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Abstract 

This article reports on a work-in-progress system de-
signed to support game designers in gaining knowledge 
about the implications of their design ideas on observa-
ble gameplay. Utilizing a convenient pattern language, 
evidence of the instantiation of many gameplay patterns 
can be gathered and organized, resulting in insight. 

 Introduction 

In game design, practices such as prototyping and playtest-
ing are integral parts of the iterative, exploratory process 
used to achieve the innovative gameplay sought by creative 
game designers (Fullerton 2008). These practices reveal 
concrete details about game design spaces, allowing de-
signers to refine their personal store of design knowledge. 
This design knowledge is used to engineer the complete, 
polished products we recognize as popular games, but it 
most often comes from experience with crude or incom-
plete game artifacts. 
 In this paper, we describe a work-in-progress system 
based on the theory of rational curiosity (Smith and Ma-
teas 2011). This theory suggests that, in order to support 
creativity in game design, systems should directly support 
designers in gaining design knowledge. This contrasts with 
Yeap’s desideratum of ideation (2010), that a support sys-
tem should generate new ideas on its own. Quickly extract-
ing useful feedback from existing ideas, we claim, is an 
underappreciated bottleneck in creative design process. 
 In game design, knowledge-oriented creativity systems 
should systematically expose the relation between the con-
crete details in a game’s definition, such as its mechanics 
and level design, and the implication of these details on 
gameplay. 
 Building on the LUDOCORE logical game engine (Smith, 
Nelson, and Mateas 2010), our support system is targeted 
at early-stage computational gameplay prototypes (func-
tioning models of a game that permit a designer to ask and 
answer specific design questions). LUDOCORE models cap-
ture focused situations in gameplay, including any availa-
ble knowledge about the ideal player in addition to the 
game’s mechanics. By using a logic programming repre-
sentation, the system is able to exploit model-finding tech-

niques to automatically solve for gameplay traces which 
exhibit properties that a designer has requested via a query. 
Knowledge gained from machine playtesting with 
LUDOCORE can be validated with human playtesting using 
the interactive, graphical features of BIPED (Smith, Nelson, 
and Mateas 2009), a process which often inspires new for-
mal queries to pose in iterative machine playtesting. Using 
these tools in the larger game design process requires an 
external, creative agent to spot interesting patterns in ga-
meplay traces and translate these patterns into a language 
the logical reasoning tools can understand in subsequent 
exploration. 
 If LUDOCORE is about getting design feedback from pro-
totypes, but it requires a designer to first specify formal 
queries, can we assist the designer by translating her high-
level interests into such queries and informatively aggre-
gating the results? Such a straightforward process could 
dramatically speed up the rate at which a designer learns 
about her designs, improving her ability to appreciate arti-
facts – appreciation being one leg of Colton’s creative 
tripod of perceived creativity (2008). 
 In this paper, we report on a system capable of collect-
ing and organizing evidence for a space of gameplay pat-
terns which are described in a designer-friendly language. 
After reviewing our example game, we describe how a 
preliminary experiment with our support tool using simple, 
hand-authored patterns has resulted in design insight. 

DrillBot 6000 in LUDOCORE 

Our support system works using a LUDOCORE model as 
input. Our examples will use the game DrillBot 6000 (the 
example game that comes with BIPED). A screenshot of 
DrillBot is shown in Figure 1. In the game, the player con-
trols a mining robot that must explore underground ca-
verns, drilling out rocks and treasures. Actions such as 
mining rocks and moving upwards cost the robot energy 
that can only be recovered by refueling at the base. 
 The logic program that defines the game model declares 
events that may occur (such as mining a rock, moving to a 
space, and trading or refueling) and elements of state that 
change over time (such as the robot’s position, energy lev-
el, and the presence of the various rocks). Additionally, the 
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definition contains assertions about the configuration of the 
game world (including the existence and linkage of caverns 
and the treasure property of some of the rocks). 
 Performing either human or machine playtesting with 
DrillBot produces symbolic gameplay traces. Simple traces 
log the actions (events) selected by player at each logical 
timepoint. Often, however, understanding an interesting 
property of play requires understanding the context of a 
particular sequence of player actions with respect to both 
the dynamic state of the game and its static configuration. 
We modified LUDOCORE to produce complete execution 
traces, records of every logical fact that is true in the game 
world in both the static and dynamic sense. Such complete 
traces represent an accurate view of the knowledge availa-
ble to the designer when she is looking for patterns during 
playtesting, but they are very tedious to explore manually. 
 Where a simple trace may state that the event 

mine(dino_bones) happened at timepoint 22, a com-

plete trace will assert that mining is a player-selectable 

game event, that the event was possible at that time and 

others and was mutually exclusive with the two available 

movement events, that dino_bones is a rock with the 

treasure property, and that it is located in the cavern 

designated i which is linked to caverns g and h. If there is 

something interesting to be said about mining this rock, it 

is likely to involve some of these contextual details. 

 Using LUDOCORE’s query language (based on logical 

integrity constraints), it is possible to ask for gameplay 

traces that illustrate how a player might navigate the robot 

down, drill out dino_bones, and return it to the base 

without ever letting its energy level drop below 6. The 

code for query is small (just four lines), however writing it 

requires careful reasoning about the scope of variable 

quantification and domain restriction as well as reasoning 

through double-negation. 

A Language of Gameplay Properties 

To ease the definition of gameplay patterns that may be of 

interest in to a designer, we created a new language inside 

of Prolog (the syntax also used to define LUDOCORE 

games). Pattern definitions are declarations of what evi-

dence must be present in (or absent from) a complete ex-

ecution trace to detect an instantiation of that pattern. An 

example pair of patterns is shown in Figure 2. 

Syntax 

The <-- (or is-detected-when) operator binds the name of 

a pattern (which might be parameterized by logic va-

riables) to its requirements. Requirements can refer to the 

presence of elements in a trace such as that a game in-

cludes some event, that the event happens, or that some 

element of game state holds at some time. All LUDOCORE 

games share the general concepts of events and state, but 

many interesting patterns will make reference to game-

specific concepts (such as the action of mining or a particu-

lar rock in DrillBot). The primitive construct can be 

used to require (or forbid using the \+ operator) any ele-

ment of a trace, whether it is game specific or not. 

 To afford exploration of interesting patterns by seeing 

where they co-occur with other patterns and how their 

presence affects the conditional presence of other interest-

ing patterns, requirements can also constrain the presence 

of any other pattern (using pattern construct). 

 A final construct of the language, when, can be used to 

describe additional constraints not present in the trace. A 

common use for this construct is to assert that two pattern 

variables should never be equal, or that (if they are time-

points) the enclosing pattern should only be detected when 

the values of the variables are strictly ordered. 

Evidence Sets 

Patterns in this language can be automatically translated 

into the more tedious query language supported by 

LUDOCORE. So far, we have only explored a fixed database 

of pre-collected traces. When asked to show evidence for 

the presence of a given pattern, our system finds all possi-

ble sets of evidence that, due to their presence in a trace, 

permit the detection of a pattern using some instantiation 

of its pattern variables. 

 Given a library of patterns, the system will produce a 

table of pattern names with concrete symbols substituted 

for variables scored by the number of distinct evidence sets 

which support each pattern. Given this table, a designer 

can then ask the system to display the detailed evidence 

sets for a particular instantiation. In many cases, it is the 

deeper examination of these evidence sets which suggests 

the definition of a new, composite pattern. 

 It is possible to use the compiled form of the pattern 

detector as a query in LUDOCORE. Thus, the designer can 

Figure 1. A screenshot of gameplay in the DrillBot 6000 

model. Black circles indicate game elements that our system 

automatically identified as ignored by players. The yellow 

token d2 is a non-valuable rock in a dead-end cavern, and the 

space f is a linked cavern which provides no apparent navi-

gation benefits. 
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use machine playtesting to directly search for more evi-

dence of known patterns or ask about the existence of any 

possible traces that realize a freshly conjectured pattern. 

Exploring Ignored Moves in DrillBot 

To make our discussion of patterns and evidence sets more 

concrete, we will now consider the results of using our 

system to explore ignored moves in DrillBot. Figure 2 

shows two pattern definitions in our library. 

 The sometimes(E) event captures the idea that some 

game event (bound to its pattern variable) happens at least 

once in a given trace. Building on this, the ig-

nored_move(E) pattern describes the situation where 

an event that is supported by the game’s rules is dynami-

cally available to the player (possible) at least once in a 

trace while never observing the player selecting that action. 

 Running our system with DrillBot and these patterns 

yielded a report which described several instantiations of 

the ignored move pattern. The most commonly ignored 

moves involved the mining event, particularly non-treasure 

rocks at leaves of the map’s navigation graph (such as the 

rock d2 indicated in Figure 1). 

 A less common (but more interesting) instantiation of 

the ignored move parameter involved the up_to(f) 

event. What is so special about this move? It turns out the 

f cavern is an emergent dead-end when players leave the 

c0 rock above it un-mined (because the robot cannot move 

into non-empty caverns). The nearby e cavern, despite 

being filled with rocks at the start of the game, is more 

often chosen by players as (1) it is filled with treasured 

rocks, (2) it is more connected to other caverns than f, and 

(3) it provides an equal length path to the deeper parts of 

map in comparison with the ignored f cavern. 

Before having the system draw our attention to the f ca-

vern’s properties, we were previously un-aware of this type 

of emergent dead-end in DrillBot’s level design. In an iter-

ative design process, we might intentionally create several 

such emergent dead-ends or even use a compiled pattern 

detector for these localized situations in conjunction with 

LUDOCORE’s “structural query” feature to automatically 

solve for new level designs which include this pattern. 

Future Work 

Applying equally to humans and machines, the theory of 

rational curiosity suggests that we expand this creativity 

support system in two directions: further supporting human 

creativity and creating a software component that can be 

used in developing automated game design systems that 

are themselves creative. 

Towards both of these goals, we would like to eliminate 

the need to directly formulate even these high-level pattern 

descriptors. Instead, we believe machine learning tech-

niques can be adapted to translate a collection of manually 

assembled evidence sets into a most-likely pattern defini-

tion which can be used to collect and organize additional 

evidence sets or form a part of a higher-level pattern. 

Conclusion 

Motivated by the theory of rational curiosity, this project 
has explored the idea that creativity support tools in game 
design should directly support gaining design knowledge. 
The system realized thus far has demonstrated the ability, 
in an automated manner, to direct a designer’s attention to 
concrete instantiations of patterns of their interest and sug-
gest subsequent patterns for future exploration. 
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Figure 2. Two examples in our pattern definition language. 

Primitive terms refer to the presence of concrete elements in a 

complete gameplay trace and pattern terms refer to the pres-

ence (or absence in this case) of evidence for another design 

pattern. 

sometimes(E) <-- 

 primitive( event(E) ), 

 primitive( timepoint(T) ), 

 primitive( happens(E,T) ). 
 

ignored_move(E) <-- 

 primitive( possible(E,T) ), 

 pattern( \+ sometimes(E) ). 
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