
50

S-SUM: A System for Summarizing the Summaries

C Ravindranath Chowdary
Department of Computer Science and

Engineering,
Indian Institute of Technology (BHU),

Varanasi, India 221 005

rchowdary.cse@iitbhu.ac.in

P Sreenivasa Kumar
Department of Computer Science and

Engineering,
Indian Institute of Technology Madras,

Chennai, India 630 036

psk@iitm.ac.in

ABSTRACT

Query-specific summarization of multiple documents is a
useful task in the current day context of the WWW, that
is containing huge amount of information. When different
summarizers have access to different sets of documents for a
query, generating a summary of the summaries produced by
the multiple summarizers becomes an interesting and useful
task. In this paper, we propose an efficient solution for this
problem. Sentences from the individual summaries are used
to construct an Integrated Linear Structure (ILS) and are
given unique position numbers. All the sentences in the ILS
are then assigned weights that reflect the importance of the
sentences to the given query. Sentences are selected accord-
ing to these weights using the Maximal Marginal Relevance
(MMR) approach for inclusion into the final summary of
summaries. Finally, the sentences in the final summary are
sorted based on their position numbers given using ILS. Ex-
perimental results show that S-SUM is efficient.

1. INTRODUCTION
Huge amount of information is present in the World Wide

Web and a large amount of information is being added to
the WEB regularly. Information on a topic is distributed
across the multiple pages/documents. It is a nontrivial task
for a user to go through all these documents to find the in-
formation of her interest. Most of the times, there will be
a lot of redundancy in the information content and it will
be a tedious task for the user to read all the documents.
To overcome this problem, query specific multi-document
summarizers were proposed [13, 15, 19, 20, 10]. With the
increasing need for quality summarizers, this field is gaining
momentum.

In extractive summary generation, the sentences are se-
lected from the documents and are arranged in a meaningful
order. Summaries can be generated either from a single doc-
ument or from multiple documents and a summary can be
either generic [18, 5] or query-specific. In this paper, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 20th International Conference on Management of Data (COMAD),

17th-19th Dec 2014 at Hyderabad, India.
Copyright c©2014 Computer Society of India (CSI).

deal with query-specific extractive summarization. Choos-
ing a sentence for inclusion in a summary is determined by
the amount of importance it has with the query. The chal-
lenge lies in assigning importance to a sentence. Sentences
in all the documents should be given scores based on the
importance they have with the query posed by the user.

The approach used by a typical query specific multiple
document summarizer is: Sentences from all the documents
are arranged as nodes in a graph. Similarities among all the
sentences are calculated using a similarity measure. Sen-
tence s is selected into the summary based on both the im-
portance of s with the query and the importance of sentences
that have high similarity with s. The quality of summaries
generated by these systems is good but these systems can-
not be used for on-line/real time purpose due to their high
computational complexity. The complexity is directly pro-
portional to the number of sentences/nodes in the graph.
One possible solution is to divide a huge set of documents
into smaller sets and generate summaries on these smaller
sets. By doing so, efficiency would be increased but there
may be some information loss. Further, these individual
summaries are to be summarized as the final summary has
a restriction on its size i.e., 250 words, 500 words, etc.

1.1 Motivation
A search engine retrieves the ranked list of documents

for a given query. Each search engine may retrieve a dif-
ferent set of documents. These individual documents re-
trieved by search engines can be summarized independently
i.e., a different summarizer could be used for each of the
search engine. In this scenario, if a user wants the overall
gist/summary on a topic, the only solution is to go through
all the summaries generated by different summarizers. Also,
it is likely to have a fair amount of overlap between the re-
trieved sets of documents. This overlap of information in
documents may lead to overlap of information in summaries.
Therefore the individual summaries may have both diverse
and redundant information. If there is a system to generate
a summary from the summaries generated by different sum-
marizers, then it would save a lot of users time.

Another scenario is if n users write their brief opinion on
a topic, it would be of great help to generate a summary of
these n opinions. This motivated us to develop a system that
summarizes opinions/summaries. In this paper, we propose
and report experimental results of a system, called S-SUM,
that generates a summary from the summaries/opinions.

51

1.2 Introduction to S-SUM
To the best of our knowledge, there are no extractive sum-

marizers in the literature that take query-specific summaries
as input. An initial solution to this problem can be applying
a query-specific multiple document summarizer on the given
summaries. However, there are issues to be considered while
generating summary of summaries. They are 1) ordering of
sentences in the final summary. Since sentences are selected
from different summaries, it is a challenging task to have
a logical flow in the final summary. 2) All the summaries
are query specific and the sentences within the summary
are highly related to the query. So, direct centrality [15, 13]
based sentence score may not give good results. Both these
challenges are effectively addressed in this paper. In this
paper, sentences are given scores as a combination of both
centroid [5] and centrality [15, 13] methods.

2. RELATED WORK
Text summarization has picked up pace in the recent years.

Multi-document generic summary generation is discussed in
MEAD [5]. MEAD generates summary by following cen-
troid based approach. Given a set of documents about a
particular topic i.e., a cluster of documents, a centroid of the
cluster is calculated. Each sentence in the cluster is given a
score- with respect to the centroid obtained, similarity with
the first sentence in the document and the relative position
with respect to the first sentence. Sentences are selected
in the decreasing order of sentence scores and are arranged
chronologically.
Centrality based summarization approaches are discussed

in [1, 8, 9, 7, 17]. Degree centrality is discussed in [1] and
eigenvector centrality is discussed in [8, 9, 7]. Degree cen-
trality of a node is calculated by counting the number of
other nodes it is connected to i.e., degree of a node. An
edge is placed between two nodes if and only if there is a
considerable amount of overlap of words between the nodes.
Concept of bushy path was introduced in [1]. A node with
high degree is called as bushy node. A path connecting top
n bushy nodes is bushy path. Eigenvector centrality of a
node is calculated by taking into consideration both the de-
gree of the node and the degree of the nodes connecting to
it, this is inspired by PageRank[2].
In [12] topic focused single document summarization is

addressed. Document is modeled as a graph. Irrespective of
the threshold condition, an edge is placed between adjacent
nodes in the graph. Node score is calculated with respect
to the query. A minimal set of nodes are picked which will
cover(include) all the query terms. This minimal set may
not be having direct edges among them, so, intermediate
nodes are added to make the selected set of nodes a con-
nected sub graph of the original graph.
Query specific summary generation is discussed in [11].

In [11] a document is modeled as a graph and similarity be-
tween nodes is calculated using cosine similarity measure.
An edge is present between nodes if the similarity value ex-
ceeds a threshold. Node scores are calculated by taking both
term frequencies(tf) and inverse document frequencies (idf)
into consideration. A node gets high score if it is connected
to the nodes with high score. The node scores are computed
iteratively till the values converge. Query is considered as a
node of the document graph in[13] and pairwise similarity

between sentences is calculated and an edge is placed be-
tween nodes if the similarity value is greater than zero. As
the query is part of the graph, centrality based approach is
followed to select the nodes into the summary.

Generating Non-Redundant summaries is addressed in [3].
Node scores are calculated based on the similarity w.r.t the
query and the summary is generated incrementally. To start
with, a node with highest score is selected into the sum-
mary. All the scores of remaining nodes are recalculated
based on both their current node scores and the similarity
with the nodes already selected into the summary. From
the recalculated scores, the node with the highest score will
be added to the summary. In most of the models discussed
above, node scores are calculated by following ideas simi-
lar to PageRank[2] and HITS[4] and edge scores are calcu-
lated based on the amount of similarity between nodes. All
the models mentioned above address the issue of generating
summary from a single document or multiple documents for
a generic/specific purpose. None of these systems address
the problem of generating a summary of summaries that
are generated from different summarizers on different sets
of documents for a given topic.

3. FRAMEWORK
The task in query specific summary generation is to ex-

tract sentences from the documents. These sentences should
be very relevant to the query. A summary is said to be
complete if it contains information about the whole query.
Completeness is calculated based on the presence of query
terms in a summary. A summarizer will extract a sentence
from the documents based on the score given to it. The
order in which the sentences are extracted need not follow
a logical sequence. Hence, these sentences have to be re-
arranged to get a logical flow to the summary. The quality
of having logical flow in a summary is termed as coherence.
In multi-document summarization, some amount of infor-
mation would be present in more than one document. If the
information that is repeated across the multiple documents
is found to be important, such information should be present
in the summary but should not be repeated. Such non-
repetition of information in a summary is termed as non-
redundancy. In this paper, coherence and non-redundancy
are addressed explicitly and completeness is achieved implic-
itly.

In this paper, we model all the sentences from all the sum-
maries as nodes in a graph. Each sentence is considered as
a vector of words. An edge is placed between two sentences
if similarity between them is above a threshold. Similarity
is calculated as given in Equation 1

sim(−→ni,
−→nj) =

−→ni.
−→nj

|−→ni||
−→nj |

(1)

where −→ni and −→nj are term vectors for the nodes ni and nj

respectively. Weight of each term(t) in the term vector is
calculated as tft ∗ isft where tft is the term frequency and
isft is inverse sentential frequency. isft is calculated as
log(n

nt+1
) where n is the total number of nodes in the graph

and nt is the number of nodes containing the term t in the
graph. All the stop words are removed and the remaining
words are stemmed before computing the weights.

52

4. INTEGRATED LINEAR STRUCTURE (ILS)
In this section, we discuss the construction of ILS. ILS

contains all the sentences of the summaries. Each sentence
in ILS is assigned a position number. Sentences of the final
summary are arranged in ascending order of these position
numbers. We observed that this arrangement of sentences
ensures coherence in the final summary. In this paper, we
assume that the individual summaries from which ILS is
constructed are coherent. We also observed that a sum-
mary generated on a smaller set of documents will be more
coherent than a summary generated on a larger set. The
summary with the highest number of sentences is taken as
the base summary. Each sentence in the base summary is
taken as a context node. Position numbers are assigned to
these context nodes as the integral multiples of the param-
eter “gap”. ILS is constructed by inserting every sentence
from the remaining summaries into the base summary. Each
non-context sentence will be in the Neighbourhood of a con-
text node. Neighbourhood of a context node c is the set of
all sentences from remaining summaries that have highest
similarity with c when compared other context nodes. The
similarity value should be above a threshold. This threshold
has to be chosen appropriately. If the similarity value of a
node is less than this threshold with all the context nodes,
then the node is introduced as a new context node.
For example, if gap is taken as 200, the position values

of the contexts will be 0, 200, 400, 600, 800, etc. All the
nodes that are neighbours to the context node at 200 will
be inserted between the context nodes with position num-
bers 200 and 400 respectively i.e., all the neighbours of 200
will have position values in the range [201,399]. The exact
procedure for positioning of neighbours is described in the
later part of this section. The concept of neighbourhood is
introduced based on the following observations i,e.,

• As all the summaries are generated for a query/topic,
it is highly likely to have similarity between sentences
across the summaries.

• These similar sentences may be having information on
a topic.

• These similar sentences may have repetition of infor-
mation.

So, all the nodes that have similar information are intro-
duced as neighbours to their context node. This arrange-
ment is useful to achieve logical flow in the final summary.
Usually, the nodes with new information are introduced as
new context nodes. A node is said to have a new information
if it is not similar with any of the existing context nodes. In
this case, it is better to introduce it as a new context node.
This will be useful to identify the theme of the summary,
discussion of which is out of scope of this paper.
In Algorithm 1, the construction of ILS is given. The base

summary, S0, is identified and position numbers are assigned
to the nodes in the base summary. Each node in the base
summary is made as a context node. The parameter gap
is a constant that is chosen appropriately to accommodate
the neighbours. In Lines 13 - 29, similarity of a sentence d
with all the context nodes is computed. The context node
with which d has highest similarity is found. If this similar-
ity value exceeds a threshold, η(>0.1), then d is assigned a
position number as explained in Algorithm 2. Otherwise, d
is made as a new context node as outlined in Algorithm 3.

Algorithm 1 Construction of Integrated Linear Structure

1: Input: Summaries arranged in the decreasing order of
their size(number of sentences)

2: Output: Integrated Linear Structure ILS
3: Integrated Linear Structure ILS = S0 {//base sum-

mary}
4: k = |S0|
5: j = 0
6: while j < k do

7: {//Assign position to each node nj in ILS}
8: position(nj) = j ∗ gap
9: j ++
10: end while

11: i = 1
12: while i ≤ number of Summaries do

13: for each node d ∈ Si do

14: {// find the context node,
MaxSimilarContextNode, with which d has
maximum similarity}

15: for each context node nj do

16: if MaxSimilarContextNode = Null then
17: MaxSimilarContextNode = nj

18: else

19: if Sim(MaxSimilarContextNode, d) <
Sim(nj , d) then

20: MaxSimilarContextNode = nj

21: end if

22: end if

23: end for

24: if sim(d,MaxSimilarContextNode) ≥ η then

25: Introduce d as a neighbour in the context of
MaxSimilarContextNode as explained in Algo
2

26: else

27: Make d as the new context in ILS as explained
in Algo 3

28: end if

29: end for

30: i++
31: end while

In Algorithm 2, inserting a node d in the neighbourhood of
a context node is discussed. All the neighbours of a context
will have increasing position values in the decreasing order of
their similarity with the context. For example, if the context
node at 200 has nodes with position numbers 201, 202 and
203 as neighbours then sim(nodeAtPosition(200), nodeAt-
Position(201)) will be greater than sim(nodeAtPosition(200),
nodeAtPosition(202)). d will be given position value accord-
ingly. Algorithm 3 gives the methodology for insertion of a
new context. If d is the first node in a summary, then it is
added as a new context, positioned immediately after the
current last context. If the current last context has position
number 600 then d will take position number 800 (recollect
that we assumed gap value as 200). If d is not the first node
of a summary, then it is added as a context, following the
context in which the parent of d is present. parent(d) is the
node which precedes d in the summary. If the parent(d)
has position value 302 then d will take position number 400.
If the parent(d) has position value 800 (i.e., context node)
then d will take position number 1000. Note that all the
sentences (including duplicates) from the summaries will be

53

Algorithm 2 Insertion of a node in the neighbourhood of
the context node
1: Input: Partially constructed ILS, context node(c) and

the node to be inserted(d)
2: Output: ILS with the node inserted as a neighbour to

c
3: i = position(c) + 1
4: while ((A node is present at position i) AND

(sim(c, nodeAtPosition(i)) ≥ sim(c, d))) do
5: i++
6: end while

7: {//Increment the position values of all the neighbouring
nodes of c that are having position numbers greater than
or equal to i}

8: j = countNeighbours(c)
9: m = j
10: while m >= i do
11: positionOfNodeAt(m) = positionOfNodeAt(m)+ 1
12: m−−
13: end while

14: Place d at position i

included in ILS.

5. SUMMARY OF SUMMARY GENERATION
Each node in the ILS is assigned a score that is calculated

based on both the importance with respect to the query and
its importance across the ILS. A part of our node score
calculation is inspired by the method proposed in [11]. A
significant role is played by the neighbouring nodes i.e., if a
neighbour of the node contains a query relevant information
then the node is assigned a positive score even in the absence
of query relevant information in it. The neighbourhood of a
node is the set of all the nodes that have a similarity value
above a threshold with the node. Note that neighbourhood
in this section is different from previous section.

Xqi(s) = d
sim(s, qi)∑

m∈N
sim(m, qi)

(2)

Equation 2 computes relevancy of a node with a query term.
d is the bias factor which lies between 0 and 1, N is the set
containing all the nodes of ILS and sim(i, j) is computed
as given by Equation 1. The value of Xqi(s) will be zero in
the absence of qi in s. It will have a positive value if qi is
present in s. The denominator in Equation 2 will be small
if qi is present is fewer nodes. Therefore if a node contains a
query term that is present in fewer nodes, then the value of
Xqi(s) will be higher. Conversely, if a node contains a query
term that is present in majority of the nodes, then the value
of Xqi(s) will be lesser.

Yqi(s) = (1− d)
∑

v∈adj(s)

sim(s, v)∑
u∈adj(v) sim(u, v)

wqi(v) (3)

Equation 3 computes the score by considering node scores
of neighbours of s. adj(i) is the set of all nodes in N that
have similarity value above 0.1 with the node i. The bias
factor d is the trade-off between these two equations i.e.,
Equations 2 and 3. The value of d is determined empirically.
If d is chosen close to 1 then more importance is given to
the similarity of a node with the query and less importance
is given to its neighbours. We experimentally found that

Algorithm 3 Adding a context to the partially constructed
ILS
1: Input: Partially constructed ILS and node(d) that is

to be inserted as a context
2: Output: ILS with d included
3: if d is the first sentence/node of the summary then

4: ADD d as a new context node to ILS, following
the current last context node and set position(d) =
position(CurrentLastContextNodeOfILS) + gap

5: else

6: i = ⌊position(parent(d))/gap⌋*gap + gap
7: for each node n starting from position i do

8: position(n) = position(n) + gap
9: end for

10: Insert d as a context node and set position(d) = i
11: end if

12: for each non context node m do

13: if sim(m, d) > sim(m, context(m)) then
14: x = position(m)
15: y = countNeighbours(context(m))
16: Insert m as a neighbour to d by applying Algo 2
17: {//Decrement the position values of all the nodes

that were following m in previous context}
18: z = y − x
19: p = 0
20: while p < z do

21: positionOfNodeAt(x+ 1) =
positionOfNodeAt(x+ 1)− 1

22: x++
23: p++
24: end while

25: end if

26: end for

d = 0.85 is the optimal value. Computation of Equation 3
is repeated till the convergence is achieved in Equation 4.

wqi(s) = Xqi(s) + Yqi(s) (4)

WQ(s) =
∑

1≤i≤t

wqi(s) +
1

|N |

∑

m∈N & m6=s

sim(s,m) (5)

The node score for each node with respect to each query
term qi ∈ Q where Q = {q1, q2, ..., qt} is computed using
Equation 4. Equation 4 is iterated till the scores converge.
Here, wqi(s) is the node score of node s with respect to
query term qi. Score of a node with respect to a query Q is
calculated using Equation 5, WQ(s) is the summation over
node scores calculated with respect to each query term using
Equation 4 and second part of Equation 5 is to capture the
salience of s’s information in ILS. For a given query Q,
node scores for each node with respect to each query term
are calculated. So, a node will have a high score if:

1. It has information relevant to the query.

2. It has neighbouring nodes sharing query relevant in-
formation.

3. It has information that is in majority of nodes.

After assigning scores, the node with the highest score is
selected as the first sentence to the summary. The node ni

that has the highest score among the remaining (|N | − 1)

54

nodes, calculated with Equation 6, will be included into the
summary. sj is the node that is in the summary. In a
similar fashion, other nodes are selected into the summary.
Selection process continues till the target summary size is
reached. After completing the selection, sentences in the
summary are arranged in the increasing order of their posi-
tion values (computed during ILS construction).
Our claim is: this rearrangement preserves coherence in

the summary generated. Recollect, our assumption that in-
dividual summary generated on a small set of documents
is coherent. In accordance with this assumption, the base
summary is coherent. ILS is constructed with this base
summary as its skeleton. This structure remains intact ex-
pect during augmenting a new context. This mechanism
ensures logical flow to be preserved during the construction
of ILS. This is the reason behind achieving a better flow
by rearranging the sentences in the order of their position
numbers.

Max
i

{λWQ(ni)− (1− λ)Max
j

{sim(ni, sj)}} (6)

Equation 6 is inspired by Maximal Marginal Relevance (MMR)
[3] approach. λ ranges from 0 to 1. If λ is 1 then the most
responsive sentence with respect to query is chosen. If λ is
0 then the least redundant sentence is chosen. If λ is close
to 1 then more importance is given to responsiveness and
less importance to redundancy. λ has to be appropriately
chosen so that a node is selected if it is having information
highly relevant to the query (first part of the equation) and
if its selection does not add redundancy (second part of the
equation) to the already selected set. Note that Equation
6 is used to select nodes into the summary and the original
node scores that are calculated using Equation 5 are unal-
tered. The proposed methodology for summary generation
captures both the importance of a sentence with respect to
query and its significance across the summaries. In this way,
both centrality and centroid methods are integrated while
assigning score to a sentence. Therefore, the performance
of our system is expected to be good. Experimental results
show this fact.

6. EXPERIMENTAL SETUP AND RESULTS
S-SUM requires summaries as its input. A summarizer is

required to generate summaries on the subsets of documents
on a given topic/query. For this purpose, we have chosen
a system called ESUM [16]. ESUM is one of the efficient
query specific text summarizer. In fact, any such summa-
rizer can be used to provide the input to S-SUM, but we
found ESUM to be as good as any other summarizer. The
performance of ESUM on DUC 2005 1 data is close to the
best system of DUC 2005. In any case, using a better indi-
vidual summarizer will further improve the performance of
S-SUM. We compared the results of S-SUM with the results
of ESUM run on the entire cluster of documents on a specific
topic, using the standard ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) measure used in the commu-
nity and found that performance of S-SUM is better than
ESUM.

6.1 Experimental Setup

1http://duc.nist.gov

DUC 2005/2006 data cluster

Partition into n sets

Set 1

ESUM/Any Summarizer ESUM/Any Summarizer

Summary 1

SSUM

Summary of summaries

Set n

Summary n

Figure 1: A block diagram of experimental setup

The DUC data has 50 clusters and each cluster has num-
ber of documents discussing about a particular topic. Fig-
ure 1 outlines the detailed experimental setup for a cluster.
Documents in a cluster are divided into n disjoint subsets.
For example, if we take number of documents in a cluster
as 25 and the number of disjoint subsets as 3, then the first
8 documents are assigned to the first set and the next 8
to the second set and the remaining to the third set. Fig-
ure 1 illustrates the block diagram of experimental setup.
In our experiments, we have chosen the number of sets to
be three. ESUM is used to summarize the documents in
each set. After summarization, each set has one summary,
called a partial summary2. All these partial summaries will
be given as an input to S-SUM. S-SUM summarizes these
three summaries. As DUC data has 50 clusters, this process
is repeated on all the clusters.

To the best of our knowledge, there is no other system in
literature which performs the task of generating summary
from the summaries. Therefore, we have designed our own
methodology to evaluate the performance of S-SUM. The
summary of summaries generated by S-SUM is compared
with the summary generated by ESUM on the whole cluster.
We also give ROUGE [6] values of summaries of individual
sets and the summary generated by ESUM on these three
summary sets.

6.2 Results

2We call it partial because the summary is generated on a
subset of the cluster

55

Table 1: ROUGE Values on DUC 2005 Data
System ROUGE-1 ROUGE-2 ROUGE-SU4
ESUMC 0.37167 0.07140 0.12768
System-15 0.37515 0.07251 0.13163
S-SUM 0.37733 0.07284 0.13121
SIGIR08 0.35006 0.06043 0.12298
SET1 0.36344 0.06273 0.12054
SET2 0.36444 0.06296 0.12089
SET3 0.35654 0.06301 0.11874

ESUMS 0.35746 0.06384 0.12008

To evaluate the quality of the summaries generated, DUC
provides us with ROUGE [6] values. Also, DUC provides
model summaries that are written by volunteers. Recall
value is calculated for the generated summaries with respect
to these model summaries. Through ROUGE values, we
can determine the quality of a summary as these values are
computed by comparing the summary with the summaries
written by volunteers.
ROUGE-N uses n-gram recall measures of system gener-

ated summaries and the summaries generated by the volun-
teers(model summaries). ROUGE-N is calculated as given
in Equation 7

ROUGE−N =

∑
s∈model summaries

∑
gramn∈s

countmatch(gramn)

∑
s∈model summaries

∑
gramn∈s

count(gramn)

(7)
Here n is the length of a n-gram. gramn stands for a spe-
cific n-gram. Countmatch(gramn) is the maximum number
of n-grams co-occurring in both the generated summary and
in the reference summaries. ROUGE-1 is the recall mea-
sure of uni-grams. ROUGE-2 is the recall measure of bi-
grams. ROUGE-SU4 is the recall measure which computes
the skip bi-grams with skip distance four and uni-grams are
also considered while computing this measure. Finer details
of ROUGE measurements can be found at [6].
The values of all the variables in the equations are fixed

empirically after experimenting on test data of DUC. The
same set of values are used for both DUC 2005 and 2006.
The values for bias factor d is 0.85 (based on [11]) and λ
is 0.6 (based on [3]). The values in the tables indicate that
the generated summaries are consistent and the quality of
summaries in terms of the ROUGE measures is satisfactory.
All the values in the tables are the mean of 50 clusters

of DUC. ESUMC values are computed on the summaries
generated by ESUM over the complete set of documents in
a cluster. System-15 and System-24 are the best performing
systems at DUC 2005 and 2006 respectively. SIGIR08 [14]
is an efficient summarizer but ROUGE values are available
for DUC 2005 only. SETi values are computed on sum-
maries generated by ESUM on the ith set of cluster as dis-
cussed earlier. ESUMS values are computed on summaries
that are generated by summarizing partial summaries gen-
erated by ESUM (i.e., 3 partial summaries). The ROUGE
values in the tables clearly demonstrate the performance of
S-SUM system. Though our system is given only 3 sum-
maries as input, the performance is comparable with the
best system of DUC. Note that systems at DUC generate
summary on the whole cluster. On contrary S −SUM gen-
erates summary on partial summaries. So, the performance

Table 2: ROUGE Values on DUC 2006 Data
System ROUGE-1 ROUGE-2 ROUGE-SU4
ESUMC 0.38215 0.07514 0.13160
System-24 0.41108 0.09558 0.15529
S-SUM 0.39884 0.08223 0.14037
SET1 0.37846 0.07236 0.12874
SET2 0.37619 0.06910 0.12698
SET3 0.37493 0.07215 0.12835

ESUMS 0.38303 0.07531 0.13248

of DUC systems should be much better than S-SUM and in
fact it is unfair to compare our system with DUC systems.
But the performance of S − SUM is much better than we
anticipated. Also, the performance of our system is depen-
dent on the quality of the input summaries. As ESUM was
close to the performance of the best system, system-15 in
DUC 2005, S-SUM was able to outperform system-15. This
result is in fact a surprise. In DUC 2006, ESUM was well
behind the best system, system-24, so, S-SUM was not able
to outperform system-24.

S-SUM generates summary of summaries efficiently and
it can also be used as an additional module to the existing
summarizers: majority of the summarizers follow an unified
approach (all the documents are merged into a single doc-
ument or inter and intra similarities among the sentences
in the documents are taken into consideration) for generat-
ing multi-document summaries. To boost the efficiency and
performance, the document cluster can be partitioned into
multiple sets and a summary can be generated for each set
using a summarizer. All these summaries can be given as an
input to S-SUM to generate summary of summaries and as
evident from the results, the quality would be better than
the summary generated by that summarizer on the whole
cluster. The choice of the partition is by itself a challenging
problem. Overall, by partitioning a cluster, both efficiency
is achieved and the quality of summary is also improved.

7. CONCLUSIONS
In this paper we have addressed the issue of generating

summary of summaries that are generated by extractive
summarizers. We have developed a system called S-SUM
that generates summary from summaries. Integrated Lin-
ear Structure(ILS) is introduced by us. ILS preserves logi-
cal flow between sentences from different summaries. Ex-
perimental results demonstrate that the methodology in-
troduced for summary generation produces quality output.
Coherence of the summaries is preserved via the position
values given to sentences in the ILS. Non-redundancy and
completeness are achieved by MMR approach. The encour-
aging experimental results suggest that S-SUM can also be
used to boost the performance of any extractive summa-
rizer. One limitation of S-SUM is it assumes that the base
summary is coherent.

8. REFERENCES
[1] Gerard Salton and Amit Singhal and Mandar Mitra

and Chris Buckley. Automatic text structuring and
summarization. Inf. Process. Manage., 33(2):193–207,
1997.

[2] L. Page and S. Brin and R. Motwani and T. Winograd.
The pagerank citation ranking: Bringing order to the

56

web. pages, 161–172, Brisbane, Australia, 1998.

[3] Jaime G. Carbonell and Jade Goldstein. The use of
mmr, diversity-based reranking for reordering documents
and producing summaries. pages, 335–336, Melbourne,
Australia, 1998. ACM.

[4] Jon M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632, 1999.

[5] Dragomir R. Radev and Hongyan Jing and Malgorzata
Budzikowska. Centroid-based summarization of multiple
documents: sentence extraction, utility-based evaluation,
and user studies. pages, 21–30, Seattle, Washington,
2000. Association for Computational Linguistics.

[6] Chin Yew Lin and Franz Josef Och. Automatic
evaluation of machine translation quality using longest
common subsequence and skip-bigram statistics. pages,
605–612, Barcelona, Spain, 2004. Association for
Computational Linguistics.

[7] Rada Mihalcea. Graph-based ranking algorithms for
sentence extraction, applied to text summarization.
page, 20, Barcelona, Spain, 2004. Association for
Computational Lingu.

[8] Güneş Erkan and Dragomir R. Radev. LexPageRank:
Prestige in multi-document text summarization. pages,
365–371, Barcelona, Spain, July 2004. Association for
Computational Linguistics.

[9] Mihalcea, Rada and Tarau, Paul. In . pages, 404–411,
Barcelona, Spain, July 2004. Association for
Computational Linguistics.

[10] Jagadeesh, J and Pingali, Prasad and Varma,
Vasudeva. A relevance-based language modeling
approach to duc 2005. In Proceedings of Document
Understanding Conferences (along with HLT-EMNLP
2005), Vancouver, Canada, 2005.

[11] Jahna Otterbacher and Güneş Erkan and Dragomir R.
Radev. Using random walks for question-focused
sentence retrieval. pages, 915–922, Vancouver, British
Columbia, Canada, 2005. Association for Computational
Linguistics.

[12] Ramakrishna Varadarajan and Vagelis Hristidis. A
system for query-specific document summarization.
pages, 622–631, Arlington, Virginia, USA, 2006. ACM
Press.

[13] Xiaojun Wan and Jianwu Yang and Jianguo Xiao.
Manifold-ranking based topic-focused multi-document
summarization. pages, 2903–2908, Hyderabad, India,
2007.

[14] Dingding Wang and Tao Li and Shenghuo Zhu and
Chris Ding. Multi-document summarization via
sentence-level semantic analysis and symmetric matrix
factorization. pages, 307–314, Singapore, Singapore, July
2008. ACM.

[15] M Sravanthi and C R Chowdary and P Sreenivasa
Kumar. QueSTS: A query specific text summarization
system. pages, 219–224, Florida, USA, may 2008. AAAI
Press.

[16] C Ravindranath Chowdary and P Sreenivasa Kumar.
ESUM: An efficient system for query-specific
multi-document summarization. In ECIR ’09:
Proceedings of the 31th European Conference on IR
Research, pages, 724–728, Toulouse, France, April 2009.
Springer.

[17] C. Ravindranath Chowdary and M. Sravanthi and P.

Sreenivasa Kumar. A system for query specific coherent
text multi-document summarization. International
Journal on Artificial Intelligence Tools, 19(5):597–626,
2010.

[18] Alexandra Balahur and Mijail Alexandrov Kabadjov
and Josef Steinberger and Ralf Steinberger and Andrés
Montoyo. Challenges and solutions in the opinion
summarization of user-generated content. J. Intell. Inf.
Syst., 39(2):375–398, 2012.

[19] Yin, Wenpeng and Pei, Yulong and Zhang, Fan and
Huang, Lian’en. Query-focused multi-document
summarization based on query-sensitive feature space. In
Proceedings of the 21st ACM international conference on
Information and knowledge management, pages,
1652–1656, New York, NY, USA, 2012. ACM.

[20] Zhang, Lanbo and Zhang, Yi and Chen, Yunfei.
Summarizing highly structured documents for effective
search interaction. In Proceedings of the 35th
international ACM SIGIR conference on Research and
development in information retrieval, pages, 145–154,
New York, NY, USA, 2012. ACM.

