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Abstract. We present a method for generating harmonic progressions using 
case-based analysis of existing material that employs a Markov model. Using a 
unique method for specifying desired harmonic complexity, tension between 
chord transitions, and a desired bass-line, the user specifies a 3 dimensional 
vector, which the realtime generative algorithm attempts to match during chord 
sequence generation. The proposed system thus offers a balance between user-
requested material and coherence within the database. 

1   Introduction 

Generative systems have had a long history within computer music [1] and interactive 
realtime performance [2]. One standard model for such systems has been that of 
improvisation [3, 4], in which the software interacts with either a composer or 
performer. Such models have tended to restrict harmonic movement, by employing a 
static, modal harmony [5] or ignoring harmony altogether in favour of a free-jazz 
approach [6]. These restrictions are necessitated because harmony cannot, by its very 
nature, be improvised collectively: it requires a clear goal (although this goal can be 
achieved through a variety of progressions). 

Several computer music systems have been developed that do allow the generation 
of harmony, although few are in use within realtime computer music, with the notable 
exception of Rowe [7]. Such systems have tended to be stylistically motivated, in that 
they attempt to reproduce specific progressions from within a defined stylistic period: 
for example, Baroque chorales [8]. 

As Pachet and Roy point out [9], harmonic language is style specific; as such, any 
system that relies upon specific rules will restrict itself stylistically, and thus limit its 
potential expressiveness. Furthermore, the same authors note that a harmonic 
language’s rules tend to outline specific combinations and linear progressions that 
should be avoided, rather than followed. 

Markov models offer a straight-forward method of deriving correct harmonic 
sequences based upon a specific corpus, since they are essentially quoting portions of 
the corpus itself. Furthermore, since the models are unaware of any rules themselves, 
they can be quickly adapted to essentially “change styles” by switching source data. 
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However, as Ames points out [10], while simple Markov models can reproduce the 
surface features of a corpus, they are poor at handling higher-level musical structures.  

This research offers a method for the composer to specify high-level control 
structures, influencing the generative algorithm that chooses from the generated 
Markov transition tables. Using a unique method of specifying desired harmonic 
complexity, tension between chord transitions, and a bass line, the user can specify a 
three dimensional vector which the realtime generation algorithm attempts to match 
during sequence generation. As such, the proposed system offers a balance between 
user-requested material and coherence with the database.  

2 Related Work 

Harmonic analysis is a well-researched field, particularly in relation to recent 
advances in Music Information Retrieval (MIR). Harmonic generation, specifically 
realtime generation for compositional and/or improvisational systems, is less 
researched, or at least less documented. Composers of interactive music have written 
only marginally about their harmonic generation algorithms; those systems that are 
well documented [22, 23] tend to be non-creative systems that attempt to apply 
correct (stylistic) harmonic practices to a given melody. This may be a good exercise 
for music students or musicologists attempting to formulate stylistic rules, but one 
less useful for creative composers. 

2.1   Harmonic Analysis 

Theoretical models of tonality have existed for decades, if not centuries; one of the 
most influential in recent years being Lerdahl’s Tonal Pitch Space [11]. Anglade and 
Dixon used Inductive Logic Programming to extract harmonic rules from a large 
database of existing songs [12]. Ogihara and Li used n-grams of chord sequences to 
construct profiles of jazz composers [13]. There has been significant research in chord 
recognition and automatic labeling (for reviews, see [14] and [15]). Similarity of 
chord sequences has been researched by Liu et. al using string matching [16], while 
both Pachet [17] and Steedman [18] used rewriting rules. Mauch [19] analysed the 
frequencies of chord classes within jazz standards. de Haas et. al [20] used a method 
called Tonal Pitch Step Distance, which is based upon Lerdahl’s Tonal Pitch Space, to 
measure chord sequence similarities 

2.2   Harmonic Generation 

Methods of harmony generation have included n-gram statistical learning for learning 
musical grammars [21], as well as several using genetic algorithms [8, 22]. Chuan and 
Chew [23] created automatic style-specific accompaniment for given melodies, using 
musical style as the determining factor in type of harmonization. Whorley et al. [24] 
used Markov models for the generation of 4-part harmonization of “hidden” melodies. 
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Similarly, Chan and Ventura [25] harmonize a given melody by allowing user input 
for parameters that governed the overall mood of the composition. 

Several systems have used probabilistic models for chord generation, including 
Paiement et al. [26], whose system was used as an analysis engine for jazz harmony to 
determine stochastic properties of such harmony. This system is extended in Paiement 
[27], which uses a machine learning perspective that attempts to predict and generate 
music within arbitrary contexts given a training corpus, with specific emphasis on 
long-term dependencies. Allan and Williams [28] used a data set of chorale 
harmonisations composed by Bach to train a HMM, then used a probabilistic 
framework to create a harmonization system which learned from examples. 

2.3 Differences from Previous Research 

Our work differs from previous research in that it is not based in music information 
retrieval nor cognitive science, but in creative practice. Our particular approach has 
been informed by a number of heuristic choices stemming from the first author’s 
expertise in composition.  

As it is a creative system, our interest is not in modeling a specific musical style; 
thus, a rule-based system is not useful. Machine learning strategies offer great 
potential; however, their usefulness has thus far been limited to rather pedestrian 
activities of melody harmonization. Furthermore, they do not, at this time, offer the 
flexibility and speed required by realtime computer music.  In fact, the realtime nature 
of our system is one of its distinguishing qualities, in that it can quickly change 
direction in performance based upon user control. Lastly, we offer a useful measure 
for harmonic complexity and voice-leading tension that can be used to define 
harmonic progressions outside of functional harmony. This research does not attempt 
to construct correct harmonic sequences within the context of functional harmony; it 
is a creative system based within the ‘post-tonal’ harmony found in certain 20th 
century musical styles. 

3   Description 

This system uses a case-based system [29] to generate Markov conditional probability 
distributions, using either first, second, or third-order chains. However, rather than 
allowing the generative algorithm to freely chose from the derived transitions, user 
specified vectors, suggesting bass-line movement, harmonic complexity, and voice-
leading tension, are overlaid in order to stochastically choose from the best matching 
solutions. The system is written in MaxMSP. 

3.1  Source Data 

For the purposes of this research, the database consisted of chords derived from jazz 
standards by Miles Davis (4 tunes), Antonio Carlos Jobim (4 tunes), and Wayne 
Shorter (6 tunes), all taken from the Real Book [30]. 33 compositions by Pat Metheny 
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taken from the Pat Metheny Songbook [31], equally drawn from the tunes written in 
the 1970s, 80s, and 90s, were also used. Source data are standard MIDI files, 
consisting only of harmonic data at chord change locations (see Section 4). 

3.2  Representation 

The term set and chord is used interchangeably in this research. In strict terms, every 
chord is a set, but not every set is a chord. Chords usually refer to vertical collections 
of pitches that contain a root, 3rd, 5th, and possibly further extensions (i.e. sevenths, 
ninths) and their alterations (i.e. lowered ninths, raised elevenths, etc.); sets are any 
combination of unique pitch classes that need not contain specific relationships. 
Similarly, set-types are unique sets, or chords; for example, the set (0 4 7 11) is a 
major seventh chord. 

Chords are represented as pitch classes [32], although not in normal or prime form. 
In pitch class theory, the minor triad (0 3 7) is the inversion of the major triad (0 4 7), 
and is thus considered identical in normal form (i.e. Forte 3-11); however, in tonal 
music, major and minor chords function very differently. For this reason, the decision 
was made not to use Forte’s set theory representations; instead, the major triad is 
represented as (0 4 7), whereas the minor triad as (0 3 7). 

Extensions beyond the octave are folded within the octave; therefore, the dominant 
ninth chord is represented as (0 2 4 7 10). Transpositions of chords are not considered 
unique; instead, bass movement, in pitch classes, between chords is acknowledged. 
Thus, the chords progression Cmaj7 to Fmaj7 is considered a movement between 
identical chords, but with a bass movement of +5. 

Chords with alternate bass notes (Cm/F) or inversions (Cm/G) are considered 
unique; thus, Cm/F is represented as (0 2 7 10), and Cm/G is represented as (0 5 8). 

Chords are represented within chord vectors as indices into an array of recognized 
pitch class sets. Currently, this array contains 93 unique chords; for example, the 
minor seventh chord (0 3 7 10) is the first element in this array and is considered set 
type 1, while the major seventh (0 4 7 11) is the eleventh element, and is considered 
set-type 11. When combined with the bass note movement between chords, transitions 
can be defined as a two-element vector: for example, the pair (2 11) (-2 1) represent a 
major seventh build on D, followed by a minor seventh chord two semitones lower. 

4.  Analysis 

The database requires an initial analysis, executed prior to performance, to be done on 
specially prepared MIDI files. These files contain only harmonic data at points of 
harmonic change, with user-defined markers (controller data) specifying phrase 
beginning and ending points. Individual files are written for each tune in the database, 
consisting of the sequential chords (see Section 4.1) and the relative duration of chord 
types (see Section 4.2).  The generation of the Markov transition tables occurs at 
performance time, as these are dependent upon a user-selected corpus from the larger 
database (see Section 4.3). 
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4.1 Harmonic Data 

Within the MIDI file, chords are written in root position, with a separate staff 
containing the bass line (see Fig. 1). This is done for human analysis of the original 
notation file, since the chord analysis algorithm can identify chord other than root 
position. No analysis is done on voice-leading, since voice-leading is a performance, 
rather than a compositional, decision within improvised music; as such, a voice-
leading algorithm was created for performance, that controls registral spacing and 
individual pitch transitions. 

 

 
Figure 1. Example notation for analysis 

The four chords found in Fig. 1, are represented in Table 1. 

Table 1. Different representations of the four chords from Fig. 1. Only the third column is 
stored in the individual data files. 

Chord name MIDI notes Stored values Set Type 
AbMaj7 b5 / G 55 56 60 62 67 7 8 12 14 19 31 
Gbmaj7#5 / F 53 54 58 62 65 5 6 10 14 17 75 

Em9b5 52 54 55 58 62 4 6 7 10 14 76 
A7b9 57 58 61 64 67 9 10 13 16 19 25 

4.2  Duration Data 

A mean duration for each chord is calculated in order to give harmonic duration 
context for generation. Thus, a separate file is created for each composition in the 
database that contains the mean harmonic rhythm of the composition, and each 
individual chord’s relative ratio to this mean. For example, if the harmonic rhythm of 
the composition consisted entirely of half notes, the average duration would be 2.0, or 
two beats. Each chord type in the composition would then receive a ratio of 1.0.  

The use of ratios to an overall harmonic rhythm is used, instead of discrete timings, 
since it was felt that a chord’s relative duration within a composition is more 
important than its duration in comparison to other compositions. For example, chords 
that function as (dissonant) passing chords tend to have shorter durations than stable 
chords anchoring a tonality, and will thus produce smaller ratios. 
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4.3 Probability Table Generation 

The user can select individual compositions from the database as the specific corpus 
for chord generation. From this corpus, the initial-chord array is generated – 
consisting of the first chord of each phrase – and the final-chordpair array: the 
last two chords in each phrase. First, second, and third-order transition probabilities 
are then calculated for every chord transition, and compiled separately. The tables 
store root movement and set type as a pair; thus, using only the four chords from Fig. 
1, the first-order table is shown in Table 2. 

Table 2. First-order transition table for chords from Fig. 1. 

Initial Set Bass Movement + Set Occurrences 
(0 31) ( -2 75) 1 
(0 75) (-1 76) 1 
(0 76) (5 25) 1 
(0 25) - 1 

 
The third-order transition table for the four chords from Figure 1 contains only one 

entry (root movements are relative to the first chord), illustrated in Table 3. 

Table 3. Third-order transition table for chords from Fig. 1. 

Index Bass Movement + Set Occurrences 
(0 31) (-2 75) (-3 76) (2 25) 1 

 
After analysing four Miles Davis compositions, the 3 transition tables are 

illustrated statistically in Table 4. 

Table 4. Transition tables for four Miles Davis compositions.  

 First-order Second-order Third-order 
# of chains 14 52 64 

# of transitions 170 179 184 
# of unique transitions 54 79 89 

 
Since there are only 14 unique set types in these four compositions, there are only 

14 first-order chains; however, these chords appear in 64 different 4-chord 
combinations, thus there are 64 third-order chains. Variety in the generated 
progressions depends strongly upon the size of the database.  

The nature of the user-selected corpus will also influence the generation. 
Obviously, variety in generation depends on the number of potential transitions. If a 
corpus is heavily redundant, there will be limited variety in output. On the other hand, 
selecting a corpus from two composers of very different styles will result in a small 
intersection of transitions, especially within the higher-order transitions. In such a 
case, the generated progressions will tend to consist of material from one composer or 
another, with any transitions between the two occurring only when a chain from the 
intersection of the databases is stochastically selected.   
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5.  Chord Progression Generation 

Once the transition tables have been generated for the specific corpus, harmonic 
progressions can be generated using a mixture of stochastic choice and user request. 
An initial chord is selected from the initial-chord array; given this initial 
context, the complete harmonic progression is then generated by selecting from the 
available continuations. 

5.1 User Defined Phrase Vectors 

Selections are influenced by user-defined vectors for bass line, complexity, and 
tension, over a user-provided phrase length (see Fig. 2). 

 

 
Figure 2. User defined bass line vector.  

Given a first chord, the available symbols in the transition table are compared to 
the user-defined vector. Available symbols are scored based upon the distance 
between their values and the user-defined vector. 

Distance vectors are created for bass-line, complexity and tension (see Section 
5.2). The three vectors are each scaled by a user-defined function for each feature (i.e. 
bass line 0.7, complexity 0.4, tension 0.1): this allows the user to balance the request 
versus generating coherence with the corpus. The scaled vectors are then summed, 
and a roulette-wheel selection is made from the highest 5% of these scores. This 
selection method ensures that, given the same request, a variety of harmonic 
progressions can result – a desirable attribute in generative systems. 

5.2 Harmonic Complexity and Transition Tension 

Every set-type has a pre-calculated harmonic complexity, which is a distance function 
between the pitches of the set and those of a major triad and octave (0 4 7 12).  A 
vector is created of the smallest distance of each note of the set to each note of the 
triad. Within this vector, each instance of pitchclass 1 (a semitone) is multiplied by 
0.3, and each instance of pitchclass 2 (a whole tone) is multiplied by 0.1. Since all 
possible pitches within the octave are within 2 pitchclasses of one of the notes of the 
major triad and octave, sets that contain more notes will be considered more dissonant 
(since they contain more pitchclass differences of 1 and 2 between their pitches and 
the triad), than smaller sets.  
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These scores are summed to create the set’s harmonic complexity. See Tables 5 
and 6 for example ratings of the most consonant and most dissonant set types. 

Table 5. Harmonic complexity ratings for the most consonant sets within the database. 

Consonant sets Chord name Harmonic Complexity 
0 7 no 3 0.0 

0 4 7 major triad 0.0 
0 7 10 7 no 3 0.1 
0 2 7 sus2 0.1 

0 4 7 9 add6 0.1 

Table 6. Harmonic complexity ratings for the most dissonant sets within the database. 

Dissonant Sets Chord name Harmonic Complexity 
0 3 5 6 8 9 13b9 / third 1.3 
0 1 3 5 8 maj9 / seventh 1.2 

0 3 6 8 11 7#9 / third 1.2 
0 1 3 5 7 8 maj9#11 / seventh 1.2 
0 1 3 6 10 m7 / sixth 1.0 

 
The tension rating, tr, compares the intervals between adjacent sets, dividing c, the 

number of common tones between the two sets by l, the length of the second set: 

€ 

tr(s 1,s2) =1−
c(s1,s2)

1(s2) . 

 

5.3  Generated Harmonic Progressions  

Each phrase has a user-specified suggested length in number of chords. During 
sequence generation, once the generated length reaches 75% of this value, the 
algorithm begins testing if the last two chords generated are in the final-
chordpair array. If the test returns true, the phrase generation algorithm exits. 

The use of user-defined vectors influences the selection from the Markov transition 
tables, but there is no guarantee that the actual generated progression will match the 
user vector, due to the available values within the tables and the roulette-wheel 
selection from those values. For example, Fig. 3 displays a user-defined bass line, and 
the resulting third-order generated bass line, using a four-song database containing 
108 chains and a requested phrase length of five chords. A larger database will result 
in a closer approximation, due to the potentially greater available choices. Lastly, the 
request may not, and need not, be in the style of the corpus; the result will be a 
stochastically chosen correction of the request given the actual corpus. 
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Figure 3. A user defined vector, left, and generated bass line, right, given a 4-song database. 

Harmonic rhythm (chord duration) during performance is a ratio to the 
performance tempo, since every chord in the database acquires a mean ratio to that 
chord’s duration within each composition in which it appears. Thus, relative duration 
will be consistent, allowing realtime harmonic rhythm to be adjustable, yet 
independent of the pulse. 

6. Conclusions 

We have presented a realtime chord sequence generation system that employs a 
unique user influence over variable-order Markov transition tables. The algorithm 
described here can be used as a compositional assistant, or embedded within a 
realtime generative system [33]. In such cases, a large part of the musical success of 
the system resides in the voice-leading algorithm, which is not described here. This 
algorithm finds the closest distance between adjacent chord tones, taking into account 
different chord sizes and octave displacements.  
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