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Abstract
Reducing costs is an important part in todays buisness. Therefore manufacturers try to reduce unnec-
essary work processes and storage costs. Machine maintenance is a big, complex, regular process. In
addition, the spare parts required for this must be kept in stock until a machine fails. In order to avoid a
production breakdown in the event of an unexpected failure, more and more manufacturers rely on pre-
dictive maintenance for their machines. This enables more precise planning of necessary maintenance
and repair work, as well as a precise ordering of the spare parts required for this. A large amount of
past as well as current information is required to create such a predictive forecast about machines. With
the classification of motors based on vibration, this paper deals with the implementation of predictive
maintenance for thermal systems. There is an overview of suitable sensors and data processing meth-
ods, as well as various classification algorithms. In the end, the best sensor-algorithm combinations are
shown.
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1. Introduction

The topic of predictive maintenance (PMA) is becoming more and more important for industrial
plants and is the key topic in mechanical engineering from the Industry 4.0 aspect [1]. PMA is
defined as condition-based maintenance which is carried out on the basis of a wear or service
life forecast [2].

PMA uses methods that allow for individual maintenance intervals of an industrial plant to
be determined and the maintenance process to be initiated automatically. As part of a R&D co-
operation project between CeraCon GmbH and the Heilbronn University of Applied Sciences,
a thermal system is to be set up under automation and a PMA strategy is to be implemented,
which should then be adaptable to other industrial plants 1. Due to the complexity of industrial
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plants, an intelligent solution is required in order to be able to offer individual maintenance
strategies depending on the state of the plant. For this reason, the project uses machine learning
(ML) methods.

The essential steps of an intelligent PMA strategy are the digital acquisition of (sensor) data,
their evaluation, the analysis of the acquired data and the prediction of probable events.

First, possible component defect combinations (CDC) of the industrial plant were analyzed
using standard technical risk analysis methods (FMEA, risk graph, fault tree analysis) [3]. CDC
is the assignment of a wear component of the industrial system to a potentially occurring de-
fect. Depending on the number of possible defects, a component can therefore have several
CDCs. Each CDC was assigned an potential detection measure, e.g. physical vibration mea-
surement or electrical current measurement. Suitable sensors were selected for the analyzed
detection measures and analyzed with regard to the PMA strategy. CDC’s with the same de-
tection methods were combined and measurement data recorded with the respective sensors.

The core of this work is the evaluation of a combination of detection measures for data
processing methods and ML algorithms. The optimal combination of these is a prerequisite for
an efficient PMA strategy that can be used for the respective industrial plant.

1.1. State of the Art

A study by Bearingpoint [4] shows that PMA implementations capture 76% of the relevant
data using suitable sensors, although only 59% of the process, measurement and machine data
are evaluated in a targeted manner. There are three basic approaches to implementing a PMA
strategy [5].

A basic approach is to use the already implemented sensors of the plant for process moni-
toring. This passive method is particularly suitable for systems that are already in operation.
Another passive approach is to introduce dedicated sensors into the system. The additional
sensors are introduced to monitor defined wear components and to detect potential defects.
In the third approach, a test signal is actively fed into the system. The degree of wear of the
components to be monitored can be deduced from the feedback. An example of this is Time
Domain Reflectometry (TDR) [5].

2. Data Collection

2.1. Sensor Resolution

When buying industrial sensors, you often have to commit to a sensor resolution. This requires
that you have a basic understanding of what accelerations occur on the component. For this
purpose, the effects were previously considered in an experiment when an accelerometer with
an insufficient resolution is used. In this case, the sensor generates vibrations that exceed the
sensor resolution. A CDC of the fan motor is that the fan wheel has an imbalance. This fault
situation was simulated by attaching an unbalance to the fan blade.

The result of this simulation is shown in figure 1 (a). There are shown the measured acceller-
ation values in x- and y- axis of an accelleration sensor with a maximum resolution of ±2𝐺. The
red values show the vibrations of the motor without an imbalance and the blue values show
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Figure 1: Comparison of an unbalanced fan with a resolution of ±2𝐺 (a) and a resolution of ±4𝐺 (b).

the vibrations which occurs with an imbalance. It can be clearly seen that the vibrations on the
motor increased due to the imbalance. It can also be seen that vibrations that go beyond the
set sensor resolution of ±2𝐺 were not recorded correctly. They are in line with the maximum
acceleration of ±2𝐺. The measured values that did not exceed the maximum resolution were
not affected by this. The experiment shows that the CDC "imbalance" can cause very strong
vibrations. The vibrations are so strong that they exceed a sensor resolution of ±2𝐺. If a sensor
is used that can only record values up to a resolution/acceleration of ±2𝐺, these are recorded
incorrectly. The values that exceed the maximum resolution are then incorrectly saved in the
data record [6]. To prevent such problems, it is important to see how large the vibrations can
be. The sensor resolution should have at least this value with a safety buffer. In figure 1 (b),
instead of the resolution of ±2𝐺, the double resolution of ±4𝐺 was chosen for the same motor
level. In the picture you can see that no "lines" have formed and therefore the vibrations were
not greater than the sensor resolution. The resolution of ±4𝐺 is therefore much more suitable
than the resolution of ±2𝐺. The experiment has shown that a correctly selected sensor reso-
lution is a prerequisite for obtaining meaningful results. If the vibrations are greater than the
resolution of the sensor, the incorrectly stored measured values cannot be classified correctly
[6].

2.2. Sensors and Test Set-Up

The requirement for a condition-based PMA is a structured data collection of sensor values.
The following sensors were used to obtain status data:

• Three-axis acceleration sensors (Accelerometer):

– LIS 3DH, MMA 8451, ADXL 343, ADXL 345

• Three-axis acceleration sensors with three-axis yaw rate sensor (gyroskope)

– MPU 60.50

• Three-axis magnetic field sensor (magnetometer)

– MLX 90393
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Figure 2: Measurement setup with the three-axis acceleration sensors LIS3DH, MMA 8451, ADXL 345
and ADXL 343.

Table 1
A Section of the Data measured with the MPU 60.50 Gyroskope.

60.50 AccelX 60.50 AccelY 60.50 AccelZ 60.50 GyroX 60.50 GyroY 60.50 GyroZ Target

416 6088 60146 2709 62478 65187 Motor 000
426 6026 60148 2733 62469 65185 Motor 000
404 6110 60146 2727 62478 65192 Motor 000
470 6046 60140 2720 62486 65188 Motor 000

• Multi sensors with three-axis acceleration, three-axis yaw rate and three-axis magnetic
field measurement

– MPU 92.65, BNO 055, GY 250, GY 521

These recorded the acceleration, the rotation rate and the surrounding magnetic field of the
fan motor R3G180-AJ11-XF from ebm-papst Mulfingen GmbH & Co. KG used in the thermal
system. Figure 2 shows the measurement set-up with the selected three-axis acceleration sen-
sors [6].

The fan motor was operated at fixed speeds, which were divided into 7 classes. This classifi-
cation was based on the specific values 0%, 50%, 60%, 70%, 80%, 90% and 100% of the maximum
engine speed. During the operation of the fan motor the vibration of the crankcase was sensed
and recorded by the sensors. More than 980,000 structured sensor data sets per measurement
series and sensor type were recorded. A total of more than 2.6 million data sets have thus been
recorded for all sensor types. A section of a full data set is shown in Table 1.

An example of a recorded data set is shown in figure 3. It shows the measured acceleration
from the housing vibration in the spatial x- and z- orientation. The individual classes are high-
lighted in color to make a distinction possible. Due to the highest spatial coverage, it can be
seen that the measurement results for class 80% can be assigned to the resonance range of the
fan motor, since the acceleration values in the x- and z- alignment are at their maximum values
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Figure 3: Measurement results from the acceleration sensor MMA 8451.

here.

3. Data Conditioning

In order to be able to better differentiate the individual classes, it is in some cases advantageous
if the data records are processed before classification. The methods used for data conditioning
are presented here:

One possibility to process the data sets consists of the differencing and absolute value for-
mation of subsequent values according to equation 1.

𝑋𝑖 = |𝑋𝑖 − 𝑋𝑖+1| (1)

𝑋𝑖 and 𝑋𝑖+1 are the successive sensor values. Another processing method is the integration
of the data according to equation 2. Here the area under two successive values 𝑋𝑖 and 𝑋𝑖+1 is
calculated.

𝑋𝑖 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑋𝑖 + 0.5 ⋅ (𝑋𝑖+1 − 𝑋𝑖) if 𝑋𝑖 < 𝑋𝑖+1
𝑋𝑖 − 0.5 ⋅ (𝑋𝑖 − 𝑋𝑖+1) if 𝑋𝑖 > 𝑋𝑖+1
𝑋𝑖 if 𝑋𝑖 = 𝑋𝑖+1

(2)

In both the processing methods, an additional smoothing can be carried out by calculating
the moving average according to equation 3.

𝑋𝑖 =
1
𝐺 ⋅

𝑖+𝑔
∑
𝑖−𝑔

𝑋𝑖 (3)

The parameter 𝐺 specifies the degree of smoothing. The parameter 𝑔 is the difference be-
tween the indices between the instantaneous value𝑋𝑖 and the maximum value𝑋𝑔±𝑖 specified by
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Figure 4: Comparison of raw data (a) and data prepared by differencing (b).

the degree of smoothing. Thus 𝑔 depends on the degree of smoothing 𝐺 and can be determined
according to equation 4.

𝑔 = 𝐺 − 1
2 (4)

With the degree of smoothing 𝐺, first optimizations regarding the classification of the mea-
sured sensor data can be carried out [7]. Figure 4 shows the effect of processing by means of
differencing compared to the unprocessed raw data. The coloring in the pictures illustrates the
different class assignments.

Figure 4 (a) shows the acquired raw data of an acceleration sensor in the x-orientation. It
can be seen that a delimitation regarding the classes is not clear. For example, the acceleration
in the direction of the x-axis at −8𝑚/𝑠2 is not unique and can in principle be assigned to any
class. In Figure 4 (b) the classes are more delimited after the differencing and smoothing and
thus a class assignment is clearer. For example, the value 0.7 can be clearly assigned to the class
shown in gray.

Figure 5 (a) shows the raw data from the measurements in x- and y-orientation. A classi-
fication is clearly not possible due to the overlapping point clouds. Figure 5 (b), on the other
hand, shows the data prepared after the differencing. It can be seen that the point clouds are
now clearly distinguishable, making visual and algorithmic class assignment easier.

4. Evaluation

The evaluation of the ML algorithms with regard to the respective sensors and the data pro-
cessing was divided into a training and a test phase. In the training phase, the data records
were divided evenly by feeding every tenth data value of the respective training method to the
ML algorithm. As a result, the respective ML algorithm was trained with 10% of the data. The
complete data set was then evaluated in the test phase. Several ML algorithms were consid-
ered for the recorded data sets. These included decision trees [8, 9], the gradient boost method
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Figure 5: Comparison of raw data (a) and data prepared by differencing (b) in two axes.

Figure 6: Comparison of the prediction results of the focus cluster algorithm with raw data (a) and
data prepared by differencing (b).

[8, 10], a focus cluster algorithm [11] and artificial neural networks (ANN) [12]. The investi-
gations revealed that ANNs are less suitable for data sets with low attribute numbers due to
the long duration in the training phase. Therefore, only the decision trees, the gradient boost
method and the focus cluster algorithm were used for the further experiments [7].

Figure 6 shows two confusion matrices [13] for the focus cluster algorithm, which show the
distribution between the actual class and the class determined by the algorithm. The numbers
on the axes correspond to the seven defined classes in which the data records have been cat-
egorized. The darker an area, the more often the ML algorithm has assigned data records to
a class. A correct assignment is obtained if the assigned class corresponds to the actual class.
Ideally, you would get a black diagonal from top left to bottom right.

Figure 6 (b) shows the result for the data sets prepared after differencing and smoothing. It
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can be seen that the majority of the data records were assigned to the actual classes, the hit
rate here was over 98%. On the other hand, it can be seen in Figure 6 (a) that a significantly
lower hit rate has been achieved for the unprepared data sets.

5. Using Statistical Methods for Prediction

The preceding test were performed by measuring the vibration of a stand-alone motor on a
workbench, which was not build into a working machine. Therefore this data cannot be used
to make a prediction for maintenance, but the feasibility of categorizing a motor by its vibration
and magnetic field was studied. To get a better picture of the real working conditions of such
a motor a larger data set was collected by mounting three multifunction sensors (GY 521, BNO
055, MPU 92.65) on a thermal system which is used in day to day operations. These data sets
were then used to build a statistical model based on auto regression and moving average (ARMA
[14], [15]) of the vibration. The statistical models were created for every sensor orientation
separately to get an optimal result for each time series. As the metric to compare the different
models was chosen the maximum relative deviation (MRD) according to equation 5.

𝑀𝑅𝐷 = max
𝑖

| 𝑋𝑖 − 𝑌𝑖
𝑋𝑖

| (5)

In equation 5 𝑋𝑖 are the measured sensor values used to build the model and 𝑌𝑖 are the values
predicted by the model at this time-step.

6. Results

To compare the results of the ML algorithms for the respective sensors, a matrix with the
relevant properties was created for each combination of ML algorithm and sensor:

• Classification accuracy (performance) of the algorithms

• Computing time for the training and testing phase of the algorithms

• Smoothing factor G

Table 2 shows the comparison of the processing methods examined using the combination
of the multifunction sensor GY 521 and the gradient boost method.

It can be seen that the highest performance is achieved when using the raw data. In the train-
ing and test phases the integrated and the differenced data are slightly faster. A comparison
was made for each sensor and ML algorithm combination. The best performing data processing
method was then selected for each combination. The comparison tables of the sensors which
have achieved the best results of the sensor types examined are listed in Tables 3 to 5. These
were the ADXL 345 (accelerometer), the MPU 60.50 (gyroscope) and the GY 521 (accelerometer,
gyroscope and magnetic field). The processing method with the highest performance for the
respective algorithm is shown for each of the sensors.
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Table 2
Comparison of the data preparation methods with the combination of the multifunction sensor GY521
and the gradient boost method.

Sensor GY 521 Performance (%) Time training (s) Time testing (s)
with Gradient 𝐺 = 0 𝐺 = 99 𝐺 = 0 𝐺 = 99 𝐺 = 0 𝐺 = 99
Boost method

Raw data 98.51 83.97 4.85 6.88 1.11 0.9
Integration 82.84 85.15 5.45 3.82 1.07 0.66
Differencing 79.76 85.1 5.04 3.83 1.5 0.61

Table 3
Comparison of the ML algorithms on the combination ADXL 345 (accelerometer) and the best perform-
ing data processing method.

ADXL 345 Decision tree Gradient boost method Focus cluster algorithm

Conditioning method Differencing, 𝐺 = 99 Differencing, 𝐺 = 99 Differencing, 𝐺 = 99
Performance 93.79% 96.6% 98.98%
Computing time training 1.78s 5.88s 0.32s
Computing time testing 31.99s 1.44s 34.88s

Table 4
Comparison of the ML algorithms on the combination MPU 60.50 (gyroskope) and the best performing
data processing method.

MPU 60.50 Decision tree Gradient boost method Focus cluster algorithm

Conditioning method Raw data, 𝐺 = 0 Raw data, 𝐺 = 0 Differencing, 𝐺 = 99
Performance 91.46% 95.24% 90.89%
Computing time training 0.09s 5.54s 0.91s
Computing time testing 0.28s 1.46s 31.99s

The result of the examinations according to Table 3 was that all acceleration sensors achieved
the greatest performance with smoothing (𝐺 = 99) and data prepared by differencing. The focus
cluster algorithm achieved the highest performance.

The result according to Table 4 is that the highest performance was achieved with unpro-
cessed and unsmoothed data with the gyroscopes. The gradient boost process achieved the
highest performance.

In the case of the multifunction sensors with acceleration, magnetic field sensors and gyro-
scope, it can be seen from Table 5 that the highest performance was achieved with smoothing
(𝐺 = 99) and differenced data using the cluster cluster algorithm.

Table 6 shows the lowest MRDs for each separate sensor orientation with their number of
auto regressive (p) and moving average (q) terms.

These results show a maximum deviation up 28.3% with the gyroscope values in z orienta-
tion. The lowest deviation was reached with acceleration in z orientation and the magnetic
field in x orientation with only 10.1% and 10.6% respectively. The difference in accuracy of the

51



Table 5
Comparison of the ML algorithms on the combination GY 521 and the best performing data processing
method.

GY 521 Decision tree Gradient boost method Focus cluster algorithm

Conditioning method Raw data, 𝐺 = 0 Raw data, 𝐺 = 0 Differencing, 𝐺 = 99
Performance 95.7% 98.51% 99.89%
Computing time training 0.09s 4.85s 1.27s
Computing time testing 0.28s 1.11s 37.63s

Table 6
Lowest MRD for each Sensor Orientation with their corresponding p and q Numbers.

Sensor Orientation p q MRD (%)

Acc X 5 5 20.3
Acc Y 3 3 24.4
Acc Z 2 5 10.1
Gyro X 7 5 22.4
Gyro Y 4 3 24.7
Gyro Z 7 6 28.3
Mag X 4 5 10.6
Mag Y 3 5 22.6
Mag Z 7 7 28.2

models is rather high and therefore an ARMA model can only be used to model two of the nine
time series measured. For the remaining seven there should be used other means of modeling.

7. Conclusion

It has been found that the processing of the raw data in the form of smoothing and differencing
in combination with the focus cluster algorithm gave the best results for acceleration sensors.
The gyroscopes examined showed that the unprocessed raw data without smoothing in com-
bination with the gradient boost method achieved the highest classifiability. The multisensors
examined gave the best results when using the focus cluster algorithm in combination with
smoothed and differenced data. In addition it was found, that an ARMA model could be used
to predict the acceleration in z orientation and the magnetic field in x orientation.

8. Outlook

Based on these results, the combination of detection measure, data processing method and
ML algorithm can in the next step be used for a PMA strategy. For a complete PMA, further
detection measures have to be examined. For that purpose, this procedure is continued with
further sensor types in order to find an optimal combination for all necessary detection mea-
sures. In the future, a prediction model is to be developed on the basis of these results, with
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which predictions can be made about the degree of wear of system components of a thermal
system under automation. Formal aging and error models of the respective system compo-
nents must also be created in order to map the aging process of components. These models can
then be used to make probabilistic statements about the failure probabilities of the individual
assemblies. Such models could be based on Dynamic Bayesian Networks (DBN) [16], auto re-
gresssion and moving average (ARMA) [17] or, as the focus cluster algorithm has yielded such
an high performance, a multi dimensional focus trajectory. In addition to that, the statistical
models used to predict the motor vibration in day to day operations could be extended to auto
regression, integrated, moving average to get a better result for all sensor orientations.
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