
Towards Knowledge-Oriented Creativity Support in Game Design

Adam M. Smith and Michael Mateas
Expressive Intelligence Studio

University of California, Santa Cruz
{amsmith,michaelm}@soe.ucsc.edu

Abstract

This article reports on a work-in-progress system de-
signed to support game designers in gaining knowledge
about the implications of their design ideas on observa-
ble gameplay. Utilizing a convenient pattern language,
evidence of the instantiation of many gameplay patterns
can be gathered and organized, resulting in insight.

 Introduction

In game design, practices such as prototyping and playtest-
ing are integral parts of the iterative, exploratory process
used to achieve the innovative gameplay sought by creative
game designers (Fullerton 2008). These practices reveal
concrete details about game design spaces, allowing de-
signers to refine their personal store of design knowledge.
This design knowledge is used to engineer the complete,
polished products we recognize as popular games, but it
most often comes from experience with crude or incom-
plete game artifacts.
 In this paper, we describe a work-in-progress system
based on the theory of rational curiosity (Smith and Ma-
teas 2011). This theory suggests that, in order to support
creativity in game design, systems should directly support
designers in gaining design knowledge. This contrasts with
Yeap’s desideratum of ideation (2010), that a support sys-
tem should generate new ideas on its own. Quickly extract-
ing useful feedback from existing ideas, we claim, is an
underappreciated bottleneck in creative design process.
 In game design, knowledge-oriented creativity systems
should systematically expose the relation between the con-
crete details in a game’s definition, such as its mechanics
and level design, and the implication of these details on
gameplay.
 Building on the LUDOCORE logical game engine (Smith,
Nelson, and Mateas 2010), our support system is targeted
at early-stage computational gameplay prototypes (func-
tioning models of a game that permit a designer to ask and
answer specific design questions). LUDOCORE models cap-
ture focused situations in gameplay, including any availa-
ble knowledge about the ideal player in addition to the
game’s mechanics. By using a logic programming repre-
sentation, the system is able to exploit model-finding tech-

niques to automatically solve for gameplay traces which
exhibit properties that a designer has requested via a query.
Knowledge gained from machine playtesting with
LUDOCORE can be validated with human playtesting using
the interactive, graphical features of BIPED (Smith, Nelson,
and Mateas 2009), a process which often inspires new for-
mal queries to pose in iterative machine playtesting. Using
these tools in the larger game design process requires an
external, creative agent to spot interesting patterns in ga-
meplay traces and translate these patterns into a language
the logical reasoning tools can understand in subsequent
exploration.
 If LUDOCORE is about getting design feedback from pro-
totypes, but it requires a designer to first specify formal
queries, can we assist the designer by translating her high-
level interests into such queries and informatively aggre-
gating the results? Such a straightforward process could
dramatically speed up the rate at which a designer learns
about her designs, improving her ability to appreciate arti-
facts – appreciation being one leg of Colton’s creative
tripod of perceived creativity (2008).
 In this paper, we report on a system capable of collect-
ing and organizing evidence for a space of gameplay pat-
terns which are described in a designer-friendly language.
After reviewing our example game, we describe how a
preliminary experiment with our support tool using simple,
hand-authored patterns has resulted in design insight.

DrillBot 6000 in LUDOCORE

Our support system works using a LUDOCORE model as
input. Our examples will use the game DrillBot 6000 (the
example game that comes with BIPED). A screenshot of
DrillBot is shown in Figure 1. In the game, the player con-
trols a mining robot that must explore underground ca-
verns, drilling out rocks and treasures. Actions such as
mining rocks and moving upwards cost the robot energy
that can only be recovered by refueling at the base.
 The logic program that defines the game model declares
events that may occur (such as mining a rock, moving to a
space, and trading or refueling) and elements of state that
change over time (such as the robot’s position, energy lev-
el, and the presence of the various rocks). Additionally, the

Proceedings of the Second International Conference on Computational CreativityProceedings of the Second International Conference on Computational Creativity 129

definition contains assertions about the configuration of the
game world (including the existence and linkage of caverns
and the treasure property of some of the rocks).
 Performing either human or machine playtesting with
DrillBot produces symbolic gameplay traces. Simple traces
log the actions (events) selected by player at each logical
timepoint. Often, however, understanding an interesting
property of play requires understanding the context of a
particular sequence of player actions with respect to both
the dynamic state of the game and its static configuration.
We modified LUDOCORE to produce complete execution
traces, records of every logical fact that is true in the game
world in both the static and dynamic sense. Such complete
traces represent an accurate view of the knowledge availa-
ble to the designer when she is looking for patterns during
playtesting, but they are very tedious to explore manually.
 Where a simple trace may state that the event

mine(dino_bones) happened at timepoint 22, a com-

plete trace will assert that mining is a player-selectable

game event, that the event was possible at that time and

others and was mutually exclusive with the two available

movement events, that dino_bones is a rock with the

treasure property, and that it is located in the cavern

designated i which is linked to caverns g and h. If there is

something interesting to be said about mining this rock, it

is likely to involve some of these contextual details.

 Using LUDOCORE’s query language (based on logical

integrity constraints), it is possible to ask for gameplay

traces that illustrate how a player might navigate the robot

down, drill out dino_bones, and return it to the base

without ever letting its energy level drop below 6. The

code for query is small (just four lines), however writing it

requires careful reasoning about the scope of variable

quantification and domain restriction as well as reasoning

through double-negation.

A Language of Gameplay Properties

To ease the definition of gameplay patterns that may be of

interest in to a designer, we created a new language inside

of Prolog (the syntax also used to define LUDOCORE

games). Pattern definitions are declarations of what evi-

dence must be present in (or absent from) a complete ex-

ecution trace to detect an instantiation of that pattern. An

example pair of patterns is shown in Figure 2.

Syntax

The <-- (or is-detected-when) operator binds the name of

a pattern (which might be parameterized by logic va-

riables) to its requirements. Requirements can refer to the

presence of elements in a trace such as that a game in-

cludes some event, that the event happens, or that some

element of game state holds at some time. All LUDOCORE

games share the general concepts of events and state, but

many interesting patterns will make reference to game-

specific concepts (such as the action of mining or a particu-

lar rock in DrillBot). The primitive construct can be

used to require (or forbid using the \+ operator) any ele-

ment of a trace, whether it is game specific or not.

 To afford exploration of interesting patterns by seeing

where they co-occur with other patterns and how their

presence affects the conditional presence of other interest-

ing patterns, requirements can also constrain the presence

of any other pattern (using pattern construct).

 A final construct of the language, when, can be used to

describe additional constraints not present in the trace. A

common use for this construct is to assert that two pattern

variables should never be equal, or that (if they are time-

points) the enclosing pattern should only be detected when

the values of the variables are strictly ordered.

Evidence Sets

Patterns in this language can be automatically translated

into the more tedious query language supported by

LUDOCORE. So far, we have only explored a fixed database

of pre-collected traces. When asked to show evidence for

the presence of a given pattern, our system finds all possi-

ble sets of evidence that, due to their presence in a trace,

permit the detection of a pattern using some instantiation

of its pattern variables.

 Given a library of patterns, the system will produce a

table of pattern names with concrete symbols substituted

for variables scored by the number of distinct evidence sets

which support each pattern. Given this table, a designer

can then ask the system to display the detailed evidence

sets for a particular instantiation. In many cases, it is the

deeper examination of these evidence sets which suggests

the definition of a new, composite pattern.

 It is possible to use the compiled form of the pattern

detector as a query in LUDOCORE. Thus, the designer can

Figure 1. A screenshot of gameplay in the DrillBot 6000

model. Black circles indicate game elements that our system

automatically identified as ignored by players. The yellow

token d2 is a non-valuable rock in a dead-end cavern, and the

space f is a linked cavern which provides no apparent navi-

gation benefits.

Proceedings of the Second International Conference on Computational CreativityProceedings of the Second International Conference on Computational Creativity 130

use machine playtesting to directly search for more evi-

dence of known patterns or ask about the existence of any

possible traces that realize a freshly conjectured pattern.

Exploring Ignored Moves in DrillBot

To make our discussion of patterns and evidence sets more

concrete, we will now consider the results of using our

system to explore ignored moves in DrillBot. Figure 2

shows two pattern definitions in our library.

 The sometimes(E) event captures the idea that some

game event (bound to its pattern variable) happens at least

once in a given trace. Building on this, the ig-

nored_move(E) pattern describes the situation where

an event that is supported by the game’s rules is dynami-

cally available to the player (possible) at least once in a

trace while never observing the player selecting that action.

 Running our system with DrillBot and these patterns

yielded a report which described several instantiations of

the ignored move pattern. The most commonly ignored

moves involved the mining event, particularly non-treasure

rocks at leaves of the map’s navigation graph (such as the

rock d2 indicated in Figure 1).

 A less common (but more interesting) instantiation of

the ignored move parameter involved the up_to(f)

event. What is so special about this move? It turns out the

f cavern is an emergent dead-end when players leave the

c0 rock above it un-mined (because the robot cannot move

into non-empty caverns). The nearby e cavern, despite

being filled with rocks at the start of the game, is more

often chosen by players as (1) it is filled with treasured

rocks, (2) it is more connected to other caverns than f, and

(3) it provides an equal length path to the deeper parts of

map in comparison with the ignored f cavern.

Before having the system draw our attention to the f ca-

vern’s properties, we were previously un-aware of this type

of emergent dead-end in DrillBot’s level design. In an iter-

ative design process, we might intentionally create several

such emergent dead-ends or even use a compiled pattern

detector for these localized situations in conjunction with

LUDOCORE’s “structural query” feature to automatically

solve for new level designs which include this pattern.

Future Work

Applying equally to humans and machines, the theory of

rational curiosity suggests that we expand this creativity

support system in two directions: further supporting human

creativity and creating a software component that can be

used in developing automated game design systems that

are themselves creative.

Towards both of these goals, we would like to eliminate

the need to directly formulate even these high-level pattern

descriptors. Instead, we believe machine learning tech-

niques can be adapted to translate a collection of manually

assembled evidence sets into a most-likely pattern defini-

tion which can be used to collect and organize additional

evidence sets or form a part of a higher-level pattern.

Conclusion

Motivated by the theory of rational curiosity, this project
has explored the idea that creativity support tools in game
design should directly support gaining design knowledge.
The system realized thus far has demonstrated the ability,
in an automated manner, to direct a designer’s attention to
concrete instantiations of patterns of their interest and sug-
gest subsequent patterns for future exploration.

 Acknowledgements

This work was supported in part by the National Science
Foundation, grant IIS-1048385. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

Fullerton, T. 2008. Game design workshop, 2nd Edition: a
playcentric approach to creating innovative games, Mor-
gan Kaufmann.

Colton, S. 2008. Creativity versus the perception of crea-
tivity. Creative Intelligent Systems: Papers from the AAAI
Spring Symposium, 14-20.

Smith, A. M.; Nelson, M. J.; and Mateas, M. 2009. Com-
putational support for play testing game sketches. In Proc.
of the 5th Annual AI and Interactive Digital Entertainment
Conference (AIIDE2009).

Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010.
LUDOCORE: a logical game engine for modeling video-
games. In Proc. of the 2010 IEEE Conference on Compu-
tational Intelligence and Games (CIG 2010).

Smith, A. M.; and Mateas, M. 2011. Knowledge-level
creativity in game design. In Proc. of the 2nd International
Conference on Computational Creativity (ICCC 2011).

Yeap, Wai K.; Opas, Tommi; and Mahyar, Narges. 2010.
On two desiderata for creativity support tools. In Proc. of
the Intl. Conference on Computational Creativity, 180-189.

Figure 2. Two examples in our pattern definition language.

Primitive terms refer to the presence of concrete elements in a

complete gameplay trace and pattern terms refer to the pres-

ence (or absence in this case) of evidence for another design

pattern.

sometimes(E) <--

 primitive(event(E)),

 primitive(timepoint(T)),

 primitive(happens(E,T)).

ignored_move(E) <--

 primitive(possible(E,T)),

 pattern(\+ sometimes(E)).

Proceedings of the Second International Conference on Computational CreativityProceedings of the Second International Conference on Computational Creativity 131

