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Abstract

Several methods exist for a computer to generate music based
on data including Markov chains, recurrent neural networks,
recombinancy, and grammars. We explore the use of unit se-
lection and concatenation as a means of generating music us-
ing a procedure based on ranking, where, we consider a unit
to be a variable length number of measures of music. We first
examine whether a unit selection method, that is restricted to
a finite size unit library, can be sufficient for encompassing a
wide spectrum of music. This is done by developing a deep
autoencoder that encodes a musical input and reconstructs the
input by selecting from the library. We then describe a gener-
ative model that combines a deep structured semantic model
(DSSM) with an LSTM to predict the next unit, where units
consist of four, two, and one measures of music. We eval-
uate the generative model using objective metrics including
mean rank and accuracy and with a subjective listening test
in which expert musicians are asked to complete a forced-
choiced ranking task. Our system is compared to a note-level
generative baseline model that consists of a stacked LSTM
trained to predict forward by one note.

Introduction
For the last half century researchers and artists have devel-
oped many types of algorithmic composition systems. These
individuals are driven by the allure of both simulating hu-
man aesthetic creativity through computation and tapping
into the artistic potential deep-seated in the inhuman char-
acteristics of computers. Some systems may employ rule-
based, sampling, or morphing methodologies to create mu-
sic (Papadopoulos and Wiggins 1999). We present a method
that falls into the class of symbolic generative music systems
consisting of data driven models which utilize statistical ma-
chine learning.

Within this class of music systems, the most prevalent
method is to create a model that learns likely transitions be-
tween notes using sequential modeling techniques such as
Markov chains or recurrent neural networks (Pachet and Roy
2011; Franklin 2006). The learning minimizes note-level
perplexity and during generation the models may stochasti-
cally or deterministically select the next best note given the
preceding note(s).
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In this paper we describe a method to generate mono-
phonic melodic lines based on unit selection. The approach
is inspired by 1) the theory that jazz improvisation pre-
dominantly consists of inserting and concatenating predeter-
mined musical structures or note sequences (Norgaard 2014;
Pressing 1988) and 2) techniques that are commonly used
in text-to-speech (TTS) systems. The two system design
trends found in TTS are statistical parametric and unit selec-
tion (Zen, Tokuda, and Black 2009). In the former, speech
is completely reconstructed given a set of parameters. The
premise for the latter is that new, intelligible, and natu-
ral sounding speech can be synthesized by concatenating
smaller audio units that were derived from a preexisting
speech signal (Hunt and Black 1996; Black and Taylor 1997;
Conkie et al. 2000). Unlike a parametric system, which re-
constructs the signal from the bottom up, the information
within a unit is preserved and is directly applied for signal
construction. When this idea is applied to music, the gener-
ative system can similarly get some of the structure inherent
to music “for free” by pulling from a unit library.

The ability to directly use the music that was previously
composed or performed by a human can be a significant
advantage when trying to imitate a style or pass a musical
Turing test. However, there are also drawbacks to unit se-
lection that the more common note-to-note level generation
methods do not need to address. The most obvious drawback
is that the output of a unit selection method is restricted to
what is available in the unit library. Note-level generation
provides maximum flexibility in what can be produced. Ide-
ally, the units in a unit selection method should be small
enough such that it is possible to produce a wide spectrum
of music, while, remaining large enough to take advantage
of the built-in information.

Another challenge with unit selection is that the concate-
nation process may lead to “jumps” or “shifts” in the mu-
sical content or style that may sound unnatural and jarring
to a listener. Even if the selection process accounts for this,
the size of the library must be sufficiently large in order to
address many scenarios. Thus, the process of selecting units
can equate to a massive number of comparisons among units
when the library is very big. Even after pruning this can be a
lot of computation. However, this is less of an issue as long
as the computing power is available and unit evaluation can
be performed in parallel processes.



In this work we explore unit selection as a means of music
generation. We first build a deep autoencoder where recon-
struction is performed using unit selection. This allows us
to make an initial qualitative assessment of the ability of a
finite-sized library to reconstruct never before seen music.
We then describe a generative method that selects and con-
catenates units to create new music.

The proposed generation system ranks individual units
based on two values: 1) a semantic relevance score between
two units and 2) a concatenation cost that describes the dis-
tortion at the seams where units connect. The semantic rel-
evance score is determined by using a deep structured se-
mantic model (DSSM) to compute the distance between two
units in a compressed embedding space (Huang et al. 2013).
The concatenation cost is derived by first learning the like-
lihood of a sequence of musical events (such as individual
notes) with an LSTM and then using this LSTM to evalu-
ate the likelihood of two consecutive units. We evaluate the
model’s ability to select the next best unit based on ranking
accuracy and mean rank. We use a subjective listening test
to evaluate the “naturalness” and “likeability” of the musi-
cal output produced by versions of the system using units of
lengths four, two, and one measures. We additionally com-
pare our unit selection based systems to the more common
note-level generative models using an LSTM trained to pre-
dict forward by one note.

Related Work
Many methods for generating music have been proposed.
The data-driven statistical methods typically employ n-gram
or Markov models (Chordia, Sastry, and Şentürk 2011;
Pachet and Roy 2011; Wang and Dubnov 2014; Simon, Mor-
ris, and Basu 2008; Collins et al. 2016). In these Markov-
based approaches note-to-note transitions are modeled (typ-
ically bi-gram or tri-gram note models). However, by focus-
ing only on such local temporal dependencies these models
fail to take into account the higher level structure and se-
mantics important to music.

Like the Markov approaches, RNN methods that are
trained on note-to-note transitions fail to capture higher level
semantics and long term dependencies (Coca, Romero, and
Zhao 2011; Boulanger-Lewandowski, Bengio, and Vincent
2012; Goel, Vohra, and Sahoo 2014). However, using an
LSTM, Eck demonstrated that some higher level temporal
structure can be learned (Eck and Schmidhuber 2002). The
overall harmonic form of the blues was learned by training
the network with various improvisations over the standard
blues progression.

We believe these previous efforts have not been successful
at creating rich and aesthetically pleasing large scale musical
structures that demonstrate an ability to communicate com-
plex musical ideas beyond the note-to-note level. A melody
(precomposed or improvised) relies on a hierarchical struc-
ture and the higher-levels in this hierarchy are arguably the
most important part of generating a melody. Much like in
story telling it is the broad ideas that are of the most interest
and not necessarily the individual words.

Rule-based grammar methods have been developed to ad-
dress such hierarchical structure. Though many of these sys-

tems’ rules are derived using a well-thought out and care-
ful consideration to music theory and perception (Lerdahl
1992), some of them do employ machine learning methods
to create the rules. This includes stochastic grammars and
constraint based reasoning methods (McCormack 1996).
However, grammar based systems are used predominantly
from an analysis perspective and do not typically general-
ize beyond specific scenarios (Lerdahl and Jackendoff 1987;
Papadopoulos and Wiggins 1999).

The most closely related work to our proposed unit se-
lection method is David Cope’s Experiments in Musical In-
telligence, in which “recombinancy” is used (Cope 1999).
Cope’s process of recombinancy first breaks down a musical
piece into small segments, labels these segments based on
various characteristics, and reorders or “recombines” them
based on a set of musical rules to create a new piece. Though
there is no machine learning involved, the underlying pro-
cess of stitching together preexisting segments is similar to
our method. However, we attempt to learn how to connect
units based on sequential modeling with an LSTM. Further-
more, our unit labeling is derived from a semantic embed-
ding using a technique developed for ranking tasks in natural
language processing (NLP).

Our goal in this research is to examine the potential for
unit selection as a means of music generation. Ideally, the
method should capture some of the structural hierarchy in-
herent to music like the grammar based strategies, but be
flexible enough so that they generalize as well as the gen-
erative note-level models. Challenges include finding a unit
length capable of this and developing a selection method that
results in both likeable and natural sounding music.

Reconstruction Using Unit Selection
As a first step towards evaluating the potential for unit selec-
tion, we examine how well a melody or a more complex jazz
solo can be reconstructed using only the units available in a
library. Two things are needed to accomplish this: 1) data to
build a unit library and 2) a method for analyzing a melody
and identifying the best units to reconstruct it.

Our dataset consists of 4,235 lead sheets from the Wikifo-
nia database containing melodies from genres including (but
not limited to) jazz, folk, pop, and classical (Simon, Morris,
and Basu 2008). In addition, we collected 120 publicly avail-
able jazz solo transcriptions from various websites.

Design of a Musical Autoencoder
In order to analyze and reconstruct a melody we trained a
deep autoencoder to encode and decode a single measure of
music. This means that our unit (in this scenario) is one mea-
sure of music. From the dataset there are roughly 170,000
unique measures. Of these, there are roughly 20,000 unique
rhythms seen in the measures. We augment the dataset by
manipulating pitches through linear shifts (transpositions)
and alterations of the intervals between notes resulting in
roughly 80 million unique measures.

The intervals are altered using two methods: 1) adding
a constant value to the original intervals and 2) multiply-
ing a constant value to the intervals. Many different constant



values are used and the resulting pitches from the new in-
terval values are superimposed on to the measure’s original
rhythms. The new unit is added to the dataset. We restrict
the library to measures with pitches that fall into a five oc-
tave range (midi notes 36-92). Each measure is transposed
up and down a half step so that all instances within the pitch
range are covered. The only manipulation performed on the
duration values of notes within a measure is the temporal
compression of two consecutive measures into a single mea-
sure. This “double time” representation effectively increases
the number of measures, while leaving the inherent rhythmic
structure intact. After all of this manipulation and augmen-
tation there are roughly 80 million unique measures. We use
60% for training and 40% for testing our autoencoder.

The first step in the process is feature extraction and creat-
ing a vector representation of the unit. Unit selection allows
for a lossy representation of the events within a measure.
As long as it is possible to rank the units it is not necessary
to be able to recreate the exact sequence of notes with the
autoencoder. Therefore, we can represent each measure us-
ing a bag-of-words (BOW) like feature vector. Our features
include:

1. counts of note tuples <pitch1, duration1>

2. counts of pitches <pitch1>

3. counts of durations <duration1>

4. counts of pitch class <class1>

5. counts of class and rhythm tuples <class1, duration1>

6. counts of pitch bigrams <pitch1, pitch2>

7. counts of duration bigrams <duration1, duration2>

8. counts of pitch class bigrams <class1, class1>

9. first note is tied previous measure (1 or 0)

10. last note is tied to next measure (1 or 0)

The pitches are represented using midi pitch values. The
pitch class of a note is the note’s pitch reduced down to a
single octave (12 possible values). We also represent rests
using a pitch value equal to negative one. Therefore, no fea-
ture vector will consist of only zeros. Instead, if the measure
is empty the feature vector will have a value of one at the po-
sition representing a whole rest. Because we used data that
came from symbolic notation (not performance) the dura-
tions can be represented using their rational form (numer-
ator, denominator) where a quarter note would be ‘1/4.’ Fi-
nally, we also include beginning and end symbols to indicate
whether the note is a first or last note in a measure.

The architecture of the autoencoder is depicted in Figure
1. The objective of the decoder is to reconstruct the feature
vector and not the actual sequence of notes as depicted in the
initial unit of music. Therefore, the entire process involves
two types of reconstruction:

1. feature vector reconstruction - the reconstruction per-
formed and learned by the decoder.

2. music reconstruction - the process of selecting a unit that
best represents the initial input musical unit.

Figure 1: Autoencoder architecture – The unit is vectorized
using a BOW like feature extraction and the autoencoder
learns to reconstruct this feature vector.

In order for the network to learn the parameters necessary
for effective feature vector reconstruction by the decoder, the
network uses leaky rectified linear units (α = .001) on each
layer and during training minimizes a loss function based on
the cosine similarity function

sim(~X , ~Y ) =
~XT · ~Y
|~X ||~Y |

(1)

where ~X and ~Y are two equal length vectors. This function
serves as the basis for computing the distance between the
input vector to the encoder and output vector of the decoder.
Negative examples are included through a softmax function

P(~R|~Q) =
exp(sim(~Q , ~R))∑
~dεD exp(sim(~Q , ~d))

(2)

where ~Q is the feature vector derived from the input musical
unit, Q, and ~R represents the reconstructed feature vector of
Q. D is the set of five reconstructed feature vectors that in-
cludes ~R and four candidate reconstructed feature vectors
derived from four randomly selected units in the training
set. The network then minimizes the following differentiable
loss function using gradient descent

−log
∏

(Q,R)

P(~R|~Q) (3)

A learning rate of 0.005 was used and a dropout of 0.5 was
applied to each hidden layer, but not applied to the feature
vector. The network was developed using Google’s Tensor-
flow framework (Abadi et al. 2016).

Music Reconstruction through Selection
The feature vector used as the input to the autoencoder is
a BOW-like representation of the musical unit. This is not
a loss-less representation and there is no effective means of
converting this representation back into its original symbolic
musical form. However, the nature of a unit selection method
is such that it is not necessary to reconstruct the original
sequence of notes. Instead, a candidate is selected from the
library that best depicts the content of the original unit based
on some distance metric.



Table 1: Results
mean rank @ 50 1.003
accuracy @ 50 99.98
collision rate per 100k 91

In TTS, this distance metric is referred to as the target cost
and describes the distance between a unit in the database
and the target it’s supposed to represent (Zen, Tokuda, and
Black 2009). In our musical scenario, the targets are individ-
ual measures of music and the distance (or cost) is measured
within the embedding space learned by the autoencoder. The
unit whose embedding vector shares the highest cosine sim-
ilarity with the query embedding is chosen as the top candi-
date to represent a query or target unit. We apply the function

ŷ = argmax
y

sim(x , y) (4)

where x is the embedding of the input unit and y is the em-
bedding of a unit chosen from the library.

The encoding and selection can be objectively and quali-
tatively evaluated. For the purposes of this particular musi-
cal autoencoder, an effective embedding is one that captures
perceptually significant semantic properties and is capable
of distinguishing the original unit in the library (low colli-
sion rate) despite the reduced dimensionality. In order to as-
sess the second part we can complete a ranking (or sorting)
task in which the selection rank (using equation 5) of the
truth out of 49 randomly selected units (rank@50) is calcu-
lated for each unit in the test set. The collision rate can also
be computed by counting the instances in which a particu-
lar embedding represents more than one unit. The results are
reported in the table below.

Given the good performance we can make a strong as-
sumption that if an identical unit to the one being encoded
exists in the library then the reconstruction process will cor-
rectly select it as having the highest similarity. In practice,
however, it is probable that such a unit will not exist in the
library. The number of ways in which a measure can be filled
with notes is insurmountably huge and the millions of mea-
sures in the current unit library represent only a tiny fraction
of all possibilities. Therefore, in the instances in which an
identical unit is unavailable an alternative, though perceptu-
ally similar, selection must be chosen.

Autoencoders and embeddings developed for image pro-
cessing tasks are often qualitatively evaluated by examin-
ing the similarity between original and reconstructed images
(van den Oord et al. 2016). Likewise, we can assess the se-
lection process by reconstructing never before seen music.

Figure 2 shows the reconstruction of an improvisation
(see the related video for audio examples 1). Through these
types of reconstructions we are able to see and hear that the
unit selection performs well. Also, note that this method of
reconstruction utilizes only a target cost and does not include
a concatenation cost between measures.

Another method of qualitative evaluation is to reconstruct
from embeddings derived from linear interpolations between

1https://youtu.be/BbyvbO2F7ug

Figure 2: The music on the stave labeled “reconstruction”
(below the line) is the reconstruction (using the encoding
and unit selection process) of the music on the stave labeled
“original” (above the line).

two input seeds. The premise is that the reconstruction from
the vector representing the weighted sum of the two seed
embeddings should result in samples that contain character-
istics of both seed units. Figure 3 shows results of recon-
struction from three different pairs of units.

Figure 3: Linear interpolation in the embedding space in
which the top and bottom units are used as endpoints in the
interpolation. Units are selected based on their cosine simi-
larity to the interpolated embedding vector.

Generation using Unit Selection
In the previous section we demonstrated how unit selec-
tion and an autoencoder can be used to transform an exist-
ing piece of music through reconstruction and merging pro-
cesses. The embeddings learned by the autoencoder provide
features that are used to select the unit in the library that best
represents a given query unit. In this section we explore how
unit selection can be used to generate sequences of music
using a predictive method. The task of the system is to gen-
erate sequences by identifying good candidates in the library
to contiguously follow a given unit or sequence of units.

The process for identifying good candidates is based
on the assumption that two contiguous units, (un−1, un),
should share characteristics in a higher level musical seman-
tic space (semantic relevance) and the transition between the
last and first notes of the first and second units respectively



should be likely to occur according to a model (concatena-
tion). This general idea is visually portrayed in Figure 4. We
use a DSSM based on BOW-like features to model the se-
mantic relevance between two contiguous units and a note-
level LSTM to learn likely note sequences (where a note
contains pitch and rhythm information).

Figure 4: A candidate is picked from the unit library and
evaluated based on a concatenation cost that describes the
likelihood of the sequence of notes (based on a note-level
LSTM) and a semantic relevance cost that describes the rela-
tionship between the two units in an embedding space (based
on a DSSM).

For training these models we use the same dataset de-
scribed in the previous section. However, in order to ensure
that the model learns sequences and relationships that are
musically appropriate we can only augment the dataset by
transposing the pieces to different keys. Transposing does
not compromise the original structure, pitch intervals, or
rhythmic information within the data, however, the other
transformations do affect these musical attributes and such
transformations should not be applied for learning the pa-
rameters of these sequential models. However, it is possi-
ble to use the original unit library (including augmentations)
when selecting units during generation.

Semantic Relevance
In both TTS and the previous musical reconstruction tests a
target is provided. For generation tasks, however, the system
must predict the next target based on the current sequential
and contextual information that is available. In music, even
if the content between two contiguous measures or phrases is
different, there exist characteristics that suggest the two are
not only related, but also likely to be adjacent to one another
within the overall context of a musical score. We refer to this
likelihood as the “semantic relevance” between two units.

This measure is obtained from a feature space learned us-
ing a DSSM. Though the underlying premise of the DSSM
is similar to the DBN autencoder in that the objective is
to learn good features in a compressed semantic space, the
DSSM features, however, are derived in order to describe
the relevance between two different units by specifically
maximizing the posterior probability of consecutive units,

P (un|un−1), found in the training data. The same BOW fea-
tures described in the previous section are used as input to
the model. There are two hidden layers and the output layer
describes the semantic feature vector used for computing the
relevance. Each layer has 128 rectified linear units. The same
softmax that was used for the autoencoder for computing
loss is used for the DSSM. However, the loss is computed
within vectors of the embedding space such that

−log
∏

(un−1 ,un)

P( ~un | ~un−1 ) (5)

where the vectors, ~un and ~un−1, represent the 128 length
embeddings of each unit derived from the parameters of the
DSSM. Once the parameters are learned through gradient
descent the model can be used to measure the relevance
between any two units, U1 and U2, using cosine similarity
sim( ~U1 , ~U2 ) (see Equation 1).

The DSSM provides a meaningful measure between two
units, however, it does not describe how to join the units
(which one should come first). Similarly, the BOW repre-
sentation of the input vector does not contain information
that is relevant for making decisions regarding sequence. In
order to optimally join two units a second measure is neces-
sary.

Concatenation Cost
By using a unit library made up of original human composi-
tions or improvisations, we can assume that the information
within each unit is musically valid. In an attempt to ensure
that the music remains valid after combining new units we
employ a concatenation cost to describe the quality of the
join between two units. This cost requires sequential infor-
mation at a more fine grained level than the BOW-DSSM
can provide.

We use a multi-layer LSTM to learn a note-to-note level
model (akin to a character level language model). Each state
in the model represents an individual note that is defined by
its pitch and duration. This constitutes about a 3,000 note vo-
cabulary. Using a one-hot encoding for the input, the model
is trained to predict the next note, yT , given a sequence,
x = (x1, ..., xT ), of previously seen notes. During training,
the output sequence, y = (y1, ..., yT ), of the network is such
that yt = xt+1. Therefore, the predictive distribution of pos-
sible next notes, Pr(xT+1 |x), is represented in the output
vector, yT . We use a sequence length of T = 36.

The aim of the concatenation cost is to compute a score
evaluating the transition between the last note of the unit,
un−1,xT

, and the first note of the unit, un,yT . By using an
LSTM it is possible to include additional context and note
dependencies that exist further in the past than un−1,xT

. The
cost between two units is computed as

C (un−1 , un) = −
1

J

J∑
j

logPr(xj |xj) (6)

where J is the number of notes in un, xj is the jth note of un,
and xj is the sequence of notes (with length T ) immediately
before xj . Thus, for j > 1 and j < T , xj will include notes



from un and un−1 and for j ≥ T , xj will consist of notes
entirely from un. In practice, however, the DSSM performs
better than the note-level LSTM for predicting the next unit
and we found that computingC with J = 1 provides the best
performance. Therefore, the quality of the join is determined
using only the first note of the unit in question (un).

The sequence length, T = 36, was chosen because it is
roughly the average number of notes in four measures of
music (from our dataset). Unlike the DSSM, which com-
putes distances based on information from a fixed number
of measures, the context provided to the LSTM is fixed in
the number of notes. This means it may look more or less
than four measures into the past. In the scenario in which
there is less that 36 notes of available context the sequence
is zero padded.

Ranking Units
A ranking process that combines the semantic relevance and
concatenation cost is used to perform unit selection. Often
times in music generation systems the music is not generated
deterministically, but instead uses a stochastic process and
samples from a distribution that is provided by the model.
One reason for this is that note-level Markov chains or
LSTMs may get “stuck” repeating the same note(s). Adding
randomness to the procedure helps to prevent this. Here,
we describe a deterministic method as this system is not as
prone to repetitive behaviors. However, it is simple to apply
stochastic decision processes to this system as the variance
provided by sampling can be desirable if the goal is to obtain
many different musical outputs from a single input seed.

The ranking process is performed in four steps:
1. Rank all units according to their semantic relevance with

an input seed using the feature space learned by the
DSSM.

2. Take the units whose semantic relevance ranks them in the
top 5% and re-rank based on their concatenation cost with
the input.

3. Re-rank the same top 5% based on their combined seman-
tic relevance and concatenation ranks.

4. Select the unit with the highest combined rank.
By limiting the combined rank score to using only the top

5% we are creating a bias towards the semantic relevance.
The decision to do this was motivated by findings from pilot
listening tests in which it was found that a coherent melodic
sequence relies more on the stylistic or semantic relatedness
between two units than a smooth transition at the point of
connection.

Evaluating the model
The model’s ability to choose good units can be evaluated
using a ranking test. The task for the model is to predict the
next unit given a never before seen four measures of mu-
sic (from the held out test set). The prediction is made by
ranking 50 candidates in which one is the truth and the other
49 are units randomly selected from the database. We repeat
the experiments for musical units of different lengths includ-
ing four, two, and one measures. The results are reported in

Table 2: Unit Ranking

Model Unit length Acc Mean Rank
(measures) @50

LSTM 4 17.2% 14.1
DSSM 4 33.2% 6.9
DSSM+LSTM 4 36.5% 5.9
LSTM 2 16.6% 14.8
DSSM 2 24.4% 10.3
DSSM+LSTM 2 28.0% 9.1
LSTM 1 16.1% 15.7
DSSM 1 19.7% 16.3
DSSM+LSTM 1 20.6% 13.9

the table below and they are based on the concatenation cost
alone (LSTM), semantic relevance (DSSM), and the com-
bined concatenation and semantic relevance using the selec-
tion process described above (DSSM+LSTM).

Discussion
As stated earlier the primary benefit of unit selection is being
able to directly apply previously composed music. The chal-
lenge is stitching together units such that the musical results
are stylistically appropriate and coherent. Another challenge
in building unit selection systems is determining the optimal
length of the unit. The goal is to use what has been seen
before, yet have flexibility in what the system is capable of
generating. The results of the ranking task may indicate that
units of four measures have the best performance, yet these
results do not provide any information describing the quality
of the generated music.

Music inherently has a very high variance (especially
when considering multiple genres). It may be that unit selec-
tion is too constraining and note-level control is necessary to
create likeable music. Conversely, it may be that unit selec-
tion is sufficient and given an input sequence there may be
multiple candidates within the unit database that are suitable
for extending the sequence. In instances in which the rank-
ing did not place the truth with the highest rank, we cannot
assume that the selection is “wrong” because it may still be
musically or stylistically valid. Given that the accuracies are
not particularly high in the previous task an additional eval-
uation step is necessary to both evaluate the unit lengths and
to confirm that the decisions made in selecting units are mu-
sically appropriate. In order to do this a subjective listening
test is necessary.

Figure 5: The mean rank and standard deviation for the dif-
ferent music generation systems using units of lengths 4, 2,
and 1 measures and note level generation.



Figure 6: The frequency of being top ranked for the different
music generation systems using units of lengths 4, 2, and 1
measures and note level generation. In both Figure 5 and 6
results are reported for each of the five hypotheses: 1) Tran-
sition – the naturalness of the transition between the first
four measures (input seed) and last four measures (com-
puter generated), 2) Relatedness – the stylistic or seman-
tic relatedness between the first four measures and last four
measures, 3) Naturalness of Generated – the naturalness
of the last four measures only, 4) Likeability of Generated
– the likeability of the last four measures only, and 5) Over-
all Likeability – the overall likeability of the entire eight
measure sequence.

Subjective Evaluation
A subjective listening test was performed. Participants in-
cluded 32 music experts in which a music expert is defined
as an individual that has or is pursuing a higher level degree
in music, a professional musician, or a music educator. Four
systems were evaluated. Three of the systems employed unit
selection using units of four, two, and one measures. The
fourth system used the note-level LSTM to generate each
note at a time.

The design of the test was inspired by subjective evalua-
tions used by the TTS community. To create a sample each
of the four systems was provided with the same input seed
(retrieved from the held out dataset) and from this seed each
then generated four additional measures of music. This pro-
cess results in four eight-measure music sequences in which
each has the same first four measures. The process was re-
peated 60 times using random four measure input seeds.

In TTS evaluations participants are asked to rate the qual-
ity of the synthesis based on naturalness and intelligibil-
ity (Stevens et al. 2005). In music performance systems the
quality is typically evaluated using naturalness and likeabil-
ity (Katayose et al. 2012). For a given listening sample, a
participant is asked to listen to four eight-measure sequences
(one for each system) and then are asked to rank the candi-
dates within the sample according to questions pertaining to:

1. Naturalness of the transition between the first and second
four measures.

2. Stylistic relatedness of the first and second four measures.

3. Naturalness of the last four measures.

4. Likeability of the last four measures.

5. Likeability of the entire eight measures.

Each participant was asked to evaluate 10 samples that were
randomly selected from the original 60, thus, all participants
listened to music generated by the same four systems, but
the actual musical content and order randomly differed from

Table 3: Subjective Ranking

Variable Best –>Worst
H1 - Transition Naturalness 1, N, 2, 4
H2 - Semantic Relatedness 1, 2, 4, N
H3 - Naturalness of Generated 4, 1, 2, N
H4 - Likeability of Generated 4, 2, 1, N
H5 - Overall Likeability 2, 1, 4, N

participant to participant. The tests were completed online
with an average duration of roughly 80 minutes.

Results

Rank order tests provide ordinal data that emphasize the
relative differences among the systems. The average rank
was computed across all participants similarly to TTS-MOS
tests. The percent of being top ranked was also computed.
These are shown in Figures 5 and 6.

In order to test significance the non-parametric Friedman
test for repeated measurements was used. The test evaluates
the consistency of measurements (ranks) obtained in differ-
ent ways (audio samples with varying input seeds). The null
hypothesis states that random sampling would result in sums
of the ranks for each music system similar to what is ob-
served in the experiment. A Bonferoni post-hoc correction
was used to correct the p-value for the five hypotheses (de-
rived from the itemized question list described earlier).

For each hypothesis the Friedman test resulted in p<.05,
thus, rejecting the null hypothesis. The sorted ranks for each
of the generation system is described in Table 3.

Discussion

In H3 and H4 the participants were asked to evaluate the
quality of the four generated measures alone (disregarding
the seed). This means that the sequence resulting from the
system that generates units of four measure durations are
the unadulterated four measure segments that occurred in the
original music. Given there was no computer generation or
modification it is not surprising that the four measure system
was ranked highest.

The note level generation performed well when it comes
to evaluating the naturalness of the transition at the seams
between the input seed and computer generated music. How-
ever, note level generation does not rank highly in the other
categories. Our theory is that as the note-level LSTM accu-
mulates error and gets further away from the original input
seed the musical quality suffers. This behavior is greatly at-
tenuated in a unit selection method assuming the units are
pulled from human compositions.

The results indicate that there exists an optimal unit length
that is greater than a single note and less than four measures.
This ideal unit length appears to be one or two measures
with a bias seemingly favoring one measure. However, to say
for certain an additional study is necessary that can better
narrow the difference between these two systems.



Conclusion
We present a method for music generation that utilizes unit
selection. The selection process incorporates a score based
on the semantic relevance between two units and a score
based on the quality of the join at the point of concatena-
tion. Two variables essential to the quality of the system are
the breadth and size of the unit database and the unit length.
An autoencoder was used to demonstrate the ability to re-
construct never before seen music by picking units out of a
database. In the situation that an exact unit is not available
the nearest neighbor computed within the embedded vector
space is chosen. A subjective listening test was performed in
order to evaluate the generated music using different unit du-
rations. Music generated using units of one or two measure
durations tended to be ranked higher according to overall
likeability than units of four measures or note-level genera-
tion.

The system described in this paper generates monophonic
melodies and currently does not address situations in which
the melodies should conform to a provided harmonic context
(chord progression) such as in improvisation. Plans for ad-
dressing this are included in future work. Additionally, unit
selection may sometimes perform poorly if good units are
not available. In such scenarios a hybrid approach that in-
cludes unit selection and note-level generation can be useful
by allowing the system to take advantage of the structure
within each unit whenever appropriate, yet, not restricting
the system to the database. Such an approach is also planned
for future work.
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