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ABSTRACT

The conditions for the existence of non-perturbative
type "superconductor" solutions of field theories are exami-
ned, A non-covariant canonical transformation method is
used to find such solutions for a theory of a fermion inter-
acting with a pseudoscalar boson. 4 covariant ramormalisable
method using Feynman integrals is then given, A "super
conductor" solution is found whenever in the normal pertur-
bative-type solution the boson mass squared is negative and
the coupling constants satisfy certain inequalities. The
symmetry properties of such solutions are examined with the
aid of a simple model of self-interacting boson fields. The

solutions have lower symmetry than the Lagrangian, and con-

‘tain mass zero bosons.
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Introduction.

This paper reports some work on the possible existence of field theories
with solutions analogous to the Bardeen model of a superconductor. This
. possibility has been discussed by Nambu 1) in a report which presents the general
ideas of the theory which will not be repeated here, The present work merely
considers models and has no direct physical applications but the nature of these

theories seems worthwhile exploring.

The models considered here all have a boson field in them from the
beginning. It would be more desirable to construct bosons out of fermions and
this type of theory does contain that possibility 1>. The theories of this
paper have the dubious advantage of being renormalisable, which at least allows
one to find simple conditions in finite terms for the existence of "super-
conducting"” solutions. It also appears that in fact many feafurés of these
solutions can be found in very simple models with only boson fields, in which
the analogy to the Bardeen theory has almost disappeared. In all these theories

the relation between the boson field and the actuel particles is more indirect

than in the usual perturbation type solutions of field theory.

Non-covariant theory.

The first model has & single fermion interacting with a single pseudo-
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(The last term is necessary to. obtain finite results, as in perturbation theory).

scalar boson field with the Lagrangian

The new solutions can be found by a non-covariant calculation which perhaps may

show more clearly what is happening than the covariant theory which follows.
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. i Al ik, )
Let @(x) = -%7 Z;qk % and let p, be the conjugate momentum to q, .
Let a;;r ’ b;fr“ be the creation operators for Fermi particles of momentum
k spin ¢ and antiparticles of momentum -k, spin - <3~ respectively.

Retain only the mode k=0 of the boson field in the Hamiltonian. (The signi-

ficance of this approximation appears below). Then
Ho=Hy+ Hy + B | (1)

o +
Hp = E B (aja; +b; b,)

i

Z;)CT' is replaced by a single symbol 1/

2+/’&§q)

- o, fo 4
HI*‘T‘q Z\(ab”’q) Yo %

When HI is treated as a perturbation, its only finite effects are to
alter the boson mass and to scatter fermion pairs of zero total momen tum.
These effects can be calculated exactly (wvhen V = o ) by writing az bz =

. + . 2 . .
and treating Ci as a boson creation operator . The Hamiltonian becomes

. . g ‘ :
H = QZTZE. N %-(p2 s 2 qa) +— q ;E?(cf +c.)
‘ 1 1 1 0 }LO [e] ,\/v (¢} 1 1

The % qi term has no finite effects. Let
+
c, * ¢ +
= q, 5 igE (e; -o) =p;
,/4E.
1,
then

o .
2 2 2 0
B' = (p +/DL q)+ | 15(pi+Z'rEiqi)+—-- a, Z‘,;\}ALEiqi-ZEi
N . ;
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H' ~represents a set of coupled oscillators end is easily diagonalised. The
frequencies of the normal modes are (U o’ Ck)i, given by the roots of the

equation

I
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In the limit as V - ®, this becomes

po— @ = 90§ 4B
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(27) By ZEE- 453 (45?;“1)

The first two terms in the integral diverge. This procedure corresponds
exactly to the covariant procedure o calculating the poles of the boson

propagator

\ 1
D(k,@ ) =
2.2 2
) =k "f)‘o*ﬂ<k’6“))

and including in l , oniy the lowest polarisation part shown in Fig. 1.
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Fig, 1

This comparison shows that the two divergent terms can be absorbed into the

renormalised mass and coupling constant. The renormalisation is carried out
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at the point er;O instesd of as usual at the one-boson pole of D. Thus if

[T e =2+20”+ & () |
then

Z

p(0,4)
PP TT ()

]

2
2 &

1 7 2
Perg o S s ph £ -7

Equation (2) becomes

2 a2 :Qa? o 01,3}3 — O
e T e meEs T (<)

The isolated root of this equation, (J i, is found as shown in Fig. 2.
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Fig. 2

When ? :> Oy, GO i is the square of the physical boson mass, When
2
! 2

into a fermion pair. There is always another root for oD large and

~ 4m, this root disappears. This is the case when the boson can decay

negative. This corresponds to the well-known "ghost" difficulties and will be

9376



9376

ignored here. When }A, <: 0 (but not too large), there is a negative root
for Cl) . This is usually.taken to mean s1mply that the theory with /A, <:: 0
does not exist. Here it is teken to indicate that the approximation used is

wrong and that the Hamiltonian (1) must be investigated further.

This is done by a series of canonical transformations based on the idea
that in the vacuum state the expectation value of the boson field is not zero.

Let

A
QY =9 * N N T Py=7,

ZX is a parameter to be fixed later. Also meke a Bogoliubov transformation on

the fermion field

S 5 4
8, =cos = QA ;- sin o F? i
e 0.
1 + 1
bl = 31n —2— O\ i + COS —2— ﬁ 5

Then
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H = CLDW{/J“”;**@“J; B
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H, = 2o g% hod e+ g0/ VA (darflg
A %sz( )




“Now choose Z) so that HE,=0. H_  is just a constant proportional to V and

1 0

H3 ‘has no finite effects. This leaves H,»

method used above for the original Hamiltonian (1).

which can be diagonalised by the

One solution of L1=O is Z} =0, This gives the original approximation,
which is no use when /A, % << O« Other solutions are given by
i) gh g
LA N3 o
Q 6 4 > T
Jo V. ov NEMA
| (3)

=23 (pe{L = L0 & 92 6(8)

i

where ¢ is a finite function. Let
-2 Lk = p
//L (1"7)3( E_K <z L
4
fo + CL (LR - A g g

) BN 7

"

/4 f, A 1 7Z can be identified as the lowest order perturbation theoretic values
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of the renormalised boson mass, four-boson interaction constant and wave function

renormalisation, arising from the graphs in Fig. 1 and 3
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Fig, 3

As before, the rendrmalisations are carried outat k =0, Equation (3)

becomes

o

2 , ' .
mEaih A L2 (4)
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Thus an equation for _ZX.Z is obtained which is finite in terms of constants

which would be the renormalised parameters of the theory in the ofdinary

solution, It will be shown below that when ? <: 0, equetion (4) has
solutions for a certain range of ;X 10 and that then there does exist a real
boson.

Covariant theory.

A first approach to a covariant theory can be made by calculating the
fermion Green's function in a self-consistent field approximation. In pertur-

bation theory the term represented by Fig. 4 vanishes by reflection invariance.

However, suppose it gives a contribution \X’S Z} to the fermion selfenergy.
Then |
-1

s(p) = z:a::ffig
5

and evaluating Fig. 4 with this value of S gives

A :“'_.‘_..,1‘_3_(.)_'. OL‘*F /r\l"/b—, I :’-Lj_o_—l_,; J" A
. pi o

fro () O prmoysl " ?T.T—’;S

which is the same as equation (3)'without the )\ term,'and again has the

perturbation solution ZX -0 and possibly other solutions.
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A general covariant theory can be found by using the Feynman integral

technique. This gives an explicit formula for the fermion Green's function

—UW@E) L, () die

(Oc%> jg(m o Sb)k e S
E{ﬂmu¢a ef(Lm(¢>4“1%;¢

Here S(x'x@) is the fermion Green's function calculated in an external boson

field 95 (an‘d without interacting "bosons).' e_lw ¢ is the vacuum-vacuum

S-matrix amplitude in an external field and L’r|(7b:> is tle boson part of the

Lagrangian., The integrations are carried out over all fields ¢(x,t).

Let
(Xt =--Z¢ e

where k is now a 4-vector and _(Z a large space-time volume., To obtain

the Bardeen-type solutions, first do all the integrations except that over ¢

(this has k = =0) and put §_ =_(),)( (X finite). Then

L FX)
g(x/ DL) _ J(g o x X)
/ ,LI‘FYXD

L X
FOXO) = M(X>+/%Xl+a>l2x4

S is the one particle Green's function calculated in a constant external field

Qf(x): X and including ali the interacting boson degrees of freedom except

- Wy
k=W=0, e * is the vacuum-vacuum amplitude calculated in the same way,
The idea is to look for stationary points of F (X) other than X =0. If

Fl X1 )=0, then in the limit ,O_ 9 w0, S(x! X) = S(X XX1)
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is finite provided the terms }A;i and .)\ , ore absorbed into V2 and V4.

Je

—“fluf(><) is given by the sum of all connected vacuum diagrams. It

is easy to see that

in
w )= 35 Ve G
n=0 )
where V2n is the perturbation theory value of the 2n-boson vertex with all

external momenta zero. For example V2 = \I(O). In perturbation theory,

(r)/zn

on

(r)

where AJﬂg_ is the boscn wave function renormalisation, and V2n

V2n il

hs before, the renormalisations are carried out at k=0, Tius if

(r)

X =Jz X e F<~,\<<r>>=z‘_’% szn

an expression from which all the divergences have been removed. It also follows

that if F‘()(Sr)) = 0, the new values for the vertex parameters Vn are

given by

n

V* = 2_._,_..- P(X(T)\)

n ~N/lT)n 1
;}/ ]

In particular the new boson mass is given by

2 "'(I')
f/g =F(/\,I )

(This is really the mass-operator'at k=0, not the mass ). Thus one condition
for the existence of these abnormal solutions is that F()()' should have a

minimum gt some non-zero value of ’>( .

F’(}() is in fact easier to evaluate than F. It is given by the sum
of all diagrams with one external boson line. The previous approximations are

recovered by putting g07<\= ZCS and including only the diagrams in Fig. 5
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This gives

Po % —*—,EL
F(7O /AX—% (2/) - — 3)(

4
LT
Hence

(r) 4 (V)‘—t
F(X7)= pix +NX-+41_( 43X L
) /u () L) () (- <L)

Thus A is given by

O = ﬁ; LM ’ﬁf’a{(‘*@z)%o*%ﬁ}

ST S

Let

Then

- A+ Bx =' (1+x)1og(i+x)_—x = h(x)

The new boson mass is given by

22
€4

//Lz = F"()() = -2-;;-2 X{B - h'(x)}

=
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Fig. 6

It can be seen from Fig. 6 that there will be roots with /4'2 > 0 only when
2 . . . ' _
/LL ) << 0O and B :> Bert where Bcrit ig given by h (x) = B« Thus the
abnormal solutions exist when

B >0 0> s> (e )
2 )\1

Thls calculation is exact in the limit g —} 0 keeplng/-- -z and
g)
g, :K finite. Thus in at least one cabe a solutlon of the requlred type can

be established as plausibly as the more usual perturbatlon theory solutions.

Symmetry properties and a simple model.

It is now necessary to discuss the‘principal peculiar feature of this
typé of solution. The original Lagrangian had a reflection symmetry. From
this it follows that P(Y) must be an even function. Thus if X =X,
is one solution of F'(><1) =0, :K = -;(1 is another. By choosing one
solution, the reflection symmetry is effectively destroyed. It is possible to
make a very simple model which shows this kind of behaviour, and also demonstrates
that so long as there is a boson field in the theory to start with, the essential

features of the abnormal solutions have very little to do with fermion pairs.
Consider the theory of a single neutral pseudoscalar boson interacting

12 b
L 5(2 2t — 29

25, 2t

with itself,
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Normally this theory is quantised by letting each mode of oscillation of the
classical field correspond to a quantum oscillator whose gquantum number gives
the number of particles. When ! -< O, this approach will not work,

However, if /\ > 0, ‘the *’urcu_on

Y
cp 2

i

is as shown in Fig. 7.

NN

Fig. 7

The classical equations
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now have solutions fo =t — corresponding to the minima of this curve.
A0
Infinitesimal oscillations'round one of these minima obey the equution

(o' =2p) 64

2
These can now be quantised to represent particles of mass -2/{1‘0' o This

is simply done by making the transformation @ = @'+ ><

2
> 6/.k

X%
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Then
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This new Lagrangian can be treated by the canonical methods.

In any state with a finite number of particles, the expectation value
of ¢‘ is infinitesimally different from the vacuum expectation value, Thus
the eigenstates corresponding to oscillations round ﬁ: jX{ are all orthogonal
to the usual states corresponding to oscillations round 95 =0, and also to
the eigenstates round @=- X . This means that the theory has two vacuum
states, with a complete set of particle states built on each vacuum, but that
there is & superselection rule between these two sets so that it is only
necessary to consider one of them. The symmetry ¢ — —¢ has disappeared.
Of course it can be restored by introducing linear combinations of states in
the two sets but because of the superselection rule this is a highly artificial

procedure.

Now consider the case when the symmetry group of the Lagrangian is
continuous instead of discrete. A simple example is that of a complex boson

+1
field, @ = ——— ! ¢2

The symmetry is @ —3 eickﬁ. The canonical transformation is @ = ¢‘+ ;x<
5 .

A 2y

l ;X(l = — 20/ ‘o

i ) 7\

No
The phase of :>< is not determined. Fixing it destroys the symmetry. With
L,._L_E;b‘%ﬁ* 75 A S et
T2 f* 2 o
Ecis > /

— 02X PR ) — e (7 )

:)( real the new Lagrangian is
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The particle corresponding to the ¢£ field has zero mass. This is true even
when the interaction is included, and is the new way the original symmetry

expresses itself.

A simple picture can be made for this theory by thinking of the two
dimensional vector ¢ at each point of space. In the vacuum state the vectors
have magnitude X and are all lined up (apart from the quantum fluctuations).
The massive particles ¢% correspond to oscillations in the direction of :)( .
The massless particles ¢é correspond to "spin-wave" excitationsvin which
only the direction -of ¢ makes infinitesimal oscillations. The mass must be
zero, because when all the ¢(X) rotate in phase there is no gain in energy

because of the symmetry.

This time there are infinitely many vacuum states. A state can be
specified by giving the phase of :>< and then the numbers of particles in the
two different oscillation modes, There is now.a superselection rule on the
phase of >< . States with a definite charge can only be_gdn;tructed artifi-

cially by superposing states with different phases.

Conclusion.

This result is completely general. Whenever the original Lagrangian
has a continuous symmetry group, the new solutions have a reduced symmetry and
contain massless bosons. One consequence is that this kind of theory cannot
be applied to a vector particle without losing Lorentz invariance. A method
of losing symmetry is of course highly desirable in elementary particle theory
but these theories will not do thié without introducing non-existent massless
bosons (unless discrete symmetry groups can be used). Skyrme 3) has hoped that
one set of fields could have excitations both of the usual type and of the
"spin-wave" type, thus for example obtaining the TV -mesons as collective
oscillations of the four K-meson fields, but this does not seem possible in
this type of theory., Thus if any use i1s to be made of these solutions, some-
thing more complicated than the simple models considered in this paper will be

necessary.
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