
A Graph Database for Persistent Identifiers

Triet Doan1[0000−0002−7247−9108], Lena Wiese2[0000−0003−3515−9209],
Sven Bingert1[0000−0001−9547−1582], and Ramin Yahyapour1[0000−0002−9057−4395]

1 Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen
Am Faßberg 11, 37077 Göttingen

{triet.doan|sven.bingert|ramin.yahyapour}@gwdg.de
https://www.gwdg.de

2 L3S Research Center / KBS Group, Leibniz University Hannover
Appelstraße 4, 30167 Hannover

wiese@l3s.de

Abstract. The Handle Software manages references to resources of in-
formation. However, it does not support a search functionality. A prior
implementation with Elasticsearch could not efficiently capture the com-
plex structure of our dataset, especially the relationships between han-
dles. In this paper, we apply a graph database together with Elasticsearch
to provide more search capabilities to users. In addition, the graph can
efficiently store meta-data provided during handle creation. Further use
cases for this graph include redundancy detection (two or more handles
pointing to the same URL), or bibliographic network analysis.

Keywords: Persistent identifier · Handle System · Graph database ·
Neo4j · Elasticsearch.

1 Introduction

Nowadays, people often locate digital objects using Uniform Resource Locators
(URLs). However, URLs tend to be broken over time [2]. To overcome this
problem, the concept of Persistent Identifier (PID) is introduced. As the name
suggests, a PID is an identifier which is valid for a long time. In practice, a PID
is mapped to an up-to-date URL [1].

According to FAIR (Findable, Accessible, Interoperable, Reusable) princi-
ples, data with PIDs and their meta-data are supposed to be findable [4]. How-
ever, there is currently no efficient tool to find PIDs from their meta-data. In
prior work, a search engine was created using Elasticsearch. Although it solved
the search problem, it did not efficiently capture the complexity of our dataset.
The contribution of this paper is to introduce a graph database as a tool that is
able to perform advanced searches on PID data; it is also able to search based
on the relationships between digital objects.

The paper is organized as follows. Section 2 discusses the system design. The
system is evaluated in Section 3 and the conclusion is presented in Sections 4.

Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 T. Doan et al.

2 System Design

Graph databases – a special category of NoSQL databases [3] – represent infor-
mation by nodes and relationships and store data in so-called properties. The
purpose of our system is to employ a graph database to maintain the complex
structure of the handle data and to provide a search function together with
the ability to explore and analyze the data. To achieve that, a database which
is optimized for graph storage and traversal is required. Therefore, the graph
database Neo4j4 that implements the property graph model was chosen. An
implementation of PID is the Handle Software, which is developed by CNRI5.
Every handle consists of two parts: its naming authority (known as its prefix),
and a unique local name under the naming authority (known as its suffix). The
main disadvantage of the Handle Software is, that it does not provide a search
function. There are no restriction on the creation of handle values. Hence, when
the system processes a handle value, it does not know the meaning of each data
type due to the lack of standardization. To overcome this problem, a schema
shown in Figure 1 is used in our system. The solution is to use many smaller
nodes where each node contains only one property instead of one node with
many properties. In this schema, except the handle nodes which are labeled as
handle, the label of nodes and relationships are the data types of the handle
values, such as URL or Institute. In this schema, every node is unique: handles
which have the same handle values will point to the same nodes.

:Handle

- handle

:Handle_value

- handle_value
:Handle_value

Fig. 1. The schema that used to build a graph from handles and handle values

Table 1 presents an example with three situations which need to be carefully
examined. The first deals with data types from the Information Type Registry
(ITR)6: a data type from the ITR must be resolved to get back a human-friendly
type name. For example, resolving the value 21.11104/3eaedeaced10be5805d2

returns isPreviousVersionOf as the name of that data type. The second sit-
uation occurs when a handle is related to another handle. For example, han-
dle 10.123/456 is the previous version of handle 10.123/789. To indicate this
connection, handle 10.123/456 contains a handle value 10.123/789 with type
name 21.11104/3eaedeaced10be5805d2, which after being resolved is actually
isPreviousVersionOf. When the system processes this case, instead of creating
a new node for each handle value as usual, it only creates a relationship from

4 https://neo4j.com
5 https://www.handle.net
6 http://dtr.pidconsortium.eu

A Graph Database for Persistent Identifiers 3

the handle node 10.123/456 to the handle node 10.123/789. Only when the
handle node 10.123/789 is not found, the system will create that node first,
then add a relationship between those two handle nodes. Lastly, there are many
cases where a handle value does not have an atomic value but a JavaScript Ob-
ject Notation (JSON). In a naive approach, the system will create a new node
and put the whole JSON inside. However, doing so leads to disadvantages. First,
because it is just a string, it is very hard to distinguish between the key and
the value to search on. Second, all the structures inside the JSON as well as the
connections with other nodes are lost. Hence our system must parses each JSON
object and creates an appropriate graph from it. The graph in Figure 2 shows
what our system generates from the example data in Table 1. As can be noticed
from the figure, there are two empty nodes in the graph. These empty nodes are
the results of the JSON parsing process. The purpose of these nodes is to group
related data together.

Table 1. An example showing that handle 10.123/456 is a previous version of handle
10.123/789, which is indicated by an ITR value. There is also a JSON inside the
Creator handle value of handle 10.123/789 that needs to be parsed.

Handle Data Type Index Value

10.123/456 URL 1 http://www.gwdg.de
Email 2 triet.doan@mail.com
Name 3 Triet Doan
INST 4 GWDG

21.11104/3eaedeaced10be5805d2 5 10.123/789

10.123/789 URL 1 http://www.google.com
Email 2 triet.doan@mail.com

Creator 3

{
"first_name ": "Triet",
"last_name ": "Doan",
"address ": {

"country ": "Germany",
"city": "Gö ttingen"

}
}

To improve the performance, each node will have one more property called
nodeId. This property is unique among nodes and used as the key of a node.
When a node is created, its nodeId is calculated by hashing the value of that
node. This process is applied for non-handle nodes. Because the handle string
is already unique, the nodeId of a handle node is the handle string itself. The
nodeId property is indexed with a unique constraint. While indexing enhances
the performance of the READ operation, other operations (CREATE, UPDATE,
DELETE) are slowed down due to the updating of index table. Indeed, our
graph database is under a heavy load of CREATE and DELETE operations.

4 T. Doan et al.

:Handle

‐ Handle:10.123/456

:URL

‐ URL: http://www.gwdg.de

:URL

:Email

‐ Email: triet.doan@gwdg.de
:Email

:INST

‐ INST: GWDG

:INST

:Name

‐ Name: Triet Doan

:Name

:Handle

‐ Handle:10.123/789

:isPreviousVersionOf
:Email

:URL

‐ URL: http://www.google.com
:URL

:Creator
:Creator

: rst_name

‐ first_name: Triet

:last_name

‐ last_name: Doan

:address
:country

‐ country: Germany

:city

‐ city: Göttingen

:first_name

:last_name

:address

:country

:city

Fig. 2. An example graph which includes all cases that the system has to process

However, because of the uniqueness of every node in our graph database, one
single CREATE or DELETE involves many READ operations which greatly
benefit from the index. We hence observed that indexing leads to a huge boost
in the performance of the system (see Section 3).

3 Evaluation

The execution time was measured when the system was running under a heavy
load scenario. During this time, the system had to retrieve data from two data
sources and build a graph with around 1 million nodes and 2.5 million rela-
tionships. Figure 3 shows the number of handle values processed by the system
per minute. The lower green line shows the execution time when data was col-
lected without hashing and indexing. As can be seen from the chart, the system
runs quite fast at the beginning with around 1000 handle values processed per
minute. However, it quickly becomes slow over time. The reason for this perfor-
mance loss is that whenever a node is created, the system must make sure that
the node is unique. Therefore, the more nodes it has, the longer the checking
time. After around 107 hours, which is about 4.5 days, the system became too
slow. It processed only 130 handle values per minutes. This test was stopped
after 119 hours (almost 5 days). If continued, it would have taken around 7 days
to finish. For the second approach, with hashing and indexing, the performance
was greatly improved as shown by the upper blue line in Figure 3. It can be seen
that it runs quite stable with the number of processed handle values fluctuating
between 2000 to more than 3000 per minute. By exploiting the indexing feature,
the performance is increased by factor 7.

4 Discussion and Conclusion

Our first achievement is the appropriate graph schema for the handle data. That
graph schema is able to deal with the flexibility in the creation of handle values

A Graph Database for Persistent Identifiers 5

0 20 40 60 80 100 120
Hours

0

500

1000

1500

2000

2500

3000

3500
Nu

m
be

r o
f p

ro
ce
ss
ed

 h
an

dl
e
va

lu
es

The comparison of performance between indexing and non-indexing approach
With indexing
Without indexing

Fig. 3. Performance difference between indexing and non-indexing approach

as well as maintaining a good performance of the system. A search engine for
handles is the second achievement. It offers a variety of search options from Elas-
ticsearch and the ability to manage relationships between handles from Neo4j.
Basic usages can be done through the Graphical User Interface (GUI), while
a web-based tool is ready for more advanced purposes, such as some analyses
which are performed to discover hidden knowledge inside the graph. A topic of
future work to consider is the interoperability of the system: the graph database
can be enriched by importing data from other platforms, such as DOI, ARK,
ISBN, or ORCID.

References

1. Hakala, J., et al.: Persistent identifiers – an overview. KIM Technology Watch Report
(2010)

2. Markwell, J., Brooks, D.W.: Broken links: The ephemeral nature of educational
WWW hyperlinks. Journal of Science Education and Technology 11(2), 105–108
(2002)

3. Wiese, L.: Advanced data management: for SQL, NoSQL, cloud and distributed
databases. de Gruyter Publishing (2015)

4. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak,
A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.: The FAIR
Guiding Principles for scientific data management and stewardship. Scientific data
3 (2016)

