
Shimon the Rapper:
A Real-Time System for Human-Robot Interactive Rap Battles

Richard Savery, Lisa Zahray, Gil Weinberg
Georgia Tech Center for Music Technology

Atlanta, USA
rsavery3, lzahray3, gilw @gatech.edu

Abstract

We present a system for real-time lyrical improvisa-
tion between a human and a robot in the style of hip
hop. Our system takes vocal input from a human rap-
per, analyzes the semantic meaning, and generates a re-
sponse that is rapped back by a robot over a musical
groove. Previous work with real-time interactive mu-
sic systems has largely focused on instrumental output,
and vocal interactions with robots have been explored,
but not in a musical context. Our generative system in-
cludes custom methods for censorship, voice, rhythm,
rhyming and a novel deep learning pipeline based on
phoneme embeddings. The rap performances are ac-
companied by synchronized robotic gestures and mouth
movements. Key technical challenges that were over-
come in the system are developing rhymes, performing
with low-latency and dataset censorship. We evaluated
several aspects of the system through a survey of videos
and sample text output. Analysis of comments showed
that the overall perception of the system was positive.
The model trained on our hip hop dataset was rated sig-
nificantly higher than our metal dataset in coherence,
rhyme quality, and enjoyment. Participants preferred
outputs generated by a given input phrase over outputs
generated from unknown keywords, indicating that the
system successfully relates its output to its input.

Introduction
Interactive music systems have largely focused on generat-
ing instrumental music. Lyric generation and singing syn-
thesis have been explored, but past research did not focus
on vocal musical response to human input in real-time. The
field of robotic musicianship uses embodiment to improve
the relationship between humans and AI, inspiring humans
in new creative ways. We combine these fields to create
an interactive robotic system that improvises lyrically with
a human in real-time. We select hip hop as a genre well-
suited toward real-time improvisation, due to art forms like
freestyle rapping and battle rap.

Shimon , seen in the left of Figure 1, is a marimba-playing
robot who has recently been redesigned to have singing ca-
pabilities. Shimon collaborates with humans to write the
lyrics to his own songs, taking keywords as input. However,
in previous work, the lyric generation, voice synthesis, and
gestures were not generated in real-time, and did not react

Figure 1: Shimon interacting with rapper Dashill Smith

to a human voice live on-stage. Our goal with this project
was to allow Shimon to respond to a rapper in real-time
with computer-generated rhyming lyrics, voice, rhythm, and
gestures. We aim to provide the experience of a rap battle
between a human and a robot, with the intention of inspir-
ing the human rapper with machine-driven responses that are
unlikely to be generated by humans.

This paper includes a technical overview of each sub-task
of the system, beginning with analyzing voice input from
a human rapper and ending with generating voice and syn-
chronized gesture output by the robot. Throughout the pa-
per, we discuss the key challenges faced during development
and how they were overcome. Several examples of gener-
ated rap lyrics, rhyme analysis, and rhythm are provided. We
also include a system evaluation using both quantitative and
qualitative metrics. We analyze the overall perception of the
system, various quality metrics of the output, and the sys-
tem’s success at generating output to match its input. Videos
examples of the system are available here 1. To our knowl-
edge, this is the first system with a full working pipeline of
vocal input from a rapper to vocal rap output in time to a
beat.

Related Work
Generative and Interactive Music and Hip Hop
Computerized generative music systems have been widely
explored from early systems in the 1950’s (Hiller 1968) to
modern deep learning based systems (Briot, Hadjeres, and

1www.richardsavery.com/shimonraps

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

212



Pachet 2017), tending to focus on Western Classical mu-
sic and Jazz. Stylistically closer to rap generation is Algo-
rave, where algorithms are used to create electronic dance
music (Savery 2018), although its emphasis is instrumental
music. Hip hop, however, has many unique stylistic fea-
tures that distinguish it from other genres and present new
challenges for generative systems. Linguistically hip hop
is far extended from other poetic traditions or other music
forms and uses a ‘highly intertextual’ form that ‘demon-
strates multilayered poetic complexity’(Alim 2003). Lyric
delivery is commonly referred to as flow and - among many
unique features - includes distinct approaches to meter,
beat division, and rhyme placement (Condit-Schultz 2017;
Komaniecki 2019).

Lyric Generation and Voice Synthesis
While computerized music generation has a long established
history, lyric generation has only recently begun to receive
attention. Past systems have focused on lyric generation
based only on text without considering a musical melody,
such as the Korean language lyric generator in (Son et al.
2019). Other efforts have focused on fitting lyrics to an ex-
isting melody in Tamil (Ramakrishnan A and Devi 2010), or
for Jazz (Watanabe et al. 2018). Rap lyric generation has
also been partly addressed in past work, although it has fo-
cused on hip hop as a standard natural language generation
task (Karsdorp, Manjavacas, and Kestemont 2019), instead
of a focus on hip hop’s unique aesthetic. These efforts also
do not focus on real-time interaction, and often have a much
more confined scope, such as generating text similar to 14
unique rappers (Potash, Romanov, and Rumshisky 2015).

State of the art results in singing synthesis have recently
been achieved by deep learning based systems (Blaauw
and Bonada 2017), building on developments made by
WaveNet(Oord et al. 2016). These systems, however, are
computationally expensive to train and far too slow to be
used for real-time generation. Comparative models that
work in real-time using concatenation, such as Vocaloid
(Kenmochi and Ohshita 2007), have not matched results
from offline models. Singing and voice synthesis have both
been used extensively in robotic systems, such as the gener-
ation of robotic vocal prosody (Savery, Rose, and Weinberg
2019b; 2019a). To our knowledge, no vocal synthesis model
has focused on rap. Additionally, we believe no system has
attempted to both generate lyrics and synthesize the results
in real-time for a robot to interact with a human performer.

System Overview
In the following section we present an overview of the sys-
tem design of Shimon the Rapper. In particular we focus on
three key challenges:

1. Latency and processing for real-time applications
2. Developing internal rhymes and rhythm
3. Approaches to censorship

The system is written in Python, with some interfaces to
MaxMSP for easy audio processing and access to external
plugins for processing on the generated voice. The standard

Figure 2: System Overview

interchange for the system involves a rapper free-styling
over a loop for an undetermined amount of time followed
by Shimon responding. The loop can be any musical mate-
rial that has a set tempo.

Audio Analysis
Audio from the rapper is recorded through a standard au-
dio interface connected to an AT803 Omnidirectional Con-
denser Lavalier. MaxMSP is used to record the audio, break-
ing the rappers incoming lyrics into smaller segments. The
incoming audio is chunked with a simple volume threshold,
with gaps in the lyrics separated when the length of time be-
low the threshold is over 300 milliseconds. As each clip is
chunked in real-time it is written to a wav file, and a UDP
message is sent from MaxMSP to Python with the file name.

Python then calls Google’s Speech to Text on each seg-
ment. While using an online speech-to-text system does add
some latency, chunking means there is no latency cost above
the last sample sent. By keeping chunks short, the added
processing time averages around 1.5 seconds of latency. We
also experimented widely with offline options, testing each
API linked with Speech Recognition2. However, we found
Google Cloud Speech API to be the most reliable consider-
ing the background noise often present in live performances.
We can opt to detect the end of the rapper’s phrase by either
waiting for a silence of over 700 ms or a preset number of
musical bars to pass. However, to decrease latency we often
end the speech to text detection at random locations, allow-
ing Shimon to start rapping, signifying to the human that
their turn is over..

Text Analysis
Keywords are identified from the text once it has been ex-
tracted from the audio. We implemented the TextRank al-
gorithm (Mihalcea and Tarau 2004) to categorize keywords.
TextRank is a graph-based model used to rank the impor-
tance of text. In our implementation, text of up to 100 words
is always processed in under 10 milliseconds. We then gen-
erate a list of synonyms and antonyms from wordnet (Oram
2001) for each keyword. Sentiment analysis is also imple-
mented, as well as a system that categorizes which rapper

2https://pypi.org/project/SpeechRecognition/

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

213



from the dataset the incoming text is most similar to. We do
not currently use these functionalities, as we have not found
them helpful for the generation process.

Dataset
During lyric generation we primarily alternate between two
custom-created datasets, switching between models in real-
time. These data sets were created through a custom lyric
web scraper: Verse Scraper 3. This tool was created for two
main reasons. Firstly, standard datasets group all lyrics for
a song together, whereas hip hop commonly uses multiple
rappers on the same track. We wanted to be able to asso-
ciate lyrics with individual artists. The second benefit of our
scraper is high level of customization in dataset creation, al-
lowing us to create datasets from certain years, subsets of
an artist catalogue, and other custom metrics. For our deep
learning system we use either a hip hop dataset containing
25,000 songs or a metal dataset containing 15,000 songs.
We were interested in comparing these two datasets to see
how well metal music lyrics transfer to the hip hop genre.

Phoneme Embedding and LSTM-RNN
The primary novel element in our deep learning system is the
use of a phoneme embedding layer. Phonemes are the sec-
ond smallest layer of word vocalization, distinguishing how
words are pronounced. Groups of phonemes create each syl-
lable, and syllables create words. Phoneme embedding has
been very rarely used in generative systems with one of the
only uses being in a speech recognition system(Yenigalla
et al. 2018) or occasionally in speech synthesis (Li et al.
2016). In purely text-based systems, preliminary work has
shown that phoneme vector spaces contain distinctive fea-
ture contrasts to word embeddings (Silfverberg, Mao, and
Hulden 2018). We contend that due to the unique linguistic
properties of hip hop, phoneme embeddings offer a promis-
ing approach for a generative system. These properties are
the unique relationship between words, built on a preference
for rhyme from phonemes, over common semantic mean-
ing. These rhymes also occur at any point in the lyrics, not
only at the end of lines. Additionally, hip hop flow uniquely
relies on phonemes (Edwards 2013) and often contains non-
standard word variations and intentional variations in pro-
nunciation to achieve flow.

The primary challenge of this approach was creating a
dataset of phonemes. Mappings between the spelling of
words and their phonemes are not always consistent. No ex-
tensive dataset currently exists of lyrics to phonemes, lead-
ing us to create a conversion process. While such conversion
systems do exist, we found no system that can capture all the
dialects used in hip hop. Our process begins by using CMU
Pronouncing Dictionary4 which is based on the ARPABET
phonetic transcriptions. When words are not found in the
dictionary, we attempt to break the word up into the most
likely phoneme subsets by searching through the dictionary
for subsets of phonemes that fit the word. After phoneme
subsets are found for the word, that word is then added to

3https://github.com/RFirstman/versescraper
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict

the dictionary so that all repeats of a word are treated the
same.

With phonemes as the embedding layer, we can use a
relatively standard deep learning model. While state of
the art models such as GPT-2(Radford et al. 2019) are
based on Transformer with attention layers, we used an en-
coder/decoder RNN-LSTM, as we aimed for real-time gen-
eration. Many of the advantages of larger models are for im-
proved long term structure, which is not required for short
phrases such as the ones we are creating.

We first generate many lines of text with the model. We
then automatically choose phrases from all the generations
that utilize either a keyword, or a synonym or antonym from
the keywords. This process allows us to combine multiple
generations and meanings, while still placing an emphasis
on internal rhymes created through deep learning, and line
by line rhymes through rhyme detection.

Censorship
Censorship of the output was a significant consideration and
design challenge for the system. We first created a list of
28 words that would not be appropriate for the system to
output. For some words this list included multiple spelling
variations. After creation, the list was encoded with ROT13,
to allow us to more comfortably share the code.

We considered multiple approaches to censorship, aim-
ing to balance maintaining authenticity of the dataset, while
meeting language requirements. In original tests we con-
sidered excluding from the hip hop dataset any song that
contained one of the words in our list of censored words.
This reduced the data size from 25,000 songs, to 7,000. To
counter this we considered removing lines or whole verses
containing certain words. Given hip hop’s reliance on flow,
this approach proved ineffective as it seemed to significantly
alter the data set. Likewise we considered replacing offend-
ing words with a substitute, but again, due to subtle elements
impacting rhythm and flow this was deemed as an inappro-
priate method. To maintain authenticity we decided to keep
the original dataset and instead censor phrases by post pro-
cessing created material. After creation we discard any gen-
eration that includes a filtered word and create a new gener-
ation as a replacement. While this does add extra processing
time into the system, we found it a worthwhile trade off.

Rhyme Detection and Choices
The phoneme embedding naturally generates lines of text
containing internal rhymes. We automatically select which
generated lines to use based on the quantity and quality of in-
ternal rhymes of each line, as well as which lines rhyme best
with each other. We originally tried using existing rhyme
libraries, but found that they were too slow when iterat-
ing through a large number of words. We created our own
implementation for scoring rhymes that runs in a few hun-
dredths of a second on large numbers of phrases.

We are interested in detecting and scoring two types
of rhyme: perfect rhymes, where vowels and consonants
match, and slant rhymes, where words have similar but not
identical sounds. For our system, we specify slant rhymes as
vowels that match, but consonants that may not match. We

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

214



Figure 3: Generated lines with rhyme detection and scoring

create dictionaries for each line, recording phoneme patterns
and their frequency of occurrence within the line. Our first
dictionary type is for perfect rhymes, which records the last
one, two, and three-syllable sequences (vowels and subse-
quent consonants) of each word. The second dictionary is
for slant rhymes, which records the last two and three-vowel
sequences of each word. Finally, we create a dictionary ex-
cluding words that are only 3 or fewer phonemes long. This
allows us to give a lower score to words that rhyme perfectly
but are very short (such as ”to” and ”do”). For all dictio-
naries, a sequence of vowels or syllables is only added if it
contains at least one stressed vowel.

We first use these dictionaries to select the line with the
highest internal rhyme score. Each type of phoneme pat-
tern is assigned a score, where perfect rhymes and a higher
number of matching syllables are scored higher than slant
rhymes and fewer matching syllables. These scores are
summed according to the number of instances of each de-
tected rhyme. We do not count multiple occurrences of the
same word as any type of rhyme.

To select each subsequent line, we find the line that
rhymes best with the previously selected line. We do this
by calculating the rhyme score for phoneme patterns that are
present in both lines. After all lines are selected, we assign
each rhyme group a unique number to identify which words
rhyme with which other words. This information is used in
the next steps of the pipeline. Figure 3 shows examples of
generated lines that were selected using the rhyme scoring,
along with the calculated rhyme scores.

Text to Rhythm
We next generate rhythms for the generated text, with each
syllable assigned a time. We designed a rule based system
for rhythmic generation based on concepts presented by Ed-
wards (Edwards 2009; 2013). Edwards compiled a collec-
tion of interviews with over one-hundred leading hip hop

Figure 4: Generated response to keywords electric and ge-
netic

artists discussing their approach for flow and rhythm. Based
on these interviews, we designed a rhythm generation that is
able to map to any tempo, although has been primarily used
for tempos ranging from 80 to 160 beats per minute.

Rhythmic generation focuses on emphasizing rhyming
words. Emphasis is added to words by expanding the length
of the word beyond non-rhymes and by placing different
lengths of silence after each rhyming word. Keywords with
more than one syllable are set as quarter-note triplets, allow-
ing them to stand out from non-keywords without interrupt-
ing the flow. All non-rhyming words are set as eighth notes.
In experiments we also applied similar rules to nouns or
other word types, but found this was not represented in texts
and was not well received internally. Figure 4 shows an ex-
ample of a generated phrase with its corresponding rhythm.

Rhythm to Voice
Shimon’s voice is generated by modifying the output of
Google’s text-to-speech system. Speech Synthesis Markup
Language (SSML) provides options for changing vocal
prosody in text-to-speech systems. We use SSML to em-
phasize any word that rhymes with at least one other word.
We additionally pitch-shift all matching rhymes by the same
amount, allowing for either upwards or downwards pitch
shifts. This method, which is common in hip hop (Ko-
maniecki 2019) can help the listener to notice which words
rhyme with each other .

In order to place the words at the correct time according
to the generated rhythm, we originally tried running text-to-
speech separately on each word. However, we found that
this took too much time and could result in an unnatural ca-
dence when the words were strung together. Therefore, in
order to quickly generate the audio, we run text-to-speech
once on the entire sentence with added breaks between each
word using SSML. We then split the resulting audio file into
the non-silent segments to separate the words.

We found that the endings of individual words are fre-
quently cut off upon generation, due to the way words flow
together in natural conversation. This made it more difficult
to generate arbitrary rhythms from the words, as a long break
after a cut-off word could sound odd and difficult to under-
stand. To address this issue, as well as to better match the
generated rhythm for multi-syllable words, we time-stretch
the words to flow more naturally into each other.

We align each synthesized word to start at the time given
by the rhythm generation. We end each word’s audio on
whichever occurs first: the start time of the following word,
or a tempo-dependent offset after the start time of the word’s
last syllable. This helps words that are close together flow
into each other more naturally, while also stretching words

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

215



that precede longer gaps to mitigate any cut-off endings.
While our generated rhythm provides start times for each

syllable in a word, we only modify word start and end times
when generating the audio. A more complex audio analysis
could have allowed for alignment of each syllable. How-
ever, we chose not to do this to increase system robustness,
and to maintain the original timings produced by the text-to-
speech system to preserve naturalness. Finally, we compress
and filter the output to improve the audio quality, using com-
mercial audio plugins56. This also raises the overall pitch of
Shimon’s voice, producing a unique and cute voice timbre
befitting of Shimon’s persona as a robotic rapper.

Gesture Synchronization
Shimon’s gesture design while rapping consist of both syn-
chronizing his mouth movements to the audio, as well as
generating head and neck movements throughout the rap
battle. We create the mouth movements using each sylla-
ble’s times from our rhythm generation. Similarly to the key
pose approach used in (Tachibana, Nakaoka, and Kenmochi
2010), Shimon’s lip syncing linearly interpolates between
phoneme-dependent positions. Some examples of these po-
sitions can be seen in Figure 5. The linear interpolation al-
lows for smooth easing into and out of mouth poses. Con-
sonants are given a default maximum duration. However, if
a syllable’s vowel duration is shorter than the default conso-
nant duration, half of the syllable time is given to the vowel
and the remaining time is evenly divided among consonants.
If a word is not found in the CMU Pronouncing dictionary,
it is assigned the phonemes [P, AH, P] by default.

We raise Shimon’s eyebrows on rhyming words to in-
crease emphasis. We also do this with the intention of con-
veying that Shimon is pleased with his generated rhymes
and is challenging the human rapper interacting with him.
When Shimon is listening to the rapper, we have him nod
to the beat, move his head side to side on every downbeat,
and move his body up and down on every other downbeat.
We position his head and body so he is looking at the rap-
per. While performing his own rap, Shimon slowly moves
side to side and up and down with the beat, keeping his head
positioned so that his mouth is visible.

Latency
Latency is a constant trade-off between time and quality.
The most time-intensive tasks are rap-to-text, generating
phrases to select from, and rhythm-to-voice. All other tasks

5https://polyversemusic.com/products/manipulator/
6https://slatedigital.com/

Figure 5: Example poses of Shimon’s mouth for each
phoneme of the word ‘rapper’

Figure 6: Average latency for each subtask

are on the order of hundredths of a second or lower. Figure
6 shows the time required for each sub-process, highlighting
the time difference between different numbers of generated
words. We find that generating around 3,000 words is a good
compromise for maintaining high quality with low latency.
This number can be higher for a more powerful GPU. With
these settings, the time between starting the generation and
when Shimon begins rapping is approximately 11.69 sec-
onds. However, because we can start the generation while
the human rapper is still finishing, the perceived latency can
be made to be lower. By ignoring the rapper’s last sentence,
that time can be reduced to 6.69 seconds, during which an
instrumentalist can play a quick solo or Shimon can use
gestures to stall while generation completes.

The pipeline makes use of two computers, one that uses
a 1080 GPU to generate choices for output phrases, and an-
other that performs all other audio and computational tasks.
Two computers are used due to compatibility with MaxMSP.

System Evaluation
A broad Turing style test, as is often used (Agres, Forth, and
Wiggins 2016), does not make sense for this system since
by definition, Shimon lyrical output does not aim to sound
like a human. Likewise, computer based NLG or chatbot
metrics tend to focus on features that are not easily applied
to our design - such as readability and grammatical correct-
ness - and have been shown to give significantly different
results than human ratings for creative tasks(Novikova et al.
2017). There are multiple non-academic frameworks that
exist to evaluate human-created hip hop and rap, however
many of these tools were referenced in the creation process
and would be unfairly biased towards our system 7.

Additionally, throughout the design and development
stage we regularly engaged with Atlanta rapper Dashill
Smith. This involved five extended sessions where he in-
formally analyzed and reviewed the system output. These
sessions led to an iterative design process, where we would
build on and alter the system based on his reactions and in-

7https://www.rappad.co/blueprints/faq

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

216



sights. During this stage of the project, we chose not to col-
lect formal data from Smith, instead allowing for natural dis-
cussion and broad ideas for future directions and improve-
ments. While evaluation by experts through interaction has
been shown as an effective means to analyze interactive sys-
tems (Bown 2015), we chose to frame our final evaluation
around audiences’ perception, enjoyment, and rating of the
system, since while the system is interaction-based its ul-
timate use case is in musical performance to listeners. In
future research we aim to engage multiple rappers with the
system for evaluation.

With these challenges in mind we designed our evaluation
to answer the following research questions:

1. What is the perception of the system by listeners and what
do subjects think about idea of a robot-human having rap
battles in general?

2. Can we create high quality stand alone hip hop?
2.1. Do our stand alone rap outputs lead to good coher-

ence, rhythm, rhyme, quality, and enjoyment?
2.2. Are there differences in these metrics when using the

hip hop dataset versus the metal dataset?
3. Is there a clear relationship between the system’s output

and its input?

Method
33 participants answered survey questions about videos and
text samples generated by the system. The participants were
undergraduate students recruited from the Georgia Tech
School of Psychology participant pool. Participants were
not required to have any musical experience, however chose
to participate in the experiment based on their interest in the
topic. We calculated the minimum amount of time it should
take participants to complete the survey, watching all videos
and reading all text samples, and eliminated 6 participants
who completed it in less than that amount of time. This left
us with 27 remaining participants.

First, participants were introduced to the project’s concept
by watching a 45-second video clip of a rapper freestyle rap-
ping back and forth with Shimon . They were asked to de-
scribe their thoughts on the footage. This data was used to
answer Research Question 1. In past studies analyzing text
has been shown to provide insightful information on robot
perception(Vlachos and Tan 2018). In generating each sam-
ple shown to participants for the remainder of the survey,
we ran the model three times on its keyword input and hand-
selected one response we believed to be the highest quality.

To address Research Question 2, we presented subjects
with 10 randomly-ordered videos of Shimon performing a
rap with subtitles, without being shown the input to the sys-
tem. To generate the raps for these videos, 5 distinct sets
of keywords were used. Each keyword set generated two
of the samples, one using the hip-hop dataset and the other
using the metal dataset. The participants were asked to rate
the coherence, rhythm, rhyme, overall quality, and overall
enjoyment of each sample on a scale from 1 to 7.

To address Research Question 3, participants were given
10 randomly-ordered tasks selecting which of two text sam-
ples they preferred as a response to given input text. One

Figure 7: Sentiment of Comments

of these responses was generated by the model in response
to the given input, and the other response was generated by
a keyword unrelated to the input text. All keywords were
randomly sampled from words that occurred over 10 times
in the dataset. The order in which the responses were pre-
sented was randomized as well. Within each question, the
two responses were generated using the same dataset, where
5 questions used the hip-hop dataset and 5 used the metal
dataset.

Results
Perception From the collected text responses we firstly
analyzed the sentiment of each response, using the Valence
Aware Dictionary and sEntiment Reasoner (VADER) (Hutto
and Gilbert 2014). This provided us with a value for nega-
tive, positive, neutral and compound sentiment (see Fig.7.
The compound sentiment is a normalized, weighted com-
posite score between -1.0 (negative) and 1.0 (positive). The
mean of the compound sentiment was 0.33, indicating an
overall positive perception of the system.

Subjects’ comments covered a wide range from ‘very ex-
pressive’ and ‘amazing’ to ‘the robot’s voice sounded very
strange when juxtaposed with the human’. A common
thread was participants describing the generation as ‘better
than expected’. We also found most comments focused on
the voice with less emphasis on the lyrics. See Figure 8 for
a word map with the most common words in subjects re-
sponses (excluding standard stopwords and the word robot).

Rap Quality and Data Set Comparison In each of the
categories, the hip hop data set achieved a slightly higher
mean (see Fig 9). Comparing the hip hop and metal dataset

Figure 8: Word Cloud for comments

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

217



Figure 9: Means of Hip Hop and Metal Datasets

using an independent samples t-test we found two insignif-
icant results for rhythm (p = 0.226) and quality (p=0.225).
This makes sense as rhythm is generated independently of
the data set and quality should consider the system as a
whole. The enjoyment was significant with hip hop being
slightly favored (p = 0.046). We also found significant re-
sults in the coherence(p=0.027) and rhymes (p=0.017).

We found the lowest correlation between rhythm and en-
joyment, while there was a strong correlation between the
perceived quality and coherence, rhythm, and rhymes (see
Fig 10). Importantly, we found no clear correlation between
any category and the participants actual rated enjoyment of
the rap, perhaps implying we need to consider other metrics
for our generation system.

Input and Output To address Research Question 3, we
evaluated whether participants preferred lyrics generated
from the given input over lyrics generated from unknown,
random keywords. We assigned each participant a score,
defined as the number of times (out of the 10 questions)
they preferred the lyrics generated by the given input over
an unknown random input. We then performed a 1-tailed,
1-sample t-test on these scores, comparing against an ex-
pected mean of 5 out of 10. The p-value is 0.00033, which
is less than the alpha of 0.05. The average score across all
participants was 6.2 out of 10. The data support that the
participants preferred lyrics generated from the given input
over a random input. Figure 11 shows the distribution of
participants’ scores.

Figure 10: Correlation Matrix

Figure 11: Histogram of participant scores when selecting
preferred lyrics in response to given input

Discussion and Conclusion

In our evaluation, participants expressed overall positive
sentiment regarding the perception of the system. The hip
hop dataset was rated significantly higher than the metal
dataset in several categories. This could be due to metal
music relying more heavily on melody than hip-hop, thus
being less appropriate for rap-style delivery. Interestingly,
the enjoyment rating did not have high correlation with any
other category, which could indicate that other evaluation
metrics may be more relevant to evaluating this type of sys-
tem. Our evaluation supported that participants preferred re-
sponses generated from the given input over samples gener-
ated from randomized keywords. This supports that partici-
pants recognized that the system’s output related to its input.
However, the number of compared samples was small, so it
is possible there were other reasons for this preference.

Each task within the system has room for improvement in
quality and latency. Occasionally, our rhyme detection sys-
tem may miss or incorrectly identify rhymes if the word is
not found in the CMU Pronouncing dictionary, or if it has
multiple possible pronunciations. More work into word pro-
nunciation given context in a sentence would help improve
both the phoneme embedding and rhyme scoring tasks.

Future work in rhythm generation could use a data-based
approach, as opposed to our strictly rule-based system.
MCFlow (Condit-Schultz 2017) is one example of a dataset
that could be useful for this. It would also be interesting to
approach rhythm generation for different styles of rap.

Currently, the head and body gestures are predetermined,
with only eyebrow and mouth gestures dependent on the
rap’s content. Incorporating computer vision could allow for
more personalized interactions, such as following the rapper
as they move across the room, and potentially matching the
way they move to the beat.

The pipeline we have established allows for modifying
the settings and even the overall approach to each subtask.
As we gain more feedback from rappers interacting with the
system, we will continue making improvements. We hope
to use this system to inspire rappers through the novel expe-
rience of an interactive rap dialogue with a robot.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

218



Acknowledgements
We would like to thank Eddy Chiao, Brian Model, Jacob
Meyers, Naveen Ram, Rob Firstman, and Spencer Gold for
their contributions to prototyping the system.

References
Agres, K.; Forth, J.; and Wiggins, G. A. 2016. Evalua-
tion of musical creativity and musical metacreation systems.
Computers in Entertainment (CIE) 14(3):1–33.
Alim, H. S. 2003. On some serious next millennium rap
ishhh: Pharoahe monch, hip hop poetics, and the internal
rhymes of internal affairs. Journal of English Linguistics
31(1):60–84.
Blaauw, M., and Bonada, J. 2017. A neural parametric
singing synthesizer. arXiv preprint arXiv:1704.03809.
Bown, O. 2015. Player responses to a live algorithm:
Conceptualising computational creativity without recourse
to human comparisons? In ICCC, 126–133.
Briot, J.-P.; Hadjeres, G.; and Pachet, F.-D. 2017. Deep
learning techniques for music generation–a survey. arXiv
preprint arXiv:1709.01620.
Condit-Schultz, N. 2017. Mcflow: A digital corpus of
rap transcriptions. Empirical Musicology Review 11(2):124–
147.
Edwards, P. 2009. How to rap. Chicago Review Press.
Edwards, P. 2013. How to rap 2: Advanced flow and deliv-
ery techniques. Chicago Review Press.
Hiller, L. 1968. Music composed with computer [s]: an
historical survey. Number 18. University of Illinois.
Hutto, C. J., and Gilbert, E. 2014. Vader: A parsimonious
rule-based model for sentiment analysis of social media text.
In Eighth international AAAI conference on weblogs and so-
cial media.
Karsdorp, F.; Manjavacas, E.; and Kestemont, M. 2019.
Keepin’it real: Linguistic models of authenticity judgments
for artificially generated rap lyrics. PloS one 14(10).
Kenmochi, H., and Ohshita, H. 2007. Vocaloid-commercial
singing synthesizer based on sample concatenation. In
Eighth Annual Conference of the International Speech Com-
munication Association.
Komaniecki, R. 2019. Analyzing the Parameters of Flow in
Rap Music. Ph.D. Dissertation, Jacobs School of Music.
Li, X.; Wu, Z.; Meng, H. M.; Jia, J.; Lou, X.; and Cai, L.
2016. Phoneme embedding and its application to speech
driven talking avatar synthesis. In INTERSPEECH, 1472–
1476.
Mihalcea, R., and Tarau, P. 2004. Textrank: Bringing order
into text. In Proceedings of the 2004 conference on empiri-
cal methods in natural language processing, 404–411.
Novikova, J.; Dušek, O.; Curry, A. C.; and Rieser, V. 2017.
Why we need new evaluation metrics for nlg. arXiv preprint
arXiv:1707.06875.
Oord, A. v. d.; Dieleman, S.; Zen, H.; Simonyan, K.;
Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; and

Kavukcuoglu, K. 2016. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499.
Oram, P. 2001. Wordnet: An electronic lexical database.
christiane fellbaum (ed.). cambridge, ma: Mit press, 1998.
pp. 423. Applied Psycholinguistics 22(1):131–134.
Potash, P.; Romanov, A.; and Rumshisky, A. 2015. Ghost-
writer: Using an lstm for automatic rap lyric generation. In
Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 1919–1924.
Radford, A.; Wu, J.; Amodei, D.; Amodei, D.; Clark, J.;
Brundage, M.; and Sutskever, I. 2019. Better language
models and their implications. OpenAI Blog https://openai.
com/blog/better-language-models.
Ramakrishnan A, A., and Devi, S. L. 2010. An alternate
approach towards meaningful lyric generation in tamil. In
Proceedings of the NAACL HLT 2010 Second Workshop on
Computational Approaches to Linguistic Creativity, 31–39.
Association for Computational Linguistics.
Savery, R.; Rose, R.; and Weinberg, G. 2019a. Establish-
ing human-robot trust through music-driven robotic emotion
prosody and gesture. In 2019 28th IEEE International Con-
ference on Robot and Human Interactive Communication
(RO-MAN), 1–7. IEEE.
Savery, R.; Rose, R.; and Weinberg, G. 2019b. Finding
shimi’s voice: fostering human-robot communication with
music and a nvidia jetson tx2. In Proceedings of the 17th
Linux Audio Conference, 5.
Savery, R. 2018. An interactive algorithmic music system
for edm. Dancecult: Journal of Electronic Dance Music
Culture 10(1).
Silfverberg, M.; Mao, L. J.; and Hulden, M. 2018. Sound
analogies with phoneme embeddings. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2018, 136–
144.
Son, S.-H.; Lee, H.-Y.; Nam, G.-H.; and Kang, S.-S. 2019.
Korean song-lyrics generation by deep learning. In Proceed-
ings of the 2019 4th International Conference on Intelligent
Information Technology, 96–100.
Tachibana, M.; Nakaoka, S.; and Kenmochi, H. 2010. A
singing robot realized by a collaboration of vocaloid and cy-
bernetic human hrp-4c. In Interdisciplinary Workshop on
Singing Voice.
Vlachos, E., and Tan, Z.-H. 2018. Public perception of an-
droid robots: Indications from an analysis of youtube com-
ments. In 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 1255–1260. IEEE.
Watanabe, K.; Matsubayashi, Y.; Fukayama, S.; Goto, M.;
Inui, K.; and Nakano, T. 2018. A melody-conditioned lyrics
language model. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), 163–172.
Yenigalla, P.; Kumar, A.; Tripathi, S.; Singh, C.; Kar, S.; and
Vepa, J. 2018. Speech emotion recognition using spectro-
gram & phoneme embedding. In Interspeech, 3688–3692.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

219


