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Abstract 20 

Current methods for estimating vegetation parameters are generally sub-optimal in the way they 21 

exploit information and do not generally track uncertainties. We look forward in the future to 22 

operational data assimilation schemes to track land surface processes and exploit multiple types of 23 

observation.  Data assimilation schemes seek to combine observations and models in a statistically 24 

optimal way taking into account uncertainty in both, but have not yet been much exploited in this 25 

area. The EO-LDAS scheme and prototype, developed under ESA funding is designed to exploit the 26 
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anticipated wealth of data that will be available under GMES missions such as the Sentinel family 27 

of satellites to provide improved mapping of land surface biophysical parameters. This paper 28 

describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a 29 

weak constraint variational data assimilation system. The prototype provides a mechanism for 30 

constraint based on a prior estimate of the state vector, a linear dynamic model, and Earth 31 

Observation data (top of canopy reflectance here). The observation operator is a non-linear optical 32 

radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the 33 

range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the 34 

prototype by automatic differentiation of the computer codes. 35 

 36 

In this paper, EO-LDAS is applied to the problem of estimating a subset of six of the parameters 37 

controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). 38 

Zero and first order process model constraints are implemented and explored as the dynamic model. 39 

The assimilation estimates all state vector elements simultaneously. This is performed in the context 40 

of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the 41 

observation operator, with uncertainties typical of those achieved by optical sensors supposed for 42 

the data.  43 

 44 

The experiments consider a baseline state vector estimation case where dynamic constraints are 45 

applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results 46 

demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying 47 

the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) 48 

required to control the assimilation are estimated by a cross-validation exercise. The result of the 49 

assimilation is seen to be robust to missing observations with quite large data gaps.  50 

51 
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1 Introduction  52 

1.1 Background 53 

One of the primary goals of Earth Observation (EO) is to provide objective and reliable information 54 

on the current and (particularly within the satellite EO era) historical state and dynamics of the 55 

Earth environment. A major component of this that has been a significant focus of research efforts 56 

on monitoring terrestrial vegetation, but EO data are usually of a radiometric nature and do not give 57 

direct estimates of the properties of the Earth land surface that we wish to map. Some level of 58 

inference is therefore needed. 59 

 60 

Early studies in terrestrial vegetation monitoring from EO (Richardson and Wiegand, 1977; Tucker, 61 

1979) found that simple transformations of multispectral measurements at red and near infrared 62 

wavelengths gave a signal that was responsive to the relative amount of green biomass and that 63 

could be used to track vegetation dynamics (Goward et al., 1985). The attractions of such 64 

‘Vegetation Indices’ (VIs) are obvious: they are visually impressive as spatial and temporal datasets; 65 

they are simple to produce and provide a single quantity to interpret; they compensate for some of 66 

the extraneous factors that can otherwise complicate lower level EO signals; and they can often 67 

provide effective information for time series analyses, where the timing, rather than the magnitude 68 

of events is of importance (e.g. vegetation phenology). Further, such indices can be directly targeted 69 

at particular functional or physical vegetation properties, such as the fraction of absorbed 70 

photosynthetically active radiation (fAPAR) or Leaf Area Index (LAI), by design (Gobron et al., 71 

2002, 2010) or empirically (Rochdi and Fernandes, 2010). In the former case a calibration is 72 

achieved using a set of radiative transfer model runs over a range of conditions (Gobron et al., 73 

2000). In the latter, extensive ground-based measurements must be made (Chen et al., 2002) and the 74 

form of the relationship with a particular VI assumed. Such efforts are fast to process and often 75 

effective, especially for near-real-time survey. They have a range of known failings (Baret and 76 

Guyot, 1991), but some of these, such as dependence on the angular conditions of data acquisition 77 
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can be reduced by treating the data to normalise for such effects (e.g. Rochdi and Fernandes, 2010). 78 

Ultimately though, however much care is taken to treat such effects, methods assuming such fixed 79 

mappings from VIs with ‘statistical’ models are open to many criticisms, some of the more 80 

significant of which could be considered: (i) they fail to make full use of the information content of 81 

the observational data; (ii) they (often) fail to make use of our understanding of the physics of the 82 

situation; (iii) they need recalibration if conditions change (e.g. sensor band pass functions or scale 83 

of observation); (iv) they tend not to treat uncertainty in the mapped product in any rigorous way 84 

(mostly, they fail to consider this at all).This is a judgement call.  85 

 86 

An alternative stratagem has been to build mathematical models of the physics of radiation 87 

interactions with vegetation canopies and the intervening atmosphere, phrased as functions of 88 

'control' variables (polarisation, wavebands, viewing and illumination angles etc.) and (bio) physical 89 

parameters or ‘state variables’ (LAI, leaf chlorophyll concentration etc. for the canopy, and aerosol 90 

optical depth, ozone concentration etc. for the atmosphere), and to use these to attempt to interpret 91 

the satellite signal. We may call these radiative transfer (RT) models. To tie in with discussions 92 

below and to provide consistency with the data assimilation literature, such models are called here 93 

‘observation operators’ (denoted H x( )) in that they map from the state variable vector x  to the EO 94 

signal (as a vector) R  for a given set of control variables, so the modelled signal vector R = H x( ) .  95 

The ‘remote sensing inverse problem’ then is to obtain an estimate of some function of x , F x( )  96 

from measurements R . How this may be achieved is discussed in more detail below. 97 

 98 

Much effort has been devoted to producing information from EO data about specific biophysical 99 

quantities that are relevant to science and society. A major focus of this has been to attempt to 100 

provide estimates of (green) LAI. Garrigues et al. (2008) consider four representative EO-derived 101 

global LAI products, with core spatial resolutions of 1 km or coarser, that use what might be 102 
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considered state of the art methods for multi-year dataset generation. The reader is referred to that 103 

paper for detailed information on the products, a product inter-comparison and validation against 104 

independent ground measurements. The temporal resolution of the products varies from 8 days to 1 105 

month. Three of the products (ECOCLIMAP, GLOBCARBON (V1), and CCRS) are derived from 106 

assumed VI relationships with LAI. A fourth (MODIS (C4)) uses such a relationship for a backup 107 

algorithm. Three of the products (GLOBCARBON, CYCLOPES (V3.1) and MODIS) make use of 108 

RT models in attempting to estimate the LAI. In the case of GLOBCARBON the RT model is used 109 

to calibrate the VI-LAI relationship. For MODIS a look up table derived from the RT model is used 110 

to map red and near infrared (NIR) bidirectional reflectance data to LAI, and for CYCLOPES a 111 

neural network derived from an RT model is used for the mapping from red, NIR and shortwave 112 

infrared (SWIR) portions of the electromagnetic spectrum.  A feature of these uses of RT models is 113 

that they can map many channels of input data to one (or many) outputs. The one-to-one mapping 114 

used in VI design and/or calibration is then just the simplest case of this more general RT approach. 115 

 116 

A major new effort in satellite data provision is the GMES (Global Monitoring for Environment and 117 

Security; www.gmes.info) programme (Council of the European Union, 2010). It is an EU initiative 118 

set up to provide timely information on key environmental variables for policy makers and public 119 

authorities, and is intended to be a major EU contribution to understanding and managing climate 120 

change.  Six thematic areas are being developed: marine, land, atmosphere, emergency and security 121 

and climate change. The land monitoring service is provided via the GEOLAND2 project 122 

(www.gmes-geoland.info), which oversees the generation of products derived from satellite data, 123 

providing information on a wide range of variables including LAI. GMES is a European 124 

contribution to GEOSS, the Global Earth Observing System of Systems (European Commission, 125 

n.d.). The Sentinels are a series of satellites being developed by the European Space Agency that are 126 

specifically designed to address the space observation requirements of GMES. There are five 127 

Sentinel missions, each of which will consist of a pair of satellites (for details see Aschbacher et al., 128 

http://www.gmes.info/
http://www.gmes-geoland.info/


 6 

2012 and dedicated Sentinel mission papers, all this RSE issue). This paper is primarily concerned 129 

with methods for the retrieval of biophysical parameters of terrestrial ecosystems, including LAI, 130 

from instruments at arbitrary spatial resolutions, sun-sensor geometries and optical wavelengths. 131 

Consequently the techniques described here are directly relevant to Sentinels 2 and 3 missions. 132 

Sentinel 2 has a medium resolution multispectral imager (MSI) in the optical domain with 4 bands 133 

at a 10m resolution, 6 bands at 20m and 3 bands at 60m. These 13 spectral channels (Table 1) are 134 

distributed in the visible and near infrared and shortwave infrared regions. The Ocean Land Color 135 

Instrument (OLCI) instrument on board the Sentinel 3 platform is a coarser (circa 500m) resolution 136 

instrument, similar to MERIS that is designed for global monitoring applications. In principle the 137 

system described in this paper could also be extended to other wavelength domains and 138 

consequently be used to integrate data from the entire suite of EO missions. 139 

  140 

TABLE 1 ABOUT HERE 141 

 142 

An additional context for this paper is the growing interest in the application of wider constellations 143 

of satellites for environmental and disaster monitoring. A manifestation of this is the NASA A-train 144 

(NASA, 2010), which is a formation of complementary satellites and sensors taking observations at 145 

close to the same time. Other examples include relatively low cost satellites and instruments with a 146 

suite of similar instruments flying in formation to provide global daily viewing opportunities at 147 

mid-resolution (10-30m), for example the Disaster Monitoring Constellation (DMC) (DMCII, 148 

2010). The concept can potentially be applied to more heterogeneous systems, such as the ‘virtual 149 

constellation’ for Land Surface Imaging (LSI) concept promoted by the Committee on Earth 150 

Observation Satellites (CEOS) to optimise benefits from land remote sensing systems (CEOS, 151 

2011a). There are clear benefits for monitoring frequency if data from a wider range of sensors are 152 

available, but the more heterogeneous the set of sensors (in terms of spatial resolution and 153 

wavelength domains) the more important it is to formalize appropriate methods to optimally merge 154 
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information from these sources. 155 

 156 

1.2 Optimal estimation 157 

The remote sensing inverse problem described above can be phrased as an optimal estimation 158 

problem, requiring an estimate of a distribution around the minimum of some function of an 159 

observation residual vector, such as an 2 -norm. Our assimilation system is based on the joint 160 

inversion approach of (Tarantola, 2005) and is most conveniently formulated in what is often called 161 

a Bayesian context (Enting, 2002), which means that each piece of information (including any prior 162 

information on the state variables) is represented by a probability density function (PDF). 163 

Combining this information yields an a posteriori PDF for the parameters, which is the 164 

result/solution of the assimilation problem. If all of these PDFs are Gaussian and the models 165 

involved not too non-linear (potentially after a transformation) then the posterior parameter PDF 166 

can also be approximated by a Gaussian: 167 

 168 



 ( x )  exp J x   169 

 170 

which is the maximum likelihood estimate of the state variables x, thus the minimum of a cost 171 

function which takes the form: 172 

 173 

J x( ) = Ji x( )
i

å                      (1) 174 

 175 

where Ji x( )  is a cost function expressing a constraint i, a member of some set of constraints.  176 

 177 

 Much of the earlier literature on estimating 

   

x for vegetation monitoring from a physical basis 178 

concentrated on exploring options in numerical minimisation approaches (see e.g. the review by 179 
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Kimes et al. (2000)) based almost entirely on using a single cost function Jobs x( )  expressing a 180 

mismatch between EO data and the prediction of an observation operator H x( )  (a radiative transfer 181 

model). The optimisation methods explored include, but are not limited to, downhill simplex 182 

(Privette et al., 1994), gradient methods (Gill et al., 1981; Liang and Strahler, 2002), neural 183 

networks, look-up tables and genetic algorithms (GA) (Combal et al., 2003; Myneni et al., 1995; 184 

Weiss et al., 2000). Although appropriate optimisation strategies and computer implementations 185 

have been around for some time that make use of 

   

¢ J obs
, the gradient of 

   

Jobs
 with respect to

   

x, in 186 

locating the minimum, they have not been widely used in terrestrial EO monitoring, primarily 187 

because of the perceived computational cost and numerical issues if finite difference methods are 188 

used to estimate 

   

¢ J obs
, and more particularly because it is no trivial job to differentiate radiative 189 

transfer models. The advent of automatic differentiation (AD) methods and tools such as TAF (e.g. 190 

Giering and Kaminski, 1998, Lavergne et al., 20076) or TAPENADE (e.g. Qin et al., 2007) means 191 

that calculating 

   

¢ J obs
 for radiative transfer or other models is now quite feasible at computational 192 

costs not greatly dissimilar to the calculation of 

   

Jobs
. The approach has first been applied to rather 193 

simple RT models such as RPV (Lavergne et al., 2007) and a two-stream model (Pinty et al., 2007; 194 

Clerici et al., 2010), but this is equally appropriate for more complex models as we show here. The 195 

ability to make rapid, exact calculation of the gradient vector not only widens the choice of 196 

algorithms that might be used to minimise the cost function, but also provides a route for potentially 197 

faster state vector estimation, and perhaps most importantly allows larger dimensioned problems to 198 

be tackled. Qin et al. (2008) were perhaps the first to apply AD to more complex RT models 199 

(MCRM of Kuusk (1995)) using a combination of GA and a cost function-based method using ¢Jobs
 200 

in the region of a trust region derived from the GA. In this case 7 members of the (dimension 14) 201 

state vector are estimated, but only at a single point in time. Results are not shown for parameters 202 

other than LAI, and no detailed consideration of uncertainty is included, but the ability to use AD in 203 

such scenarios is clearly demonstrated. 204 

 205 
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Data producers and users generally have little influence over control variables to the estimation 206 

problem, as satellite sensors and missions are usually designed to serve (or are used to serve) 207 

multiple purposes, and involve compromises in sensor design and orbits. Any one sensor (and the 208 

resultant set of control variables entailed) then will tend to be sub-optimal for a task as specific as 209 

vegetation monitoring. Inevitably this results in individual EO data sources having information 210 

content that is too low to provide accurate retrievals of the entire state vector space. Some 211 

parameters may never be completely retrievable on the basis of observation alone, especially where 212 

there is equifinality between two or more parameters over the domain of the observed data, that is, 213 

when the same model state can be reached by different combinations of state variables. See for 214 

example (Beven, 2006) for an overview of this issue or Lewis and Disney (2007) for an attempt at 215 

explaining mechanisms impacting this in canopy radiative transfer. The core of the issue is that the 216 

observations only refer to a subspace of the unknown state variable space. In this case, no 217 

information on some directions in state space can be gained from the observations, and their values 218 

will have to be constrained using for example, prior information. Such problems are described as 219 

being ill-posed.  As an example, consider the often-desired goal of tracking the temporal evolution 220 

of some parameter of interest such as LAI, to provide information on phenology. Inverting a model 221 

on a daily basis where there may only be a small number of observations, or none at all, is typically 222 

not possible as a single observation does not have enough information to constrain all of the state 223 

vectors of typical radiative transfer models. This has been solved implicitly in the production of 224 

many current EO data products by assuming the model parameters to be constant over some time 225 

interval, and many of the ancillary parameters such as those governing leaf and soil properties are 226 

simply assumed known (and fixed as is the case when using VIs). Assumptions such as temporal 227 

invariance or knowledge of ancillary variables are pragmatic responses to the remote sensing 228 

problem being ill-posed, but it is better if possible to seek less ad hoc methods for constraining our 229 

estimate, especially if we wish to estimate uncertainty in the product. 230 

 231 
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A mechanism that provides scope for dealing with such problems is the suite of tools that are 232 

collectively referred to as 'Data Assimilation' (DA). There is no strict definition as to what 233 

constitutes DA but it is taken here to mean the statistically optimal merging of data and models. 234 

Optimality, in this sense, implies the need to take into account uncertainties in all parts of the 235 

system.  236 

 237 

1.3 Data Assimilation 238 

Data assimilation can be seen as mechanism for combining models and data. The defining feature of 239 

DA, at least by the definition provided in this paper, is that it enables the use of additional 240 

assumptions to make parameter estimation viable in situations that exhibit ill-posedness. In essence, 241 

we have a mechanism through equation 1 to combine multiple constraints. An example of this that 242 

has long been used either explicitly or implicitly in the inference of land surface parameters from 243 

EO is constraint via a priori estimates of parameter values or ranges (or more generally, 244 

distributions). What DA specifically brings to bear on the problem is a dynamic model of parameter 245 

evolution in space and/or time. 246 

 247 

Early examples of data assimilation systems are those used to improve short-range weather 248 

predictions from meteorological models (Ghil and Malanotte-Rizzoli, 1991). In these systems the 249 

number of state variables is typically huge, often greater than 10
6
, because of the large number of 250 

interconnected sub-domains used to represent the atmosphere in a 3D grid. The number of 251 

observations available is typically several orders of magnitude less than this, and in consequence 252 

the problem is ill-posed. However, including a constraint that the final solution should not diverge 253 

too far from an a priori estimate (typically supplied by a previous model run) tends to result in a 254 

tractable solution. The schemes used for these problems are referred to as 'variational', being based 255 

in the field of mathematics dealing with the calculus of variations, and are closely related to the DA 256 

system described in this paper. A 'strong constraint' variational DA system assumes that the 257 
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underlying process model prescribing the state vector evolution is correct (i.e. there is a model 258 

trajectory that matches the observations). In this case it is generally only the initial state of the 259 

system that is estimated by the DA procedure, but this approach can also be used to calibrate models 260 

(i.e., to optimise estimates of model process parameters) (Knorr et al., 2010). If the state vector is 261 

allowed to deviate from the model predictions then this is referred to as a 'weak constraint' DA 262 

system (Zupanski, 1997). It is this latter type that is used here and is discussed more completely in 263 

later sections. 264 

 265 

We note that these systems have been exploited to estimate LAI from MODIS data by making use 266 

of a coupled phenology temporal trajectory model with a radiative transfer model (Xiao et al. 2009; 267 

Xiao et al. 2011). MODIS LAI is assimilated into a crop model using a variational technique in 268 

Fang et al. (2008a). The variational approach is shown to help in retrieving surface fluxes in Olioso 269 

et al. (2005) and Qin et al. (2007), and has found wide application in the hydrological literature (see 270 

for example McLaughlin, (2002)). 271 

 272 

Another related set of techniques in the DA canon may be called sequential methods. The most 273 

widely-known and widely-used example of these is the Kalman Filter. Sequential methods generally 274 

only consider observations at a single time step and adjust the model state vector at that time by an 275 

amount proportional to the differences between the observations and the predictions of those 276 

observations using that model state. Using a variant of the Kalman Filter, known as the Ensemble 277 

Kalman Filter (Evensen, 2003), Quaife et al. (2008) demonstrated the assimilation of satellite 278 

reflectance data into a simple ecosystem model using an RT model as observation operator. Other 279 

efforts have used these techniques to assimilate e.g. snow data (Slater and Clark, 2009) or MODIS-280 

derived LAI into a phenology model (Stöckli et al., 2008). The related technique of particle filtering 281 

has been used to assimilate microwave temperature in order to infer soil moisture dynamics in Qin 282 

et al. (2009).  283 
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 284 

The Earth Observation Land Data Assimilation System (EO-LDAS) study funded by ESA aims at 285 

supporting the generation of a generic land data assimilation system by using the full information 286 

content provided by observations from satellite constellations. Such a system, in eventual 287 

operational form, is intended primarily to improve the quality and consistency of land surface 288 

products generated from multi-sensor EO data. The project is focussed on developing a generic 289 

scheme and software prototyping for use with medium to mid spatial resolution (in the range 10m – 290 

500m) optical data. The principal design concept is to allow integration of data from different 291 

satellites observing the surface of the earth at different sun-sensor geometries, wavebands and 292 

spatial scales, such as that supplied by Sentinels 2 and 3, in a physically consistent manner, and to 293 

provide information on the state of the surfaces with well-quantified estimates of uncertainty. It also 294 

demonstrates the idea that predictions based on data from one sensor can be made from a DA 295 

system driven by observations from another, a concept that could potentially be used to aid 296 

vicarious sensor calibration.  297 

 298 

2 The EO-LDAS prototype  299 

2.1 The EO-LDAS Scheme 300 

The EO-LDAS prototype is an initial version of the scheme, designed to 301 

carry out a core set of DA functions.  In particular, in the scheme, it performs an atmospheric 302 

correction of images to top-of-canopy reflectance, retrieves canopy state variables using surface 303 

reflectance data and a constraint model and simulates top-of-atmosphere radiance or reflectance for 304 

a given surface and atmosphere.  This preserves the essential features of a more comprehensive 305 

system (incorporating a fuller coupling between the surface and atmosphere), while allowing 306 

development and further study of the most important elements - the observation operators and the 307 

assimilation techniques.   308 

 309 
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To simplify the prototype, we have assumed a large length scale for variations in atmospheric 310 

scattering properties, and a very short length scale for surface variability.  With these assumptions, 311 

we can correct an image (or sub-image) with a single set of atmospheric state variables, use 312 

reflectance data in a multi-temporal assimilation on a cell-by-cell-basis, and simulate a top-of-313 

atmosphere radiance field using the same atmosphere for each of a set of model grid cells. This 314 

process can be iterated to achieve the surface-atmosphere coupling.  To relax either constraint 315 

would mean we have to deal with the inversion of a coupled surface-atmosphere problem over a 316 

large number of cells, which would require considerable computing resources, both in terms of 317 

memory (for the covariance structures involved) and the time needed to carry out the actual 318 

inversion, without necessarily improving our ability to monitor the land surface. A tutorial guide 319 

explaining the functionality and use of the prototype system is available online
1
. 320 

 321 

The DA system can be considered to have two main components: (i) a set of constraints, expressed 322 

via equation 1; (ii) an assimilation algorithm, i.e. a way to apply the constraints to achieve the 323 

optimal estimate of the state vector. The set of constraints in EO-LDAS involves: (i) an 324 

observational constraint Jobs x( ) , requiring data (from EO or ground measurements) and a model for 325 

translating from state space to observation space (the observation operator); (ii) a dynamic model 326 

constraint Jmodel x( ) , conditioning the temporal (and/or spatial) evolution of the state vector; (iii) 327 

physical or empirical bounds and/or distribution constraints Jprior x( )  to the state vector elements; 328 

Thus, in EO-LDAS, equation 1 becomes: 329 

 330 

J x( ) = Jobs x( ) + Jprior x( ) + Jmodel x( ) 331 

 332 

Each of these constraints has associated with it an error model. In the following sections, we 333 

                                            
1 http://www2.geog.ucl.ac.uk/~plewis/eoldas/ 
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describe the set of constraints and the DA algorithm. We stress that in the text below, we use the 334 

symbol x  to refer to the set of state variables that we wish to estimate. In EO-LDAS this essentially 335 

means a representation of the state at each sample points in time (and/or space) that we consider. 336 

So, for example if we were trying to estimate Leaf Area Index and leaf Chlorophyll content at one 337 

location for every day of the year, we would have a state vector with 361x2 elements. In addition, 338 

EO-LDAS has the capacity to augment this state vector with ‘static’ state representations (some 339 

term affecting one or more of the constraints that we wish to be considered constant in space/time). 340 

 341 

2.2 Observational Constraint 342 

Given the EO context of this system, at least one of these constraints should be based on 343 

observations. The cost function is generally weighted for observation and observation operator 344 

uncertainty and correlation (assumed in EO-LDAS Gaussian and described by 



C
obs

): 345 

 346 

Jobs x( ) =
1

2
R - H x( )( )

T

Cobs

-1 R - H x( )( )                   (2) 347 

 348 

where T  denotes the transpose operator.  This is the penalisation associated with differences between 349 

the predicted and observed reflectance values. The covariance matrix Cobs
 describes the uncertainty 350 

in the observations (and also formally, in the observation operator). As noted, the purpose of the 351 

observation operator H x( ) is to translate information from the state space to that of the 352 

observations, and is in practice a radiative transfer model. For ease of implementation (mainly 353 

involving spectral sampling issues), when different sensor types are used in EO-LDAS, a set of 354 

Jobs x( )  terms is developed, with one for each sensor type. 355 

 356 

There have been many attempts to create observation operators 

   

H x( ), varying in complexity, 357 

accuracy and computational cost. Goel (1988) provides a review of most of the concepts for 358 
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radiative transfer model developed for reflectance from vegetation canopies at optical wavelengths 359 

(see also (Goel and Thompson, 2000), with (Tha Paw U, 1992) covering related materials for 360 

thermal emitted radiation and (Fung and Chen, 2010) for the microwave domain. Some updates and 361 

model intercomparisons are provided by Sobrino et al. (2005) (thermal) and Widlowski et al., 362 

(2007) (optical). The focus in this paper, and in the prototype EO-LDAS is on the use of optical 363 

sensor data, but the approach outlined here is easily adapted for use in other wavelength domains. 364 

 365 

In a similar way, atmospheric properties, such as aerosol optical depth and water vapour content, 366 

need to be accounted to obtain accurate estimates of surface properties. This can be achieved by 367 

coupling the surface model with an atmospheric model, and solving for both the surface and 368 

atmosphere parameters simultaneously (Verhoef and Bach, 2003). Some (probably most) 369 

approaches to surface interpretation use surface reflectance that has already been ‘corrected’ for 370 

atmospheric effects (Vermote et al., 2002), but a full decoupling of the problem, at optical 371 

wavelengths at least, cannot be achieved without knowledge of the surface Bidirectional 372 

Reflectance Distribution Function (BRDF) (Lyapustin and Knyazikhin, 2001; Lyapustin et al. 2006) 373 

(or at least a normalised form of this) (Vermote et al., 1997).  374 

 375 

The observation operator we use in this paper is developed from the original semi-discrete model of 376 

Gobron et al., (1997). It has a state vector describing canopy architecture and three spectral terms, 377 

although these are all defined as functions of other parameters as described below (Table 2). The 378 

soil reflectance is assumed Lambertian in the model, although it could be adapted to incorporate a 379 

soil directional reflectance model. As stated here then, the (canopy-soil) model estimates the 380 

directional reflectance factor at a set of viewing and illumination angles for a given narrow 381 

waveband. Since the model must be capable of predicting the reflectance at arbitrary (solar 382 

reflective) wavelengths, spectral models are incorporated in the code to predict the soil 383 

(Lambertian) reflectance and leaf (bi-Lambertian) reflectance and transmittance. Since model 384 
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derivatives are required, we use for simplicity here: (i) the linear soil reflectance model of Price 385 

(1990); and (ii) an approximation to the PROSPECT leaf reflectance/transmittance model of (Féret 386 

et al., 2008), being a minor modification of the model of (Jacquemoud and Baret, 1990). The 387 

approximation was developed for possible processing speed enhancements, but is identical in form 388 

to PROSPECT if the parameter N (table 2) is 1, and very close to the original model over the range 389 

of N 0.8 to 2.5.  390 

 391 

The soil spectral model of Price (1990) characterises a given soil at field capacity as a linear 392 

combination of Empirical Orthogonal Functions (EOFs) based on a database of moist (field 393 

capacity) soil spectra. Four EOFs are found to account for 99.6% of the cumulative variance of all 394 

the soils considered, so, as is usual, we use up to four terms in this implementation. Parameter 395 

ranges in Table 2 come from (Price, 1990), figures 11-13.  396 

 397 

TABLE 2 ABOUT HERE 398 

TABLE 3 ABOUT HERE 399 

 400 

The leaf angle distribution is categorised in the model of Gobron et al., (1997) and so not set by the 401 

assimilation procedure (i.e. it must be pre-defined or the different categories assessed separately: 402 

this could ultimately be improved using a continuous description). The assimilation scheme can 403 

provide estimates of the remaining (12) state variables for each time period modelled. Following 404 

(Weiss et al., 2000) we apply approximate linearization functions to some of the terms (Table 3). 405 

The reasons this is appropriate here are: (i) they better condition the problem for optimisation; (ii) 406 

the assumptions of Gaussian distributions of errors are more appropriate in this case. 407 

 408 

Differentiated versions of the observational cost are required to enable the use of efficient gradient 409 

descent minimisation routines, so we can benefit from  access to ¢Jobs x( ) , the derivative of Jobs x( )  410 
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with respect to x . This is: 411 

 412 

¢Jobs x( ) = - ¢H x( )
T

Cobs

-1 R - H x( )( )                    (3) 413 

 414 

where ¢H x( ) is the derivative of H x( )  with respect to x . An adjoint code of the cost function for 415 

the semi-discrete model, i.e. code for direct calculation of ¢Jobs x( )  that avoids the need for explicit 416 

calculation and storage of ¢H x( ) , was generated from the source code of the model by the 417 

automatic differentiation tool TAF (Giering and Kaminski, 1998). The adjoint code implements the 418 

chain rule of differentiation in the so-called reverse mode. It provides the gradient information that 419 

is accurate up to machine precision at a computational cost that is not greatly dependent of the 420 

length of the gradient vector and well below that of the multiple runs of the semi-discrete model 421 

that would be required for a finite difference estimate.  422 

 423 

We obtain an estimate of the posterior uncertainty through consideration of the curvature at the 424 

global minimum in state space. This is provided by the inverse of the sum of the constraint 425 

Hessians, the Hessian for this constraint being ¢¢Jobs x( ) : 426 

 427 

¢¢Jobs x( ) = ¢H x( )
T

Cobs

-1 ¢H x( ) - ¢¢H x( )
T

Cobs

-1 R - H x( )( )                             (4) 428 

 429 

Although it should be possible to develop a Hessian code in much the same way as done for the first 430 

derivative, that has not yet been done within EOLDAS, so a linear approximation to the Hessian is 431 

achieved, using finite differences. As we will see below, the algorithm used to perform the 432 

optimisation is iterative, but the potentially high cost of using finite differences for the Hessian is 433 

unimportant in this sense, as it only has a role in estimating the posterior uncertainties. 434 

 435 
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2.3 Process model constraint 436 

The EO-LDAS prototype is designed to allow the user to interface their own constraints, so long as 437 

they provide code to calculate the cost function and its first and second order derivatives. This 438 

allows a mechanism whereby (bio)physical process models can be  used to constrain the solution 439 

and or estimates of the variables controlling those models can be developed. The focus of the 440 

prototype software and that of this paper are on understanding how to use DA concepts to improve 441 

estimates of biophysical variables from EO data, rather than to test specific process models 442 

however. For this reason, we have currently only implemented a linear process model in the system: 443 

 444 

M x( ) = Ax + b                     (5) 445 

 446 

where A  and b  are a matrix and vector respectively. One advantage of designing the prototype 447 

system in this manner is that it provides a flexible framework for changing the underlying model. 448 

Unlike in a sequential system, this formulation directly allows for any model state vector element to 449 

be linked to any other, since x here contains the state representation at all sample times (spaces), so 450 

different time/space scales can be readily incorporated. The cost function associated with this 451 

process model then is: 452 

 453 

Jmodel x( ) =
1

2
x - M x( )( )

T

Cmodel

-1 x - M x( )( ) =
1

2
I - A( ) x - b( )

T

Cmodel

-1 I - A( ) x - b( )              (6) 454 

 455 

where I  is the identity operator. Jmodel x( )  is the cost incurred by departure of the model state from 456 

that predicted by an underlying process model. An interpretation of A  is as the model derivative. 457 

The model uncertainty matrix Cmodel
 therefore expresses the uncertainty in this derivative, including 458 

any inherent uncertainty in the process model.  It such a case, it might often be pragmatic to specify 459 

only diagonal terms in Cmodel
 as further details of model structure are often difficult to obtain. In 460 
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any case, we can see that EO-LDAS could be interfaced to a process model such as the Carbon Flux 461 

model DALEC used by Quaife et al. (2008) or any other for which the derivative might be obtained 462 

(e.g. using AD) by augmenting the state vector x  by any terms that we might wish to drive the 463 

model.  464 

 465 

Whilst the EO-LDAS scheme allows for linking to ‘biophysical’ or other process models, that is not 466 

the main focus of the prototype. Indeed, there are many cases, for instance when conducting a 467 

comparison of information derived from EO data and some biophysical model trajectory, when it 468 

may be undesirable to directly incorporate a detailed process model. Further, and perhaps more 469 

importantly, a fundamental requirement of the EO-LDAS system is that the state vector, x , contains 470 

at least the parameters of the observation operator H x( )  for every point in time (and/or space), and 471 

many of these may not be provided by a biophysical process model designed, for example, to 472 

estimate total Carbon fluxes. We should see the matrix A  (and if needed, the vector b ) then as a 473 

much more general interface to ‘process modelling’ within an optimal estimation environment.  474 

 475 

We can for example consider the benefits of approaches such as Twomey-Tikhonov regularisation 476 

or variations around this theme (Rodgers, 2000). Examples of this that we explore further below are 477 

first and second order difference constraints. In essence these improve the conditioning of the 478 

inverse problem by smoothing or regularising the solution, which comes about because they 479 

constrain derivatives (first or second order here) to be zero. In a weak constraint DA system such as 480 

that used here, the model is not strictly enforced (this would be clearly undesirable in these 481 

derivative constraints) but rather the degree of smoothness in the outcome is traded off against the 482 

other factors in J x( )  through the model uncertainty matrix. In other words, the cost function will 483 

penalise temporal trajectories of parameters that are not flat, but this is ‘balanced’ with a goodness 484 

of fit to the observations and departure from the prior estimate. In practice this constrains the 485 

solution toward a smooth evolution by minimising the high frequency components of the temporal 486 
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parameter trajectory. A similar approach has been taken by Quaife and Lewis (2010) for linear 487 

observation operators. Viewing this form of solution as a combination of state variable estimation 488 

and filtering, we note that the filter characteristics are controlled by the nature of matrices A  and 489 

Cmodel
, the former controlling the cut-off frequency of the filter and the latter, if simply diagonal, 490 

controlling the degree of dampening of the unwanted high frequencies. In this context, we can 491 

consider b  a bias term, which we set to zero. In this case: 492 

 493 

Jmodel x( ) =
1

2
Dx( )

T
Cmodel

-1 Dx( )   494 

 495 

where D = I - A( ). The derivatives of this are: ¢Jmodel x( ) = DTCmodel

-1 Dx  and ¢¢Jmodel x( ) = DTCmodel

-1 D. To 496 

achieve Twomey-Tikhonov regularisation then, which we view as an empirical process model, D 497 

here becomes simply a (N
th

 order) differential operator (Quaife and Lewis, 2010). In many 498 

situations, we must assume the uncertainty in this empirical constraint unknown. The minimum 499 

error model then is a constant value for which we can use a scalar term g : 500 

 501 

Jmodel x( ) =
g 2

2
xT DT D( ) x                                (7) 502 

 503 

We can interpret g  as a ‘smoothness term (or g -1 as a roughness term) that controls the weighting 504 

of the derivative (model) constraint with respect to the other constraints. It is worthwhile at this 505 

point trying to relate this back to the discussions on process models. This is most readily achieved 506 

by considering a first order derivative constraint. If applied at lag 1 day for a temporal constraint, 507 

we can interpret this as an expectation that the state vector tomorrow will be the same as today (i.e. 508 

the derivative is zero). If we want to relate this to equivalent sequential methods, we can say that 509 

this is a zero-order process model. The term g -1 then can be interpreted as uncertainty (phrased as 510 
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standard deviation) in this model, or alternatively as the growth in uncertainty over a one day 511 

period. Similar interpretations apply for other derivative constraints: a second order derivative 512 

constraint is equivalent to a first order process model. Equation 5 then is a viable empirical process 513 

model constraint, but we have yet to tackle the fact that the smoothness g  is unknown. We also note 514 

that if we use a scalar for g , we are assuming the same smoothness for all state variables at all times 515 

(places).  516 

 517 

An option that arises with dynamic models (where we are making connections between elements of 518 

the state vector at different times (places) is what to do about boundary conditions. Even with a 519 

simple differential model this needs consideration in forming the D matrix. Among the various 520 

options, especially when dealing with annual or multi-annual datasets, an attractive one is to assume 521 

periodic boundary conditions, and that is done here. This means that in calculating D at the end of 522 

the year (edge of the matrix) we perform the digital differential with state elements from the 523 

beginning of the year.  524 

 525 

It is generally found (e.g. Twomey (2002)) that quite a broad range of model uncertainty 526 

(smoothness) estimates can provide an acceptable solution, so we do not expect the results to be 527 

overly-sensitive to the choice of this ‘hyper-parameter’. We could make a rough guess at the model 528 

uncertainty, but that is likely to be unsatisfactory in the general case. If we under-estimate it by too 529 

much, we can over-dampen most of the state vector. Equally, if we greatly over-estimate the model 530 

uncertainty, the impact of the temporal constraints is minimal: in the extreme, an infinite model 531 

uncertainty (zero smoothness) leads to a solution without model constraint. Whilst there are several 532 

strategies that can be employed to estimate the model uncertainties (hyper-parameters), perhaps the 533 

most fruitful in the context of EO-LDAS is running a cross-validation exercise. The idea is that an 534 

independent dataset is used to test the robustness of the solution for a particular value of the hyper-535 

parameters. An optimal estimate of the hyper-parameters (or distribution thereof) can be obtained 536 
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by minimising a cost function with the independent observations. This can be achieved with a sub-537 

set of observations to test a solution obtained from the rest of the dataset, a strategy that when 538 

repeated over different subsets becomes known as generalised cross validation becomes known as 539 

generalised  cross validation (Wahba, 1990, Eilers, 2003 and Lubansky et al., 2006).. Alternatively, 540 

we might use data from an independent sensor, although accurate absolute calibration between the 541 

sensors is needed for that. 542 

 543 

2.4 Prior Constraint 544 

An additional constraint mechanism is implemented in EO-LDAS, that we term a prior constraint. 545 

Its role, via the cost function Jprior x( )  is to impose a penalty for deviation from some previously 546 

defined state, xprior
: 547 

 548 

Jprior x( ) =
1

2
x - xprior( )

T

Cprior

-1 x - xprior( )                   (8) 549 

 550 

where  Cprior
 expresses the uncertainty of the prior model state, a measure of our belief in the prior 551 

estimates, xprior
. The derivatives of this cost function are ¢Jprior x( ) = Cprior

-1 x - xprior( ) ; 552 

¢¢Jprior x( ) = Cprior

-1
. A comparison of equations 6 and 8 shows that this is really just another form of 553 

model constraint, with M x( ) = xprior
, which can be achieved with the existing model constraint by 554 

setting b = xprior
. In practice, this allows us to enforce a prior belief in the distribution and range of 555 

the state vector elements (e.g. a climatology or physical or otherwise know ‘reasonable’ 556 

distributions), although only Gaussian distributions can be considered.   557 

 558 

2.5 DA algorithm 559 

The various constraints discussed above provide the cost function in equation 1 through their 560 
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summation. This also applies to the derivatives ¢J x( )  and ¢¢J x( ) . The cost function J x( )  is 561 

minimised using a gradient descent method (i.e. using ¢J x( ) ). Bounds are applied as a final 562 

constraint to the solution, to ensure that the state vector remains within physical limits. These can be 563 

altered by the user for any particular run of the system via a configuration file or command line 564 

interface. In the EO-LDAS prototype we use the limited memory Broyden-Fletcher-Goldfarb-565 

Shanno (L-BFGS-B) algorithm described in (Byrd et al., 1995; Zhu et al., 1997). In principle, 566 

however, a number of different gradient descent algorithms could be used. The L-BFGS-B was 567 

selected for its efficient memory handling for high dimensional problems and the fact that it can 568 

optimise over a bounded domain, which is appropriate for this problem. 569 

 570 

The algorithm then is quite straightforward: (i) read in configuration information and observations; 571 

(ii) provide an initial estimate of all state vector elements that we wish to estimate; (iii) iterate 572 

within the optimisation routine until convergence is reached (or using other criteria) to estimate the 573 

state vector; (iv) calculate the Hessian and then its inverse to provide the posterior covariance 574 

matrix, the estimate of uncertainty. 575 

 576 

It is instructive to consider the contribution of these three terms in the estimates of Hessian matrix. 577 

The observational term can be ill-conditioned if the observations exhibit little sensitivity to some or 578 

all of the state variables, for example due to poor combinations of spectral and/or angular sampling. 579 

The addition of the prior and dynamic model terms then results in improved conditioning of ¢¢J x( ), 580 

as these extra terms compensate for the lack of observation sensitivity to some of the state variables. 581 

They also provide the ability to interpolate (i.e. rely more on the process model) between where we 582 

have observations. Importantly, the uncertainties are tracked throughout this process, so when e.g. 583 

interpolating over large gaps, we get the expected increase in uncertainty.  584 

 585 

The DA system developed here can be viewed an extension of the methodologies that have been 586 
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applied to inverting radiative transfer models by minimising a cost function. The addition of a linear 587 

dynamic model therefore only adds a handful of extra parameters to the problem (namely, the nature 588 

of the dynamic model itself and the associated covariance matrix, Cmodel
, which may be simply 589 

diagonal). This is in a marked contrast with similar methodologies that either use a long time series 590 

of data for inverting one single parameter (in the case of inverting LAI as in (Fang et al. 2008b; 591 

Xiao et al. 2009; Xiao et al. 2011). The temporal smoothness constraint is in itself an important 592 

feature, which is usually performed as a post-processing step after the parameter retrieval (Lu et al. 593 

2007).   594 

 595 

 3. Experimentation 596 

We present a series of experiments to demonstrate the operation of the EO-LDAS prototype and to 597 

explore the sorts of capabilities such a system could provide with data from the Sentinel-2 MSI 598 

sensor (see table 1a for waveband information for Sentinel-2 MSI). The experiments use synthetic 599 

data for observations i.e. are derived from running the observation operator for a given state vector 600 

for what we suppose to be typical Sentinel-2 scenarios over one calendar year. We simulate top hat  601 

function bandpass functions (1 nm sampling) according to the information in Table 1 (see also 602 

Drusch et al., 2012, this issue). The main aim of the experiments is to determine the improvement, 603 

in terms of reduced uncertainty, in biophysical parameter estimation that might be obtained by 604 

applying the EO-LDAS prototype for such scenarios. A subsidiary aim is to demonstrate the 605 

capability of the DA system to make predictions of data from a sensor not used in the DA process. 606 

Here, we do this by using the state vector estimates derived from the DA with synthetic MSI data, 607 

and make predictions of what a SPOT-5-like instrument would view (described below). These data 608 

are used in a cross-validation exercise within the experiments. 609 

 610 

3.1. Experimental setup 611 

In these experiments, we control the time trajectory of a subset of model parameters according to 612 
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the functions given in Table 4, where t is the relative day of year (DOY) i.e. DOY normalised by 613 

365. All other parameters take their default values given in Table 2. The functions for LAI and 614 

chlorophyll broadly mimic typical trajectories of these terms for crops: for LAI, a flat initial period, 615 

followed by a rise to maximum LAI and then a symmetric decrease; for Chlorophyll, a linear rise 616 

and decrease. The more arbitrary functions used for the soil brightness term s1 we include to mimic 617 

rather broad variations over the year that might be supposed to be responses to soil moisture. A 618 

similar function is used here for leaf water, with a time lag of 36.5 days. The quite large variation of 619 

these two latter terms is intended primarily to allow the operation of the data assimilation scheme to 620 

be explored over a wide range of conditions, rather than to too closely mimic some particular 621 

situation. In that context, the rather large time lag between soil brightness variation and leaf water 622 

content is unrealistic, but a larger phase between these terms should test the system to a greater 623 

extent than having all parameters following similar trajectories. Although the full set of state vector 624 

elements is 13 for each time sample, we attempt to retrieve only the 6 elements (no 1, 4, 6, 7, 8, 9 in 625 

table 2) (per time sample) that we vary in these experiments, i.e. we assume the remaining elements 626 

fixed and known. This is partly to reduce the computational time required for the DA and more 627 

broadly because we believe it is sufficient to demonstrate the principles underlying the DA method. 628 

It is quite feasible to permit an estimation of 12 of the 13 elements (not the categorical variable 629 

directly through this method) but this is not the purpose of this exercise, and (arbitrary) variations in 630 

these additional terms would need to be defined to achieve this.  631 

 632 

TABLE 4 ABOUT HERE 633 

 634 

To approximate the Sentinel-2 MSI acquisition geometry (ESA, 2010), we assume one sample 635 

every 5 days (73 samples over the year), with a solar zenith angle corresponding to 10:30 local time 636 

at 50
o
 N, random relative azimuth and random view zenith between 0

o
 and 15

o
. Whilst these 637 

parameters do not provide a precise prediction of the likely MSI sampling and geometries, they are 638 
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close enough to develop an understanding of the likely behaviour of the data.  The random azimuth, 639 

for example, is clearly in error, but since the view zenith angle is so restricted, this will have very 640 

little impact; the local time at 50
o
 N will in reality be slightly later than the nominal equatorial 641 

crossing time used here, but the details of the solar zenith angle are less important here than 642 

inducing a typical variation over the year (32
o
 to 76

o
 here). The simulation of one sample every 5 643 

days mimics close to the maximum sampling achievable by MSI on 2 Sentinel platforms. 644 

 645 

Synthetic observations were also generated for a SPOT5 HRG-like instrument. This sensor has four 646 

wavebands (500-590, 610-680, 790-890 and 1530-1750 nm) (CEOS, 2011b). We have assumed a 647 

revisit period of 13 days (to be out of sync with the synthetic MSI observations), although the 648 

differences are only up to two days from the MSI observations. The view zenith angle was limited 649 

to +/-25 degrees from nadir, with a random azimuth and a local overpass time of 10.30. In total, 28 650 

observations were available in this dataset. 651 

  652 

Uncorrelated Gaussian noise is added to the observations as part of the data synthesis. We assume 653 

the standard deviation of this to vary linearly from 0.008 at the shortest wavelength to 0.020 at the 654 

longest, for both the MSI and SPOT-5 HRG. These values are broadly twice those claimed for 655 

atmospheric correction of data from the NASA MODIS instrument (Roy et al., 2005). If an 656 

atmospheric ‘correction’ were performed on the data, we would generally expect the uncertainty in 657 

surface reflectance to be correlated across wavelengths, as e.g. an under-estimation of aerosol 658 

optical thickness would likely give rise to an over-estimate in reflectance for the shorter wavelength 659 

bands. Here, we have inflated the assumed (MODIS) uncertainties by a factor of two to take some 660 

account of such likely correlation. This highlights one of the benefits of ultimately using a more 661 

fully coupled surface-atmosphere observation operator, in that such features would fall naturally out 662 

of the model formulation and random noise might be more reasonably assumed for top of 663 

atmosphere radiance or reflectance. However, for the purposes of these experiments it is sufficient 664 
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to treat only the surface (canopy-soil) elements of the observation operator. 665 

 666 

We term this simulation set ‘complete’ for the purposes of this paper, in that it expresses a rather 667 

idealised situation where no clouds are present. A second synthetic observation set that we term 668 

‘cloudy’ (36 observations for MSI and 15 for SPOT-5 HRG) is derived from this, for which we have 669 

removed 50% of the observations according to a correlated random function to mimic persistence of 670 

cloud cover. This induces (‘cloud’) data gaps of up to 60 days (mean gap 10.3 days, standard 671 

deviation 12.6 days for MSI). 672 

 673 

As noted above, the cost function minimisation is achieved in EO-LDAS with the L-BFGS-B 674 

algorithm. A bounded minimisation is performed within this code, with the limits specified on the 675 

(transformed) state variables given in Table 2 (transformations in Table 3). Thus, all state variable 676 

estimations below proceed with the prior knowledge of an upper and lower bound. There are several 677 

convergence criteria that can be used with the L-BFGS-B, including an absolute threshold on the 678 

cost function and a relative (per iteration) threshold. In all experiments, these are set to low values, 679 

which means that more iterations might be employed than strictly necessary in any operational 680 

context, but making sure that the global minimum (or very close to it) is reached in each estimation. 681 

Because of the additional costs of processing full bandpass functions, all ‘initial’ processing is 682 

performed using the median (1 nm) wavelength of each waveband. A ‘polishing’ step is then 683 

performed to achieve convergence from this starting value, using the full bandpass sampling. The 684 

effect of applying the full bandpass functions tends to be generally quite minor. 685 

 686 

We have initially tested the system without observational noise and confirm that the scheme 687 

retrieves the truth to within the bounds implied by the convergence criteria and machine precision. 688 

Processing time for a single set of 73 time samples with MSI spectral sampling, solving for 6 state 689 

vector elements for each day of the year (2190 in total), is currently several hours on a 3 GHz Intel 690 
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processor on a single core, but this is partially due to very stringent convergence criteria used whilst 691 

testing the code and partially because this prototype implementation requires some significant 692 

efforts in computer code optimisation.  693 

 694 

In all experiments, we set the prior estimate of the state vector to the values shown in table 2, with 695 

very large diagonal uncertainty terms (8). This effectively removes the prior constraint from 696 

consideration in these experiments, as we wish to conduct experiments based only on model and 697 

observational constraints here.  698 

 699 

In the following sections, we examine the result of applying the weak constraint variational data 700 

assimilation approach described above to the synthetic dataset. For all cases, we assume that the 701 

uncertainty in the observations is known and that it is Gaussian and uncorrelated between 702 

wavebands and between dates. In the first case (3.2), we solve for state vector estimates assuming 703 

no dynamic model constraint other than the weak prior (standard deviation 8). This acts as a 704 

baseline for further experiments.  In the second case (3.3) we assume that model uncertainty g  is 705 

unknown and attempt to solve for it and the state vector for each day in the year with a form of 706 

cross-validation exercise using the SPOT-5 HRV synthetic observations. The ‘true’ values of g  for 707 

individual state vector elements are shown in Table 5. The DA is performed with the ‘complete’ (i.e. 708 

5-day sampling MSI) dataset in that case. Finally, we repeat that experiment for the ‘cloudy’ dataset 709 

(3.4). 710 

 711 

TABLE 5 ABOUT HERE 712 

 713 

Graphical results (figures 1-2) are presented as untransformed biophysical variables (i.e. LAI, Cab, 714 

Cw, Cdm , N and s1), showing: the ‘true’ (‘original’) state vector (dashed line); circles and error bars 715 

(shaded region) shows mean and 95% credible interval bounds (at plus/minus 1.96 standard 716 
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deviations). We will term 1.96 standard deviations ‘uncertainty’ for the remainder of the paper, 717 

unless the statement is otherwise qualified. The uncertainty bounds are slightly larger for the upper 718 

limits than for the lower limits (other than for N and s1) due to the nature of the transformations 719 

used in the approximate linearization (table 3). Tabular results for the experiments (tables 9-12) are 720 

expressed in transformed parameter space, as that is the space in which the state vector is inferred 721 

and in which the Gaussian statistics derived are most natural. 722 

 723 

3.2 Baseline estimates 724 

We first produce a baseline estimate of the six state variables over the 73 time periods in the year, 725 

assuming no constraint to the solution other than the bounds noted above, the (noisy) observations, 726 

knowledge of the uncertainty in the observations, and the weak prior constraint.  727 

 728 

The results for the baseline experiment are produced using the EO-LDAS system with each 729 

observation set (i.e. all wavebands, but only one angular sample) independently. The algorithm 730 

requires an initial guess of the state vector and iterates to its final estimate. The initial estimate of 731 

the state vector in each case and all subsequent estimates is taken as the value used in the prior 732 

constraint.  733 

 734 

FIGURE 1 ABOUT HERE 735 

 736 

In figure 1, the column titled ‘single obs inversion’ shows the results of this state vector estimate for 737 

the six parameters that are varied, transformed back to their biophysical meanings (through the 738 

inverse of the functions in table 3). The sub-plots rows show results for the observation operator 739 

parameters LAI, Cab, Cw Cdm, N and s1 respectively. The uncertainty (average credible interval) 740 

associated with each (transformed) parameter for the baseline experiment is given in table 6 (‘single 741 

obs.’). Relating these uncertainties to the parameter ranges (table 4), we note that they are around 742 
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5% for TLAI, 10% for s1 and TCab respectively for dates where there are observations, more than 743 

20% for (transformed) leaf water and dry matter content and around 33% for N. We can suppose 744 

these then to be typical uncertainty values for MSI sampling (with the assumed noise 745 

characteristics). The cross correlation associated with these, illustrated in table 7 are highly variable 746 

from one sample to the next. The median values given show quite strong negative correlations 747 

between TLAI and TCab and TCw but positive correlations with s1 and TCdm. The median s1 shows 748 

negative correlations with all terms other than TLAI. Despite the fact that the average transformed 749 

LAI uncertainty is only around 5%, we can see if figure 1 that both the error and uncertainty can be 750 

rather high. Around peak LAI, results from individual samples vary by around LAI 2.5 and there is 751 

a general tendency to underestimate. The general trends of Cab and Cw are discernable, but there is 752 

large variation and large uncertainty. The terms that are supposed to be constant here, Cdm and N 753 

depart significantly from their true state and the negative correlation is evident in the state 754 

trajectories around the central part of the year. 755 

 756 

TABLE 6 ABOUT HERE 757 

TABLE 7 ABOUT HERE 758 

 759 

How then can we improve on this situation? The ways to reduce uncertainty are to have data with 760 

lower noise characteristics, to average or smooth in some way, or to add other constraints to the 761 

solution. In any realistic scenario, we have only limited control of the first of these. Averaging and 762 

smoothing then are the general pragmatic responses to such issues. If however this is performed ad 763 

hoc as a post processing step to any individual term (e.g. only LAI) this would not take account of 764 

the cross correlation in the uncertainties which can only give sub-optimal results.  765 

 766 

In spite of these quite high levels of uncertainty (and correlation of uncertainty) for these estimates, 767 

there is clearly quite a strong correlation between the values of the state vector and its neighbours in 768 
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time. The general underlying patterns are apparent in the ‘complete’ scenario, although much of the 769 

(potentially important) detail will be lost in a more realistic ‘cloudy’ scenario. The enhancement of 770 

this temporal correlation effect and the suppression of the noise are at the heart of all regularisation 771 

approaches and the essence of weak constraint data assimilation. If we have some model 772 

(‘expectation’) of the temporal trajectory of the state vector, then we can use this to filter the 773 

unwanted noise. As noted above, this may be a model based on our understanding of radiation 774 

interception and biogeochemical cycling  (e.g. Quaife et al., 2008) driven by some set of external 775 

(environmental) parameters, or it may simply be some parametric curve that we believe can mimic 776 

e.g. the phenological development of LAI. In either case, what DA aims to achieve is an optimal 777 

merging of such models (through the adjustment of the state vector or essentially a calibration of the 778 

parameters controlling the development of state in the model) and the observations. For land surface 779 

monitoring, there are several options for such models for LAI development as mentioned, and up to 780 

a point for some other state variables (e.g. soil moisture), but there is very little to guide information 781 

extraction on many other state variables that affect the observations (e.g. leaf chlorophyll 782 

concentration or dry matter). In such a case, we need to develop simple methods, within a DA 783 

framework. Fortunately, there are many to choose from, although as Twomey (2002) points out, the 784 

results are likely to be similar for most of these methods: indeed, it would be worrying if they were 785 

not.  786 

 787 

3.3 DA: Complete scenario 788 

Here, we apply first order and second order derivative constraints to the solution, but we expect the 789 

results to be broadly similar. In both cases, we need only supply some estimate of the uncertainty 790 

associated with these constraints through the smoothness term g  to achieve a regularised solution to 791 

the state vector estimate. These constraints are applied by incorporating a model that, in the absence 792 

of any observations, would set the first (second) derivatives of the state variables to zero. Assuming 793 

that we apply the same (strength of) constraint to the whole time series, we need to supply an 794 
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estimate of the mean squared first (second) difference in the parameter values (true values in table 795 

5). For the first (second) difference then, this can be thought of as an estimate of the uncertainty in a 796 

zero-order (first-order) process model over one time step as noted above. 797 

 798 

We use a form of cross-validation to estimate g . This is achieved with a synthetic dataset from an 799 

alternative SPOT-5 HRG-like sensor. The core of the exercise then is a comparison between these 800 

synthetic data (driven by the ‘true’ values of the state vector, plus random noise as above) and a 801 

simulation of the same sensor wavebands and acquisition geometry driven by the state vector 802 

estimated from the synthetic data from Sentinel-2 MSI. We choose this cross validation sensor as 803 

one different to MSI to stress that one role of a DA system of this sort can be to provide simulated 804 

data of sensors other than those used in the DA exercise. Here, we measure the average squared 805 

difference between the synthetic HRG data and the DA simulated observations, weighted by the 806 

uncertainty in the synthetic data, and term this RMSE in cross-validation. The locations of the 807 

synthetic HRG observations are indicated in the lower panel of figure 1 by + symbols. 808 

 809 

FIGURE 2 ABOUT HERE 810 

 811 

Figure 2 shows the error in cross-validation as a function of g  for the model first- and second-order 812 

difference constraints for the complete case (black circles and squares respectively). There are clear 813 

minima for these functions, which provide estimates of the optimal model uncertainty (averaged 814 

over all terms). Also shown in the figure is a set of vertical lines that represent the theoretical value 815 

of the smoothness term for each of the state vector elements that vary over time (from table 5). For 816 

the first order constraint, the minimum of the cross validation function is g =150 which is very close 817 

to the theoretical values. For the second order constraint the cross validation RMSE minimum at 818 

g =530 is rather less than the theoretical values. For both cases however, we observe a very broad 819 

minimum, so there is quite a large range of values of g  that allow almost equally good prediction of 820 
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the synthetic cross validation HRG observations. 821 

 822 

TABLE 8 ABOUT HERE 823 

 824 

Tables 8 provides statistics on the uncertainty reduction, (the posterior uncertainty estimate from the 825 

DA relative to that after solving for each sample separately and assuming the prior uncertainty 826 

where there are no observations). The average improvement in uncertainty is 4.07 for the first order 827 

constraint and 2.73 for the second order difference constraint. This is very significant but it must be 828 

remembered that 4/5 of the samples in the ‘single obs’ solution have only the prior constraint and 829 

uncertainty. Examining only locations where observation lie (i.e. ignoring interpolation 830 

performance relative to the a priori estimate), we see the uncertainty reduction drop by nearly 50% 831 

in this case, down to 2.20 for the first order constraint and 1.30 for the second difference constraint. 832 

From those figures, we would suppose the first order constraint to be greatly superior to the second 833 

order constraint, but if we look at the plots in figure 1, the second order constraint results seem to 834 

have more reasonable uncertainty bounds than the other results. This is at least partially because the 835 

apparent uncertainty resulting from the DA is strongly dependent on the value of g  used in the 836 

model constraint: the higher the value of g , the smoother will be the solution and the lower the 837 

estimate of uncertainty. The only check we have done on the veracity of the solution comes from 838 

the cross validation, which is an indirect check: in any non-synthetic experiment we rarely know the 839 

‘truth’ to any great degree of certainty. Since we have a synthetic experiment here, we can however 840 

test how frequently the derived solution matches the (synthetic) truth within the claimed uncertainty 841 

bounds. One reasonable summary measure of this is the percentage of true values of state vector 842 

elements that lie within the 95% credible interval claimed by the DA results. These are shown in 843 

table 8. We can see that for the ‘single obs’ estimates (no regularisation), only around 64% of the 844 

state vector lies within the 95% credible interval claimed by the solution. The figure is as low as 845 

58% for TCdm. We can suppose the  average estimated uncertainty then to be only around 67% of 846 
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the true value, i.e. we should inflate the estimated uncertainty by a factor of around 1.5. This would 847 

apply equally to the results in table 6. We see almost the same value for the first order constraint, 848 

which suggests the reduction in uncertainty by a factor of 2.2 is likely true. For the second order 849 

difference constraint however, around 84% (table 8) of the sample lie within the uncertainty bounds, 850 

so here, a better estimate of the uncertainty reduction might be around 1.70 rather than the 1.30 851 

reported. This apparent under-reporting of the uncertainty is worthy of comment and there could be 852 

several reasons for this. One explanation could be that we are simply under-estimating the 853 

uncertainty from the approximations made when calculating the Hessian for the observation 854 

operator. A more likely reason is non-linear effects in the treatment of uncertainties. In spite of our 855 

attempt to account for gross non-linear impacts through parameter transformations, residual non-856 

linear effects may be causing this under-estimation of uncertainty by a factor of around 1.5. 857 

 858 

FIGURE 3 ABOUT HERE 859 

FIGURE 4 ABOUT HERE 860 

 861 

3.4 DA: Cloudy scenario 862 

Figure 3 shows the DA results for the cloudy scenario. This is a much more realistic test for a DA 863 

system. The task now is not only to reduce the uncertainty at the points where we have observations 864 

but also to try to provide an effective interpolation over data gaps. The cross validation plots for this 865 

case are shown in figure 2 (white circle and square) and provide a much more narrow minimum. 866 

This implies that to achieve acceptable results in cross validation, the range of g  values that can be 867 

tolerated is much more restricted. The minima of these functions however are well within the 868 

bounds of the cross validation results for the ‘complete’ scenario and the optimal g  indicated very 869 

similar to that obtained from the previous results. This indicates that the method for estimating g  is 870 

quite robust, even when there are large data gaps. Unsurprisingly, the absolute value of the cross 871 

validation RMSE is higher for the cloudy case, indicating poorer performance in prediction for this 872 
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lower quality dataset. 873 

 874 

TABLE 9 ABOUT HERE 875 

 876 

Table 9 shows the reduction in uncertainty for this experiment. One striking feature of these is that 877 

the percentage of cases within the credible interval is now above 80% in both cases, meaning that 878 

the reported uncertainties are close to the true values. Whilst the apparent reduction in uncertainty is 879 

apparently quite small (indeed, there is an increase in uncertainty for some state vector elements) at 880 

1.53 for the first order constraint and 1.14 for the second order, when weighed against the improved 881 

statistical representation, these rise to values directly comparable with the results from the previous 882 

experiment. The credible intervals shown in figure 3 are now realistic representations of the state 883 

vector elements and their uncertainties, achieved with only 50% of the samples of the previous 884 

experiment and with large data gaps, which is an important result.  885 

 886 

Figure 4 shows the posterior correlation matrices (the inverse Hessian matrix) for the cloudy 887 

scenario. The general pattern of this matrix for the ‘complete’ scenario is rather similar so not 888 

shown here. Obviously, the correlation is unity along the leading diagonal. Another important 889 

feature is that the broad patterns of positive and negative correlations that we noted for the ‘single 890 

obs’ solutions remains here. There is negative correlation between s1 and all terms by TLAI. There 891 

is negative correlation between TLAI and TCab and TCw but positive correlation with TCdm. These 892 

patterns are consistent for both constraints used. We notice then that the application of the dynamic 893 

model (regularisation) in time does not remove the correlations arising from the inverse Hessian of 894 

the observation cost function, but rather it ‘spreads’ uncertainty correlation out in the time domain. 895 

This is particularly visible in the second order constraint matrix in figure 4 where we can clearly see 896 

this smoothing being greater where there are data gaps (s1 is a good example of that). Equally, 897 

where a part of the state vector has been strongly influenced by the regularisation (e.g. N for the 898 
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first order constraint) we see very high correlation at all time steps. Another interesting feature of 899 

this figure is the fact that for some state vector elements (e.g. N for the second order constraint) we 900 

can clearly see the influence of the periodic boundary condition). 901 

 902 

4 Discussion 903 

4.1 The value of an EO-LDAS 904 

This paper outlines a scheme for a weak constraint data assimilation system, developed in the ESA 905 

EO-LDAS project, designed for integrating Earth Observation data from a variety of sources over 906 

arbitrary time scales, and through that to multiple spatial resolutions. It has the potential, via careful 907 

definition of the underlying model to be extended to spatial constraints, although this is not 908 

explored here. The scheme is designed to allow interface with process models, should they be 909 

available, though only an empirical regularisation model is shown in this paper. The core of the 910 

system is a set of constraints on: (i) prior estimates of the state vector; (ii) a linear model of the state 911 

vector; (iii) observation operator (RT model) predictions of a set of EO data and a DA scheme 912 

around these using an iterative bounded optimisation approach (L-BFGS-B). 913 

 914 

In this paper, we have set up and run a synthetic data experiment with EO data mimicking those that 915 

might be provided by the MSI sensors on the forthcoming Sentinel-2 platforms. Experiments in DA 916 

are conducted for an idealised ‘full coverage’ scenario (5 day sampling) and for a ‘cloudy’ case 917 

(average around 10 day sampling but with large data gaps of up to 60 days). The results are 918 

compared to baseline experiments where we attempt to estimate the state variable trajectories over 919 

the course of a year for a subset of the total state variables (six elements per observation period). 920 

The prior term is used only very weakly here, although bounds are set to the state vector elements. 921 

Further, we assume that we have direct access to the surface reflectance (as opposed to top of 922 

atmosphere radiance), and that the noise on the observations is uncorrelated and of known 923 

magnitude. Broadly however, we can claim that the baseline results should be indicative of those 924 
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that might be obtained from Sentinel-2 data using ‘traditional’ estimation methods. For what we 925 

suppose to be a typical observation noise scenario, the uncertainty can be a quite large proportion of 926 

the signal for important terms such as LAI, this for a peak LAI of only around 3.7, although on 927 

average the uncertainty in TLAI may only be around 5%. This then, relates to the information 928 

content of a single MSI observation for this level of noise, assuming some important terms such as 929 

leaf angle distribution are known precisely. These results are not surprising but are simply a 930 

manifestation of the difficulty of the inference of biophysical parameters from remote radiometric 931 

observations: the problem may often be ill-posed (consider the situation if only two wavebands at 932 

red and near infrared were available), but even if it is not strictly so, there may not be sufficient 933 

information to very well constrain the information we require. In any case, there can be quite high 934 

correlation in uncertainty. 935 

 936 

The ways to improve this situation are: (i) to obtain more observations (although more observations 937 

does not always translate to more information: consider again sampling at only red and near 938 

infrared wavelengths in trying to constrain e.g. leaf water content); or (ii) to add some other forms 939 

of information; (iii) average the data. Much a priori information has been used in the past to help 940 

constrain these problems, but this has often been approached in a rather ad hoc manner. Examples 941 

include: assuming some terms known, without considering the impact of uncertainty in these, or 942 

imposing degrees of smoothness; assuming that some terms are constant over some arbitrary time 943 

period; or post hoc low pass filtering to the final results.  Given its success in other field of science 944 

and engineering, many authors have proposed that DA should be seen as the route to integration of 945 

the various forms of information one might wish to use to constrain the estimation. Key to DA is the 946 

weighting between the various sources of evidence, and key to this is assigning uncertainty 947 

correctly to the sources. This is a feature of the approach that dramatically differentiates it from the 948 

way in which VIs are mostly used in EO. As we note in the introduction, if we wish to estimate 949 

biophysical parameters (such as LAI) there is generally some form of calibration (against ground 950 
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observations or RT model runs) but it is extremely rare that those model uncertainties are 951 

considered in mapping the product. Other processing steps such as angular normalisation may have 952 

taken place, but again, any concepts of uncertainty arising from these are on the whole disregarded. 953 

All of these issues could be addressed within a DA framework, even if the source of the EO 954 

information were to be VIs. 955 

 956 

If a biophysical process model is available to predict the development of the state variables that 957 

control the remote sensing signal, this can clearly add information to help constrain the problem. If 958 

information from the observations feed back to improve the estimates of the parameters controlling 959 

the process model or alternatively improve the state estimates, then a better integration of 960 

observations and model is achieved, which will likely better constrain additional terms estimated by 961 

the process model. This has been argued by Quaife et al. (2008) and others who have worked on 962 

integrating EO data and e.g. Carbon flux process models. However, models such as these simply do 963 

not provide information on a large number of the variables that affect EO signals, and this is likely 964 

to remain the case for the foreseeable future. Exercises in EO-model integration then 965 

understandably tend to focus of the points of common linkage (which often is no more than LAI, 966 

being supposed linearly related to leaf Carbon) and then applying the ‘traditional’ methods to the 967 

remaining parameters (assuming them known or at best constant over time). In this paper, and in the 968 

EO-LDAS work in general, we have taken the focus away from working with some specific process 969 

model, and tried to consider the more general case and the sorts of constraints that might be 970 

appropriate. If no physical model is available, empirical concepts of smoothness in the state 971 

variables come to the fore. These ideas become even more important if one considers constraint in 972 

the spatial domain, where physical or even biological process models are almost completely lacking 973 

to aid biophysical parameter estimation.  974 

 975 

The EO-LDAS scheme that we have built is capable of using any linearised process model and of 976 
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more general interface to process model codes provided the cost function and its derivatives can be 977 

calculated. In the prototype and in this paper we have examined first- and second-order derivative 978 

constraints as general, appropriate (empirical) models for biophysical parameter estimation in DA. 979 

We have simulated typical profiles of LAI and leaf chlorophyll concentration and rather complex 980 

profiles of leaf water concentration and soil brightness and shown that with Sentinel-2 MSI data 981 

every 5 days, a reduction in uncertainty by a factor of around 2 might generally be achieved. More 982 

interestingly perhaps, after compensation for errors in uncertainty prediction, we saw that similar 983 

reductions might be achieved even when there are large data gaps and 50% of the samples lost due 984 

to cloud cover. 985 

 986 

We have also demonstrated (figure 2) that it is feasible to estimate the required hyper-parameters 987 

from some form of cross-validation exercise to impose an appropriate degree of model uncertainty, 988 

and that quite consistent results can be obtained even under cloudy conditions. This is an important 989 

practical point for the eventual operationalisation of these methods, but the area requires a little 990 

more discussion of practical issues in its implementation.  991 

 992 

Approximate linearization of the RT model variables here, following Weiss et al. (2000), has 993 

allowed Gaussian distributions to be assumed throughout. Although we have not directly 994 

investigated any residual non-linear effects in this study, some evidence is provided that on average 995 

we may be predicting only around 2/3 of the true uncertainty.   996 

 997 

4.1 Future directions 998 

In this paper, we have only demonstrated DA for a homogeneous observation system, i.e. one for 999 

which we have assumed the spectral sampling (and in effect, spatial resolution) for all observations 1000 

is the same. Using the EO-LDAS prototype for spectrally heterogeneous systems is straightforward, 1001 

but further work is needed to test the multi-scale concepts that would more generally be required. 1002 
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Within the existing prototype, the state vector can represent any mixture of temporal or spatial 1003 

samples. The concepts of temporal smoothness used here apply equally to the spatial domain 1004 

(indeed, such ideas form the basis of the field of geostatistics (e.g. Atkinson and Lewis, 2000)), so 1005 

the prototype can be used directly to link a state vector representation on a spatial grid, via 1006 

appropriate specification of the matrix A . Indeed, one could consider the experiments performed in 1007 

this paper simply as being on a spatial transect, rather than as we have assumed a temporal sampling 1008 

pattern. The only practical difference is that in that case, the viewing and illumination angles would 1009 

be near identical for all samples.  1010 

 1011 

The EO-LDAS prototype is designed to allow a (relatively) large number of state variables to be 1012 

estimated simultaneously in a variational system (> 2000 demonstrated here). One potential 1013 

advantage of this is that information can be passed between any of the state vector elements. In 1014 

practice, we have only used rather local information transfer in the model constraints applied here 1015 

(differences with neighbours in time) and this approach could also be implemented as a sequential 1016 

smoother. In viewing the temporal experiment we have performed as effectively equivalent to a 1017 

spatial experiment, the neighbourhood need not be very different (i.e., in the spatial sense, we could 1018 

follow the approach here and directly connect information in one grid cell to its 8 neighbours). 1019 

However, this variational system maintains the capacity for more distant (time or space) 1020 

connections, for example in applying multiple scale constraint.  1021 

 1022 

A point that we have not dwelt on in this paper is the time required for processing. This is currently 1023 

around several hours for solving for > 2000 state vector elements using 73 samples for what equates 1024 

to a single pixel (albeit for all samples over a year). The experiments in this paper were conducted 1025 

over around 120 UNIX cores, so quite large-scale experiments are feasible using University 1026 

computing resources. Clearly the processing requirements would need to be greatly reduced if such 1027 

a system were to be proposed for operational processing. The computer code is not on the whole 1028 
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written to be fast, but rather to be adequate to learn about using this form of DA. There are various 1029 

ways in which this might be tackled: clearly the very tight convergence criteria could be somewhat 1030 

relaxed, and more efficient codes could be written, but there will always be a relatively large 1031 

overhead on multiple calculations of a radiative transfer model. Pragmatic ways to overcome this 1032 

issue have mainly in the past dealt with using LUTs or ANNs to sample or approximate the 1033 

observation operator, but clearly in the DA framework we must consider representational error in 1034 

any such emulation. One avenue that holds much promise is that of Gaussian Process (GP) 1035 

emulators (Kennedy and O'Hagan, 2000, 2001), a form of regression that has been successfully 1036 

used to simulate computationally costly models runs through simple functional approximations. The 1037 

great benefit of this latter approach is that uncertainties in the emulated model are included and that 1038 

derivatives of the model can also be easily produced. If we consider the observation operator as a 1039 

sampled function with GP emulation, it is interesting to note that the underlying concepts implying 1040 

smooth interpolation with treatment of representation uncertainty are of course the same as we are 1041 

performing in the temporal (or indeed spatial) process model in the DA. 1042 

 1043 

5 Conclusions 1044 

The EO-LDAS prototype that is described in this paper has been demonstrated to be capable of 1045 

simultaneously estimating a state vector of over 2000 elements of surface biophysical 1046 

characteristics in a synthetic experiment using simulated Sentinel-2 MSI data. Although the 1047 

processing time required for this is currently a little long, this is a significant step in the size of such 1048 

problems that can be tackled simultaneously. The ability to do this derives from the use of AD-1049 

generated adjoint code for the observation operator at the heart of the DA system.  1050 

 1051 

The DA scheme that has been developed is a weak constraint variational system. The value of such 1052 

a scheme has been demonstrated using the synthetic MSI data to show a reduction in uncertainty of 1053 

up to around 2 when a linear dynamic model is used in the DA. The linear dynamic model is 1054 



 42 

proposed as a general implementation that can potentially be interfaced to biophysical process 1055 

models through linearization. It is used in this paper with first and second-order derivative 1056 

constraints (zero- and first-order process models) which are shown to be sufficient to track rather 1057 

complex biophysical parameter trajectories via a radiative transfer model ‘observation operator’ 1058 

interface to the synthetic EO data. 1059 

 1060 

We have noted at various points in this text, that some aspects of the EO-LDAS prototype are still 1061 

under development of testing, but what actually is provided by the prototype code is a functioning 1062 

tool for exploring many issues in DA and for estimating information on surface biophysical 1063 

parameters. The tool is designed as a weak constraint variational system, but we have argued that it 1064 

can also be used sequentially as it stands. We have demonstrated the use of the tool and of DA 1065 

concepts in reducing uncertainty in biophysical parameter estimation in a temporal sense, but also 1066 

argued the equivalence of this (in DA in general, but in the tool specifically) for the spatial domain 1067 

as well. We have used only empirical ‘regularisation’ concepts in demonstrating the DA, but noted 1068 

that these are powerful general concepts that are extremely useful, particularly if biophysical 1069 

models do not treat some of the parameters we are concerned with. In the more general case though, 1070 

any linearization of a more process-driven model can be directly interfaced to the EO-LDAS 1071 

prototype. 1072 

 1073 

There is clearly quite a long way to go from initial experiments with relatively slow computer codes 1074 

to an operational system for land data information extraction from EO, i.e. an operational EO-1075 

LDAS, but the concepts explored here demonstrate the power and potential flexibility of  such an 1076 

approach. 1077 
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Table 1. Spatial resolution, Central wavelength and bandwidths for Sentinel-2 MSI (ESA, 2010). 1292 
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Table 4. Upper and lower bounds for the state vector terms (in transformed space, where 1295 

appropriate) used in the simulations, along with the temporal trajectory assumed. 1296 

Table 5. Model uncertainty γ for each parameter, calculated from the synthetic model state vector. 1297 

TCdm and N were kept constant, so have no theoretical model uncertainty associated. 1298 

Table 6: Mean posterior uncertainty. Figures refer to the complete daily time series, while figures in 1299 

brackets refer to the mean posterior uncertainty only considering the dates where observations are 1300 

available. 1301 

Table 7: Single observation posterior correlation matrix. Elements above the main diagonal show 1302 

the results for DoY 186, whereas the elements below the main diagonal represent the median of all 1303 

dates. 1304 

Table 8: Uncertainty reduction relative to the single observation inversion, as well as percentage of 1305 

cases where the true parameter lies within the estimated 95% credible interval. Results for non-1306 

cloudy scenario are reported. both complete time series. 1307 

Table 9: Uncertainty reduction relative to the single observation, as well as percentage of  cases 1308 

where the true parameter lies within the estimated 95% confidence interval. Results for cloudy 1309 

scenario. 1310 
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Figure Captions 1318 

Figure 1. Base level state vector estimated from inverting single observations, (left column) and for 1319 

model uncertainty unknown and estimated through cross-validation – first difference constraint 1320 

(central column) and second difference constraint (third column). Results for each of the six 1321 

parameters are shown in rows. True values are shown as a dashed line. The full lines are the 1322 

posterior means, and the shaded area represents the associated +/-1.96 standard deviations interval. 1323 

MSI observations are shown as open symbols. Crosses along the bottom of the third row indicate 1324 

the location of the cross validation acquisition dates. 1325 

Figure 2. Error in cross validation scaled by observational uncertainty for varying model uncertainty 1326 

γ for first and second order constraints. Vertical lines around 200 represent the theoretical value of γ 1327 

for each of the 4 time-varying state variables using a first order constraint, and vertical lines around 1328 

5000 represent the theoretical values for γ for each of the 4 time-varying state variables using 1329 

second order constraint.  1330 

Figure 3. Base level state vector estimated from inverting single observations, (left column) and for 1331 

model uncertainty unknown and estimated through cross-validation – first difference constraint 1332 

(central column) and second difference constraint (third column). Reduced number of acquisitions 1333 

due to cloud cover scenario. Results for each of the six parameters are  shown in rows. True values 1334 

are shown as a dashed line. The full lines are the posterior means, and the shaded area represents the 1335 

associated +/-1.96 standard deviations interval. MSI observations are shown as open symbols. 1336 

Crosses along the bottom of the third row indicate the location of the cross validation acquisition 1337 

dates. 1338 

Figure 4. Posterior correlation matrices for the cloudy scenario. Labels indicate the location of the 1339 

first day for component of the state vector. 1340 
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Table 1. Spatial resolution, Central wavelength and bandwidths for Sentinel-2 MSI (ESA, 

2010). 

# 1 2 3 4 5 6 7 8 8a 9 10 11 12 

Spatial 

Resolution  

/ m 

60 10 10 10 20 20 20 10 20 60 60 20 20 

Wavelength 

/ nm 

443  490  560  665  705  740  783  842  865  945  1375  1610  2190 

Bandwidth 

/ nm 

20 65 35 30 15 15 20 115 20 20 30 90 180 
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 1345 

Table 2. Summary of observation operator state variables. 
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# Name Symbol Units Default 

value 

Lower limit Upper 

limit 

1 Leaf Area 

Index  

LAI none 0.01 0.01 5.4 

2 Canopy 

height 

xh m 5 1.0 5 

3 Leaf radius xr m 0.01 0.001 0.1 

4 Chlorophyll 

a,b 

Cab gcm-2 40 0 200 

5 Carotenoids Car gcm-2 0 0 200 

6 Leaf water Cw cm-1 0.01 0.00001 0.04 

7 Dry matter  Cm gcm-2 0.01 0.00001 0.02 

8 Leaf layers N none 1.0 1.0 2.5 

9 soil PC 1 s1 none 0.2 0.05 0.4 

10 soil PC 2 s1 none 0 -0.1 0.1 

11 soil PC 3 s1 none 0 -0.05 0.05 

12 soil PC 4 s1 none 0 -0.03 0.03 

13 Leaf angle 

distribution 

(categorised) 

g none uniform 1. planophile 

2. erectophile 

3. plagiophile 

4. extremophile 

5. uniform 

n/a 
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Table 3. Transformations applied to approximate linearise state variable response 

#  Transformed 

Symbol 

Transformation 

1 TLAI exp(-LAI/2.0) 

4 TCab exp(-Cab/100) 

5 TCar exp(-Car/100) 

6 TCw exp(-50 Cw) 

7 TCdm exp(-100 Cdm) 
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 1354 

Table 4. Upper and lower bounds for the state vector terms (in transformed space, where 

appropriate) used in the simulations, along with the temporal trajectory assumed. 

#  Symbol  Lower limit Upper limit Temporal function 

1 TLAI 0.067 0.995 LAI = 0.21+3.51 sin
5
(t) 

4 TCab 0.135 1.0 Cab = 10.5 + 208.7 t   : t <= 0.5 

Cab = 219.2 - 208.7 t  : t >= 0.5 

6 TCw 0.135 1.0 Cw = 0.068 +  

 0.020(sin(t+0.1)*sin(6t+0.1)) 

7 TCdm 0.135 1.0 Cdm = 0.01 

8 N 1 2.5 N = 1 

9 s1 0.001 0.4 s1 = 0.20+0.18(sin(t)*sin(6t)) 
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 1360 

 1361 

Table 5. Model uncertainty γ for each parameter, calculated from the synthetic model state 

vector. TCdm and N were kept constant, so have no theoretical model uncertainty 

associated. 

#  Symbol  First difference 

uncertainty 

Second 

difference 

uncertainty 

1 TLAI 188 8298 

4 TCab 303 7315 

6 TCw 132 2277 

9 s1 212 3861 
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 1364 

Table 6: Mean posterior uncertainty. Figures refer to the complete daily time series, while 

figures in brackets refer to the mean posterior uncertainty only considering the dates 

where observations are available. 

 1365 

 Non-cloudy Cloudy 

Symbol Uncertainty  

Single Obs. 

Uncertainty  

1
st
 Diff  

Uncertainty 

2
nd

 Diff  

Uncertainty  

Single Obs. 

Uncertainty  

1
st
 Diff  

Uncertainty 

2
nd

 Diff  

TLAI  0.18 (0.05) 0.04 (0.04) 0.06 (0.06)  0.21 (0.05) 0.06 (0.05) 0.09 (0.07) 

TCab  0.20 (0.10) 0.04 (0.04) 0.06 (0.06) 0.22 (0.09) 0.06 (0.05) 0.08 (0.06) 

TCw 0.23 (0.18) 0.07 (0.07) 0.13 (0.13) 0.24 (0.19) 0.10 (0.10) 0.17 (0.16) 

TCdm 0.24 (0.22) 0.13 (0.13)  0.28 (0.28) 0.24 (0.23) 0.19 (0.19) 0.36 (0.35) 

N 0.29 (0.55) 0.21 (0.21) 0.37 (0.37) 0.27 (0.55) 0.32 (0.32) 0.44 (0.40) 

s1 0.17 (0.04) 0.02 (0.02) 0.03 (0.03) 0.20 (0.04) 0.04 (0.03) 0.05 (0.03) 
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 1368 

 1369 
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 1373 

Table 7: Single observation posterior correlation matrix. Elements above the main diagonal 

show the results for DoY 186, whereas the elements below the main diagonal represent 

the median of all dates. 

Symbol TLAI TCab TCw TCdm N s1 

TLAI 1.00 0.16 -0.05 0.47 -0.25 0.58 

TCab -0.44 1.00 0.15 -0.11 -0.47 0.34 

TCw -0.42 0.35 1.00 0.04 0.01 -0.14 

TCdm 0.30 0.27 -0.27 1.00 0.42 -0.36 

N 0.00 -0.21 0.07 -0.43 1.00 -0.85 

s1 0.76 -0.53 -0.40 -0.25 -0.28 1.00 

1374 



 60 

 1375 

Table 8: Uncertainty reduction relative to the single observation inversion, as well as 

percentage of  cases where the true parameter lies within the estimated 95% confidence 

interval. Results for non-cloudy scenario are reported. both complete time series 

 

  Complete time series Observations only 

# Symbol Unc.  

red 

1
st
  

diff 

Unc.  

red. 

2
nd

   

diff 

% cases 

(1
st
 diff) 

% cases 

(2
nd

 diff) 

Unc.  

red 

1
st
  

 diff 

Unc.  

red. 

2
nd

   

diff 

% cases 

(1
st
 diff) 

% cases 

(2
nd

 diff) 

% cases 

(single) 

1 TLAI 4.89 2.96 75.3 90.4 1.44 0.85 72.6 91.8 63.0 

4 TCab 5.24 3.58 61.1 65.2 2.57 1.74 60.3 65.8 65.8 

6 TCw 3.47 1.77 51.2 69.9  2.72 1.38 50.7 71.2 60.3 

7 TCdm 1.82 0.85 87.7 100.0 1.64 0.76 87.7 100.0 57.5 

8 N 1.40 0.79 59.2 100.0 2.67 1.50 58.9 100.0 60.3 

9 s1 7.59 6.43 67.1 72.3 2.13 1.56 63.0 72.6 75.3 

 Mean 4.07 2.73 66.9 83.0 2.20 1.30 65.5 83.6 63.7 
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 1378 

Table 9: Uncertainty reduction relative to the single observation, as well as percentage of  

cases where the true parameter lies within the estimated 95% confidence interval. Results 

for cloudy scenario. 

  Complete time series Observations only 

# Symbol Unc.  

red 

1
st
  

diff 

Unc.  

red. 

2
nd

   

diff 

% cases 

(1
st
 diff) 

% cases 

(2
nd

 diff) 

Unc.  

red 

1
st
  

 diff 

Unc.  

red. 

2
nd

   

diff 

% cases 

(1
st
 diff) 

% cases 

(2
nd

 diff) 

% cases 

(single) 

1 TLAI 3.33 2.39 82.7 74 0.965 0.68 88.9 91.7 63.9 

4 TCab 3.68 2.93 80.0 89.6 1.82 1.58 61.1 83.3 58.3 

6 TCw 2.33 1.4 64.1 85.2 1.90 1.18 83.3 88.9 61.1 

7 TCdm 1.25 0.669 100 100 1.18 0.656 100 100 58.3 

8 N 0.835 0.597 91 100 1.73 1.38 88.9 100 58.3 

9 s1 4.65 4.53 63.6 78.1 1.57 1.35 69.4 72.2 75.0 

 Mean 2.68 2.09 80.2 87.8 1.53 1.14 82.0 89.3 62.5 
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Figures 

Figure 1. Base level state vector estimated from inverting single observations, (left column) and for 

model uncertainty unknown and estimated through cross-validation – first difference constraint 

(central column) and second difference constraint (third column). Results for each of the six 

parameters are shown in rows. True values are shown as a dashed line. The full lines are the 

posterior means, and the shaded area represents the associated +/-1.96 standard deviations 

interval. MSI observations are shown as open symbols. Crosses along the bottom of the third row 

indicate the location of the cross validation acquisition dates. 
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 64 

Figure 2. Error in cross validation scaled by observational uncertainty for varying model 1387 

uncertainty γ for first and second order constraints. Vertical lines around 200 represent the 1388 

theoretical value of γ for each of the 4 time-varying state variables using a first order 1389 

constraint, and vertical lines around 5000 represent the theoretical values for γ for each of the 1390 

4 time-varying state variables using second order constraint.  1391 

 1392 
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Figure 3. Base level state vector estimated from inverting single observations, (left column) and for 

model uncertainty unknown and estimated through cross-validation – first difference constraint 

(central column) and second difference constraint (third column). Reduced number of acquisitions 

due to cloud cover scenario. Results for each of the six parameters are  shown in rows. True values 

are shown as a dashed line. The full lines are the posterior means, and the shaded area represents 

the associated +/-1.96 standard deviations interval. MSI observations are shown as open symbols. 

Crosses along the bottom of the third row indicate the location of the cross validation acquisition 

dates. 
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  1393 

 1394 
Figure 4. Posterior correlation matrices for the cloudy scenario. Labels indicate the location of 1395 
the first day for component of the state vector. 1396 



 67 

1st order constraint 2nd order constraint

 1397 
 1398 


