0j =n+1,..,5j>i 4
bap=[M;j,i=1,..,n;j=n+1,..1] 5)

Permutation Testing

A permutation test is a statistical significance test which re-
quires no prior knowledge about the distribution of the test
statistic under the null hypothesis, as this distribution is gen-
erated by calculating the test statistic for each possible la-
belling of the data. For example, consider the vector C' =
A @® B, which is comprised of two corpora delineated by the
labels L = [l;,i = 1,...,n 4+ m;li<p, = 0,l;5, = 1], and a
test statistic S = p(Co) — u(C4), where C; = {c¢; |l; = j}.
First, compute S using L. Then compute S for each possi-
ble permutation of L to construct the distribution under the
null hypothesis. Since the number of permutations grows
exponentially, as comparing two corpora of size 50 would
require (1500) ~ 10?7 distinct permutations, we approximate
this procec?ure by randomly selecting m permutations. This
procedure accommodates complex test statistics, for which
it would be intractable, or overly difficult, to compute the
distribution of the test statistic under the null hypothesis.

Testing for Difference

To test the hypothesis that two corpora are different, we
adapt a permutation testing framework that was used to com-
pare two groups of brain networks (Simpson et al. 2013).
Simpson et al. create a pairwise distance matrix M using
the Kolmogorov-Smirnov statistic, however, we use NCD
instead.

R(M) = _ wlbap) ©6)
pwa ©wp)

When R is greater than 1, the average between group dis-
tance is greater than the within group distance. Therefore,
R > 1 suggests that the two corpora are likely distinct. In
contrast, when R ~ 1, there is likely no difference between
the two corpora. The proposed test is detailed in the steps
below, where I(-) = 1 if (-) is true and 0 otherwise.

1. Given two corpora A = [a;,i = 1,...,n] and B = [b;,i =
1,...,m], create a pairwise distance matrix M using (2).
2. Calculate the test statistic T = R(M) using (6).

3. Take a random permutation (u*) of the ordering u =
(1, ...,n+m) and reorder the columns and rows using this
ordering to create M *.

4. Calculate the test statistic T* = R(M™*) using (6).

5. Repeat steps 3 and 4 N times, producing the output
[T, n=1,..N].
6. Calculate the p-value, pair = S (T >T)/N.

n=

Testing for Equivalence

The proposed test for the equivalence of two corpora, is
based on the following assumption.

(wa=bap)\N(wp=bap) = A=DB (N

The intuition behind this assumption is shown in Figure
1 and 2, which show the cumulative distributions of w4,
wp, and by p for an intra-artist comparison and an inter-
artist comparison respectively. When two distinct corpora
are compared, by, g # wa and by, g # wp, as shown in
Figure 1. In contrast, when two similar corpora are com-
pared, by p ~ wa =~ wp, as shown in Figure 2. In prac-
tice, the distributions of w4, wp, and by p are frequently
skewed, and sometimes multi-modal, which necessitates a
non-parametric test for equivalence.

As a result, we employ a permutation testing framework
(Pesarin et al. 2016), which is based on Roy’s Union-
Intersection approach (1953), to test for the equivalence of
two distributions. First, it is necessary to define an equiv-
alence interval on which the two distributions will be con-
sidered equal. ¢; and g denote the inferior and supe-
rior margins, respectively. Then we test two hypotheses;
Hypy: 6 > —eyagainst Hyp : § < —eyand Hgp : 0 < €g
against Hgy : § > eg, where ¢ is the divergence between
the two distributions being compared. In some cases, this is
measured as the difference between the means (1), however
we use the difference between the medians (¢), as it is more
robust to outliers. As a result, the global null hypothesis
(H o) is true if both one-sided null hypotheses (Ho, Hso)
are true, and the global alternative hypothesis (Hg;) is true
if at least one of Hyy and Hg; is true. The following algo-
rithm is used to test for the equivalence of two distributions.

1. Given two vectors F' = [f;,i = 1,...,n] and G = [g;,i =
1, ...,m|, compute the rank transform of F' @ G to derive
a rank transformed version F' and G.

2. Given the superior and inferior equivalence margins
(er,es5), we create two vectors X; = F @& (G + ¢;) and
Xs=F @ (G —e¢g), and an ordering u = (1, ...,n+m).

3. Compute the test statistic for both hypothesis 17 =
¢(Xrr) — ¢(X1¢) and Ts = ¢(Xsg) — ¢(Xsr) where
X[F = [X](’ui)J = 1,...,’[’1,]
Xre = [ Xr(uw;),i =n+1,...,n+m]
XSF = [Xs(ui),i = 1,...,’[7,]
Xsa = [Xs(u;),i =n+1,...,n+m]

and X (j) denotes the j;j, element in X.

4. Take a random permutation (u*) of the ordering w.

5. Compute the test statistics using the ordering u*. T} =
o(X1r) — ¢(X16) and T = ¢(Xsa) — ¢(Xsp).

6. Repeat steps 3 and 4 N times to simulate the distribu-

tion of the two partial test statistics, producing the output
(Tf,,T4,),n=1,..,N].
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Figure 1: The cumulative NCD distributions (w4, wpg, and
b, ) used to compare 50 of Edgar Degas’ (A) artworks and

50 of Gustave Dor’s (B) artworks.
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Figure 2: The cumulative NCD distributions (w4, wg, and
b4, B) used to compare two disjoint subsets of Edgar Degas’

artwork, both of size 50.
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SN WTp, > Ty)/N for h = I,S.
global test statistic is A(F, G) = max(1 — Ar, 1 — Ag).

To test for the equivalence of two corpora, we compute the

distance matrix M using NCD, then we compute (8). As a
result, if both A(w4, b4, ) and AM(wp, ba ) are significant,

then we consider the two corpora equivalent.
(3)

Peqv = max(A(wa,ba B), Nwp,ba,B))

Experiment

Methodology

To evaluate the proposed statistical tests, we use datasets
from two different domains; the classical archives MIDI
dataset, which consists of 14,724 compositions by 843 dis-
tinct composers, and the Wikiart dataset, which consists of
19,052 paintings by 23 artists. There are two conditions, one
where both corpora (A, B) have the same class (they are cre-
ated by the same composer or artist), and another where the
corpora have a different class. Therefore, the ground truth
is calculated using (9), and the condition predicted by each

Table 1: The corpus size after each preprocessing step

Data Pre-Processing
Since our test statistic takes the pairwise distance of all items
within a corpora into consideration, having a number of du-
plicate items would artificially decrease values in w4 and
wp. As aresult, we took the following steps to remove du-

plicate items in each dataset.
1. Remove all artifacts which belong to the same class and

have the same title.
2. Remove all artifacts which belong to the same class and

have a similarity greater than a threshold (¢, )-

We measure the similarity between two images using the
structural similarity index (Wang et al. 2004), which takes
structural information into account, rather than quantifying
visible differences. To measure the similarity of two MIDI
files, we extract a list of the pitches in the MIDI file ordered
by onset time. Given compute time constraints, we only take

the first 1000 notes into consideration. The following equa-
tion is used to quantify similarity, where E(a,b) denotes the

edit distance between two pitch sequences.

statistical test is calculated using (10), with the standard sig-
nificance level (w = 0.05). To create corpora of different

sizes, we randomly select artifacts without replacement be-

longing to the same class.
if class(a) # class(b)

0,
9la.b) = {1, else
. 0, if peqy > a o1 pyifr < v
§la.b) = {1, if Pegy < @ OF pairr > @

©))

(10)

E(a,b) (11

1000

We set the similarity threshold (g;,,) at 0.75. Although
this is quite conservative, we found that this did not elimi-
nate too many artifacts, while providing confidence that du-
plicate artifacts are not included in the dataset. Table 1 lists
the size of each corpus after each preprocessing step.




Data Representation

In order to avoid taking metadata, such as the title, com-
poser, and author into consideration when computing the
NCD, we do not use a binary representation of the MIDI
files. Instead we create a representation which excludes ir-
relevant data. Since the velocity of MIDI note onsets is pri-
marily based on the performer’s interpretation of the com-
position, and in some cases may be set to a constant value
if the MIDI file was created in a notation editor, we ignore
this information. As a result, we represent a MIDI file as
a sequence of onsets, offsets and time deltas. We represent
onsets on the range [0, 127], offsets on the range [128, 255],
and time deltas on the range [256—). This results in a se-
quence of integers, which is then converted to a binary string
before measuring the NCD. The representation used for im-
ages is much simpler. Each image is resized to have the
shape 64 x 64, with three color channels (RGB), where each
pixel is represented as an integer on the range [0, 255].

Results

In Table 2 we present the results of 1000 trials, half of which
have a ground truth of 0, and half which have a ground
truth of 1, for a variety of corpora sizes. The accuracy
(ACCQC), true positive rate (TPR), false positive rate (FPR),
true negative rate (TNR), and false negative rate (FNR),
are reported, using the formulas shown below, where n is
the number of trials. True positive indicates trials in which
the statistical test predicts 1 and the ground truth is also
1 (g(a,b) = 1 A g(a,b) = 1). Similarly, true negative
indicates trials in which the statistical test predicts 0 and
the ground truth is also 0 (g(a,b) = 0 A g(a,b) = 0).
€ = €1 = €g denotes the equivalence range, which is nor-
malized with respect to the length of F = [f;,i = 1,...,n]
and G = [g;,4 = 1,...,m] in Table 2. For example, if
e = 0.1 denotes an equivalence range of (m + n) * 0.1.

>~ True positive + ) True negative

ACC = (12)
n
2> T iti
TPR — > True positive (13)
n
TNR — 25" True negative (14)
n
PPV — > Tr.ue posm\./e. (15)
> Predicted positive
NPV — > Tr.ue posmve. (16)
>~ Predicted negative

A robust statistical test, will minimize the probability of
type I error (), incorrectly rejecting a true null hypothesis,
and type II error (), incorrectly rejecting a true alternative
hypothesis. The power of a statistical test is 1 — /3, which is
equivalent to the TNR with respect to the test for difference
(paifr), and the TPR with respect to the test for equivalence
(Peqv)- Since we also must verify that the tests minimize type
I error, we provide the TPR and TNR which are equivalent to
statistical sensitivity, for pgisr and peqy respectively. For each
trial, we perform 1000 permutations, as this is what Marozzi
suggests when estimating the power of a permutation test
(2004).

Discussion

Given the degree of intra-corpus variation, and inter-corpus
similarity, it is difficult to establish a ground truth for cor-
pus comparison. In many cases, an artist or composer may
explore several different sub-styles over the span of their ca-
reer. Furthermore, artists and composers are often inspired
by their colleagues, creating works that exhibit a greater than
average degree of similarity. As a result, it would be unrea-
sonable to expect extremely high values of accuracy. Never-
theless, according to Cohen, 0.80 is an adequate level for
statistical power (1988), which most of the tests surpass.
Overall, the results of the experiment demonstrate that the
proposed tests provide a robust measurement of the stylistic
difference between two corpora.

We used different values for ¢ to account for the decrease
in variability of wa, wp and by p as the size of the corpora
increases. For example, if two paintings are randomly se-
lected from the work of a single artist, in some cases, given
the variability of that artist’s work, the mutual information
between these two paintings will be fairly low. In other
cases, when both paintings are part of the same sub-style,
the mutual information may be fairly high. However, as we
increase the number of paintings selected, stylistic tenden-
cies will start to emerge, and the amount of mutual infor-
mation amongst the selected paintings will converge. As a
result, w4 and wp will decrease in variability as the size of
the corpora is increased, which allows us to decrease the size
of the equivalence interval by decreasing €.

The results in Table 2 show two trends. On average the
statistical tests performed better on MIDI than on images.
There are two possible explanations for this; composers may
have a more consistent style than artists, or the representa-
tion we used for images is not optimized for comparison.
However, the fact that images were not preprocessed, as we
simply resized each image and extracted the raw pixel val-
ues, demonstrates that NCD is capable of finding common-
alities in the raw data. Secondly, the statistical tests perform
better on larger corpora than smaller corpora, which is pri-
marily the result of decreasing stylistic variability as the size
increases.

Since the strings that are being compared were quite long,
the NCD between two items was heavily skewed towards 1,
as shown in Figure 1 and 2. Consequently, we do not sug-
gest interpreting these values as interval, but rather as ordi-
nal values. Despite the skew of these values, discrepancies
between w4, wp, and b4 p can be quite pronounced.

Application

There are several ways in which the proposed tests could
be used. In the most basic sense, the tests could be used
to compare the source corpus (C') with a corpus of artifacts
generated by the SI system (G). The magnitude of peqy can
indicate how similar the two corpora are. In the case that
Deqv >= «, the test for difference can be used to determine
if there is a significant difference between the two corpora.
In addition, it may be of particular interest to measure the

similarity of Cs and G5, which denotes the projection of C'
and G into a lower dimensional feature space s. For ex-
ample, in the music domain, one could use a representation
that only contains rhythmic information, and another that



Test Corpus A Corpus B ACC TPR TNR PPV NPV €

size classes size classes
WikiArt  pgise 25 23 25 23 0.85 0.96 0.75 0.79 0.95 -

Deqv 25 23 25 23 0.78 0.78 0.77 0.78 0.77 0.15

Ddiff 50 23 50 23 0.92 0.97 0.87 0.88 0.96 -

Deqv 50 23 50 23 0.86 0.85 0.87 0.87 0.85 0.1

Daife 100 23 100 23 0.94 0.98 0.90 0.90 0.98 -

Deqv 100 23 100 23 0.92 0.94 0.90 0.90 0.93 0.075

Pdiff 50 23 100 23 0.82 0.98 0.67 0.75 0.97 -

Peqv 50 23 100 23 0.88 0.87 0.88 0.88 0.88 0.0875
Classical pg;s 25 74 25 74 0.98 0.99 0.97 0.97 0.99 -
Archvies peqy 25 74 25 74 0.92 0.88 0.95 0.94 0.89 0.15

Pdiff 50 37 50 37 0.99 1.00 0.99 0.99 1.00 -

Deqv 50 37 50 37 0.91 0.92 0.90 0.90 0.92 0.1

Ddift 100 20 100 20 0.99 1.00 0.99 0.99 1.00 -

Deqv 100 20 100 20 0.93 0.94 0.91 0.92 0.94 0.075

Ddiff 50 37 100 20 0.85 1.00 0.75 0.77 0.99 -

Deqv 50 37 100 20 0.89 0.87 0.91 0.91 0.87 0.0875

Table 2: The results of 1000 randomized trials for each statistical test (peqv, paifr) Using a variety of corpora sizes.

only contains information about the harmonic progression,
to gauge the degree to which the SI emulates the rhythm,
and harmonic progressions which characterize C.

These tests could also be used to assess the CAN (Elgam-
mal et al. 2017), which attempts to produce visual art in a
style that is distinct from those it is trained on. In this sce-
nario, we would have a set of corpora on which the CAN
is trained (S = C; : i =1, ...,n), and for each C; € S we
would need to verify that pgir < «, using corrections for
multiple hypothesis testing. Most importantly, since NCD
operates on binary strings, these statistical tests are domain
independent, as any digital data can be represented as a bi-
nary string.

Conclusion

Scientific progress is hindered in the absence of robust eval-
vation methodologies. This is an issue of particular con-
tention in the field of computational creativity, as the subjec-
tive nature of assessments on creative artifacts can be prob-
lematic. In addition to issues of adequate domain knowl-
edge, bias, and inter-rater reliability, the finite capacity of
human participants limits the scalability of many evaluation
approaches. This is a particular issue for SI systems, where
the source corpus is often large, and the generated corpus
is infinite. To address this issue, we propose CAEMSI for
the evaluation of SI systems, providing compelling evidence
that the statistical tests are reliable in two distinct domains.
Future work involves further experimention with datasets
from other domains, and the evaluation of generative sys-
tems with CAEMSIL
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