
Operating system: DEC OSF 1.3 OCR Output

Lund, Sweden
Computer: DEC Alpha 3000; installation: Department of Theoretical Physics, University of Lund,

Hewlett—Packard, and others with a F77 compiler
Computer for which the programme is designed: DEC Alpha, DECstation, SUN, Apollo, VAX, IBM,

pub/Jet11et/ or from freehep. scri. .fsu. edu in directory freehep/analysis/jetnet.
Program obtainable from: denni@thep.lu.se or via anonymous ftp from thep.lu.se in directory

Catalogue number:

Title of Program: JETNET version 3.0

PROGRAM SUMMARY

Submitted to Computer Physics Communications

Theory Division, CERN, CH 1211 Geneva 23, Switzerland

Leif Lonnblad

Solvegatan 14 A, S-223 62 Lund, Sweden
Department of Theoretical Physics, University of Lund,

Carsten Peterson and Thorsteinn Rognvaldsson

Neural Network Package

J ETNET 3.0 — A Versatile Artificial

December 1993

CERN-TH.713s/94

LU TP 93-29Po¢21@2l?
EER“ x xxlilililxiixuiililix 'B3

g ou 5 MM/I

Q/.€{Ll\/ TH ?’l59e @8*

For a problem that is encoded with ni input nodes, no output (feature) nodes, H layers of hidden OCR Output
The only restriction of the complexity for an application is set by available memory and CPU time.
Restriction of complexity of the problem

can be used for any pattern recognition problem area.
used with success for heavy quark tagging and quark—gluon separation, it is of general nature and
package was originally mainly intended for jet triggering applications [2, 3, 4], where it has been
must be loaded with a main application specific program supplied by the user. Even though the
3 . 0 package consists of a number of subroutines, most of which handle training and test data, that
is pointed out. The self-organizing part is unchanged and is hence not described here. The JETNET
this manual and the relation between the underlying algorithms and standard statistical methods
networks. A set of rules-of-thumb on when, why and how to use the various options is presented in
versions and contains a number of powerful elaborate options for updating and analyzing MLP
map algorithm as well. The present version, JETNET 3.0, is backwards compatible with older
versions of such networks using the back—propagation updating rule, and included a self-organizing
their simplicity and excellent performance. The F77 package J ETNET 2 .0 [1] implemented "vanilla”
methods. In particular feed—forward multilayer perceptron (MLP) networks are widely used due to
Artificial Neural Networks (ANN) constitute powerful nonlinear extensions of the conventional
Method of solution

Fischer discriminants, principal components analysis and ARMA models.
control. Standard methods for such problems are typically confined to linear dependencies like
ing from off-line and on-line parton (or other constituent) identification tasks to accelerator beam
Challenging pattern recognition and non-linear modeling problems within high energy physics, rang
Nature of physical problem

Keywords: pattern recognition, jet identification, data analysis, artificial neural network

CPC Library subroutines used: none

No. of lines in combined program and test deck: 5753

Peripherals used: terminal for input, terminal or printer for output

No. of bits in a word: 32

High speed storage required: M 90k words

Program language used: FORTRAN 77

• Langevin Updating [6] OCR Output

• Standard Gradient Descent (back-propagation) [5]

The following learning algorithms are included in JETNET 3 . O:

performance and estimating error surfaces.
cern additional learning algorithm variants, learning parameters and various tools for gauging
[1, 4] for information on this part. For the MLP the most important additions and changes con
the self—organizing networks nothing is changed in JETNET 3.0 and we refer the reader to refs.
dating and self-organizing networks. Both these approaches were implemented in JETNET 2 .0. For
used architectures and procedures are the Multilayer Perceptron (MLP) with backpropagation up
is no exception with its demanding on-line and off-line analysis tasks. To date, the most commonly
nition and function mapping problems in a wide area of applications. High energy physics (HEP)
Feed-forward ANN have become increasingly popular over the last couple of years in feature recog

1 Introduction

LONG WRITE-UP

machine.

Mn : 34, using 3770 patterns and training for 1000 epochs, takes 565 CPU-seconds on the same
3000/400, depending on which method that is used. A real-world problem with MC : 240 and
pattern presentations per epoch takes between 30 and 60 CPU-seconds on a DEC Alpha workstation
Running the test-deck problem, which has Mc : 60 and M,, : 16, for 100 epochs with 5000 training
Typical running time

Mc + Mn.

increases with 2(Mc + Mn). If individual learning rates are used, it increases with an additional
If second order methods are employed, which keep track of past gradients, the storage requirement

In addition one of course needs to at least temporarily store the patterns; Mp : 11,,-}-1*1,,, real numbers.

j;1

(2)Mn I TL; + 2_J’f1»h(j) —I— 71,0

Also, the neurons requires the storage of 4M,, real numbers according to

j:].

(llMc : "*"h(1) `l` "h(j)"h(i+1)+ "‘h(-H)"0

H-1

numbers given by
nodes with TLh(j)(j : 1, ..., H) nodes in each layer, the program requires the storage of 2Mc real

j k

(3) OCR Output__ FM) =9lw¢19(w1k¢k+91)+9¢l;;;E
1 1

aim at. For a feed—forward ANN the following form of F; is often chosen
an automated optimal choice of the functions Fg, which is exactly what feature recognition ANN
ack. This procedure is often not very systematic and quite tedious. Ideally one `would like to have
a particular set of feature functions 0, : Fi(a:1, 1:2, : in terms of the kinematical variables
matical variables mk in order to single out desired features. A specific selection of cuts corresponds to
When analyzing experimental data the standard procedure is to make various cuts in observed kine

2 Learning in Feed-Forward Artificial Neural Networks

a sample program.
descriptions are listed in Sect. 5. Finally Sect. 6 contains a list of technical restricions and Sect. 7
JETNET 3 . O are contained in Sect. 4. The program components together with switch and parameter
to use in various situations are found in Sect. 3. Some implementation issues with respect to
when using feed-forward networks for learning. Discussions and prescriptions on what methods
This write-up is organized as follows. In Sect. 2 we very briefly discuss the basic steps and variants

particular, we think of optimization networks used for track finding [11, 12, 13, 14, 15, 16].
applications in HEP that require feed-back networks, which are not included in this package. In
However, we emphasize that in addition to feature recognition and function mapping there are ANN

different situations.

this writeup also contains a set of "rules-of-thumb" and guidelines on how to use the package in
Besides a full description of the functionality and the use of the various JETNET 3.0 subroutines

• Limited Precision

• Computation and Monitoring of Hessian Eigenvalues

• Saturation Measurement

• Dynamic Learning Rates

Also, among other things, the following options are included.

• "Rprop” [10]

• "Quickprop” [9]

• Scaled Conjugate Gradient [8]

• Conjugate Gradient [7]

set of sensor variables this can be accomplished by OCR Output
points well exceeds the number of parameters (in our case the number of weights Nw). For a given
When modeling data it is always crucial for the generalization performance that the number of data

unlabeled data is called generalization performance.
be able to model data it has never seen before. The ability of the network to correctly model such
Once the weights have been fitted to the data in this way, using labeled data, the network should

minimizing the error and one has to rely on iterative methods, some of which are described below.
denotes patterns. For architectures with non-linear hidden nodes no exact procedure exists for
between oi and the desired feature values ti (targets) with respect to the weights. In eq. (5) (p)

D;1

(5)1 E I __ Z E(O(P) _ t(P))2 I I

square error

The weights wij and wjk are determined by minimizing an error measure of the fit, e.g. a mean

which case the outermost g is removed from the left hand side of
nature. The same architecture can be used for real function mapping if 0; are chosen linear, in
Using eq. (4) for the output assumes that the output variables represent classes and are of binary

sensor data. Eq. (3) and fig. 1 are easily generalized to more than one hidden layer.
(output) features 0; (the feature functions F;). The hidden layer enables non-linear modeling of the
The bottom layer (input) in fig. 1 corresponds to sensor variables Zk and the top layer to the

(4)g(:c) : $[1 + tanh(2:)] : (1 + e`2”)`
of the form

to be fitted to the data distributions and g(:c) is the non-linear neuron activation function, typically
which corresponds to the architecture of fig. 1. Here the “weights” wi) and wjk are the parameters

Figure 1: A one hidden layer feed-forward neural network architecture.

'wjk

wij

2N0te that this last equation refers to individual weights and not to the whole weight vector. OCR Output
vectors

1 throughout this paper quantities written in sans-serif denote matrices and quantities written in boldface denote

in w-space. This is usually not the optimal learning rate and it is wise to modify it according to the
Gradient descent assumes a flat metric where the learning rate ry in eq. (7) is identical in all directions

2.2 Second-Order Algorithms

A : —· ; w n Ssnl Bw] 10 ()
BE

procedure provided by the Manhattan [17] updating rulez
which we refer to as Langevin updating, or by using the more crude non—strict gradient descent

Aw : —nVE + 0* (9)
normalized Gaussian noise term [6]
to the gradient descent updating rule of eq. This is conveniently done by adding a properly
Initial "flat-spot" problems and local minima can to a large extent be avoided by introducing noise

where or < 1.

Awt+1 I #15 + ¤¤Awr (8)
BE

A momentum term is often also added to stabilize the learning

Here w refers to the whole vector of weights and thresholds used in the network

aw
7 ()A Z — i : ——— VE wt Tl Tl e

8E
where

wt+1 I wi + Awi (6)
learning rule [5]
a suiiicient method. It amounts to updating the weights according to the back-propagation (BP)
Minimizing eq. (5) with gradient descent is the least sophisticated but nevertheless in many cases

2.1 The Back-Propagation Family

all of which we will return to later.

• Inspection of the final network to remove redundant parameters.

• Adding complexity terms to the error (eq. to regularize the network.

• Building in a. priori known symmetries into the problem —“weight sharing”

• Preprocessing using e.g. Principal Component Analysis.

tion of the Hessian, is the method of Conjugate Gradients (CG), where E is iteratively minimized OCR Output
A somewhat different technique to use the (approximately) correct metric, without direct computa

2.2.2 Cor1jugateGradients

where 0 < 7- < I < 7+.

'Y—77w,t lf 8wEt+1 ' 8wEt < 0wl +

step for each Weight according to
use of individual learning rates with the Manhattan updating rule, eq. (10), adjusting the learning
the Hessian. In our view, the most promising of these schemes is Rprop [10]. Rprop combines the
these individual learning rates adjust to the curvature of the error surface and reflect the inverse of
rates for each weight that are adjusted according to how "well” the actual weight is doing. Ideally,
Another heuristic method, suggested by several authors [10, 21, 22], is the use of individual learning

decay term (see below). The algorithm is also restarted if the weights grow too large [20].
going wrong, a maximum scale is set on the weight update and it is recommended to use a weight
the momentum term. To prevent the weights from growing too large, which indicates that QP is
weight. This updating corresponds to a “switched" gradient descent with a parabolic estimate for
where G) is the Heaviside step function and 6,,,E is the derivative of E with respect to the actual

8w Er _ Gu Et+1
¢ (13)A<¤¢+1 I —'l@(8w E:+1 ‘ 8~E1)8oE¢+1 +

function to escape flat spots on the error surface. In short, the updating for each weight reads
motion at all times. Furthermore, a small constant .·: is added to the derivative g'(1:) of the activation
error surface. The weight changes are then modified by the use of heuristic rules to ensure downhill
[9], where the basic idea is to estimate the weight changes by assuming a parabolic shape for the
One well-known method to approximate the curvature information is the Quickprop (QP) algorithm

2.2.1 Heuristic Methods

review of second order methods for ANN is found in [19].
Below, we discuss those approximate methods that are implemented in JETNET 3 .0 — an extensive

breaks down. One therefore has to resort to approximate methods.
of practical use. Also, H is often singular or ill-conditioned [18], in which case the Newton method
Unfortunately, computing the full Hessian for a network is too CPU and memory consuming to be

Bwijwgry
(12)_ 5fE _ 2 —; _ V E

where H is the Hessian matrix

(11)Aw:—H`1VE

that optimizes the updating step along each direction according to
appropriate metric. Ideally one would like to use a second order method like the Newton rule,

on distances to cluster centers in the training data. OCR Output
In the case of function mapping the output error can be estimated with standard methods based
This very important result enables the network outputs to be further processed in a controlled way.

4. Training data points are selected with the correct a. priori probabilities.

3. A mean square, cross entropy or Kullback error function is used.

a time).
2. The outputs are of 1-of-M-type (the task is coded such that only one output unit is "on" at

1. The training is accurate.

way; they correspond to Bayesian 0. posieriori probabilities [24] provided that:
not take values that are exactly 1 or 0. However, one can interpret these outputs in a very useful
Even though the target values i in a classifying problem are binary, the output units in an MLP will

2.3 Interpretation of the Results

Hd. This SCG method is usually faster than normal CG.
where A is a fudge factor to make the denominator positive and s is a difference approximation of

da ‘ (5: + Aid:)
7;, : (19)

—d ·VE ‘’

Gradient (SCG) [8], that avoids the line search by estimating the minimization step 1;, through
The line search part of CG minimization can be tricky and there exists a variant, Scaled Conjugate

[23] for a thorough discussion on these matters.
plus a fourth one, Shanna, which is too complicated to include here. We refer the reader to [7] and

Fletcher-ReevesVE,_,.1 - VE,+1/VE, · VE,
(18)POZa.k-RibiéreB, : (VE,+1 · (VE,+, — VE,)/VE, · VE,

VE,+, · (VE,+, — VE,)/d, · (VE, — VE,+,) Hestenes-Siiefel

we have implemented
methods have been suggested for how to compute the subsequent search directions. In JETNET 3 .0
if all the minimizations within the subspaces are exact. However, since this is never the case, several
where ,8 is chosen such that eq. (16) is fulfilled. This technique is exact if E is a quadratic form and

d¢+1 I —VEz+1 + Bad: (17)

conjugate directions, without ever actually computing the Hessian, through
By using the negative gradient of E for the initial direction dl it is possible to get all the subsequent

d,Hd,· OC 6u!
conjugate to each other such that
direction d. The Hessian metric is taken into account by making the minimization directions d
where the step length 1] is chosen, by employing a line search, such that E is minimized along the

Aw; I Thdt

within separate one-dimensional subspaces of w—space (see e.g. ref. [23]). The updating hence reads

An ANN network is not a linear function of all its weights. This implies a very beneficial OCR Output

solution where the information is maximally distributed among the weights [35].
a "smart" addition of noise in the training process, the network can be forced to choose a
desirable if the goal is to produce a distributed system that is robust to weight losses. By
which to some extent avoids overfitting. Also, this property can be very practical and even
Sigmoid units are not "orthogonal” and two hidden units may well perform identical tasks,

which are useful to make final decisions that minimize the overall risk [34].
As discussed above the output nodes approximate the Bayes a posteriari probabilities [24],

error estimation.

is analytic. Derivatives with respect to the inputs can therefore be computed, which simplifies
• The output nodes (0,) are analytic functions of the arguments zi, if the activation function g

number of features that make them particularly attractive:
strategy to follow (see e.g. ref. [33] for a discussion of the subject). However, ANN methods have a
the application require real-time execution? Hence, it is impossible to give a general rule on what
complex enough to call for a non-parametric method like ANN? Is data easily available? Does
Inevitably, the choice of method depends on many problem dependent factors. ls the problem

ANN [32].
Also, unbiased comparisons of ANN and non-ANN methods on prediction tasks are in favour of
on pattern recognition HEP problems are therefore in favour of ANN models [26, 27, 28, 29, 30, 31].
exploit the capabilities of non-parametric models like ANN. Tests of ANN versus standard methods
Fortunately, for most HEP problems one has access to big data samples, making it possible to

data than parametric ones in order to achieve good generalization performance [25].
non—parametric methods like ANN contain more free parameters and hence require more training
powerful than parametric methods that try to Ht reality into a specific parametric form. However,

any assumption about the parametric form ofthe function they model. In this sense they are more
point of view, ANN models belong to the general class of non-parametric methods that do not make
or prediction tasks and ANN represents only a small subset of these. From a statistical modeling
There are many different methods around for doing multivariate statistical analysis, function fitting

3.1.1 ANN versus other methods

3.1 Choosing the Model and its Parameters

include them in our discussion due to their general interest.
and ideas discussed here are not implemented in JETNET 3.0 but we have nevertheless chosen to
recommendations are based on experience and references in the literature. A few of the techniques
approaches, together with guidelines on how to configure an MLP to obtain optimal results. The
In this section we deal with the issue of when t0 use ANN as compared to more conventional

3 Guidelines and Rules of Thumb

10 OCR Output

A third approach, which is often suggested for time-series prediction, is to use recurrent networks

choose depends on how local the problem is.
and splines [47, 48]. Both the MLP and the local map approaches work well and which method to
a local map [42, 45, 46]. This method is similar in spirit to statistical methods like regression trees

used to divide the feature space into subregions. Each subregion is then associated with a function
[41, 43]. Another is the “local map" where a partitioning algorithm, like k—means clustering [44], is
The straightforward ANN approach is to use the MLP with appropriate number of layers and units

(noisy) examples.
In a function fitting problem, the task is to model a real-valued target function f from a number of
Function fitting and prediction

number of hidden units. It is, however, uncertain how sensitive they are to overtraining.
the Cascade Correlation algorithm [40], can construct very complex decision boundaries with a small
Some MLP-like approaches with skip-layer connections and iterative construction algorithms, like

an MLP (see below on modular architectures).
Approaches that combine the advantages of MLP and LVQ [39] seem to work better than just using

so far.

work better. We have found the MLP to work better than LVQ for all HEP problems encountered
cation. In special cases, when the decision surface is highly disconnected, the LVQ approach may
in general more parsimonious in parameters than nearest neighbour approaches for pattern classifi
whereas a nearest neighbour approach, like LVQ, needs Nh ~ aN units [38]. Hence, the MLP is
Quantization (LVQ) [37]. The MLP needs Nh ~ a.N‘1 hidden units to create the decision surface,
The conventional ANN algorithms for classification problems are the MLP and Learning Vector

number of relevant features/ inputs.
in the feature space [34]. This decision boundary is a surface of dimension N — 1, where N is the
In classification problems, the task is to model the decision boundary between a set of distributions

Classification

3.1.2 Choice of ANN Model

of a self-organizing network it is quite easy to interpret an ANN model
to ANN models since the former are easier to interpret. We disagree with this view. With the aid
It is sometimes argued that statistical non-parametric methods, like decision trees etc., are preferable

be trained.

with "orthogonal" units (e.g. polynomial ones) may just need one inversion of a matrix in order to
long training times. Other statistical methods learn in general much quicker. For instance, models
Due to their generality, ANN methods also have some drawbacks, the most prominent one being

number of inputs [36].
scaling property - for some functions and networks the learning curves are independent of the

11 OCR Output

discuss below how this pruning can be done.

to start out with more units than needed and remove superiiuous units during or after training. We
Fortunately, it is not necessary to know the exact number of hidden units beforehand. It is possible

limits the use of eq. (22) to being only a rough estimate on the number of units.
moment of the Fourier magnitude distribution of the function f, which is unknown! This uncertainty
provided that a one hidden layer MLP with linear output is used. However, Cj is the first absolute

(22)Nh ~ Cn/Np/(N1¤sNp)

that minimize the generalization error
and networks. In ref. [36] the following scaling relationship is given for the number of hidden nodes
In function fitting problems, estimates similar to eq. (21) can be made for certain classes of functions

is much smaller.

number of hidden units needed is N + 1. For an open volume the minimum number of hidden units

network is expected to separate a closed volume in N dimensions from its exterior, the minimum
training. For classification problems, the dimension of the feature space is a rough indicator. If the
say it is desirable to have an a priori method that selects the optimal number of hidden units before
the generalization performance of different architectures are compared after training. Needless to
However, the above methods are all a pastericri and work only in "trial and error" experiments where

set. This measure agrees well with the experimental CV measure above [52].
where NU is the number of weights in the network and NP is the number of patterns in the training

EQU'- z Eirair1.1+ 2 (21)N (;) Nr

error [52, 53, 54]. One approximate form for the (summed square) generalization error is [52],
To save time one can instead of experimental methods use analytical estimates for the generalization

(20)Eyen ” (Emzh

v experiments
been used for testing and the CV estimate of the generalization error is the average error over these
training and one for testing. The training procedure is repeated, identically, until all subsets have
v-fold Cross Validation the data set is divided into v disjoint subsets, of which v — 1 are used for
be done with Cross Validation (CV), Jack-knife, or Bootstrap methods [50, 51]. For instance, in
the generalization error to select the appropriate number of hidden units. Experimentally, this can
generalization error, which is the sum of the bias and the variance. Hence, it is necessary to estimate
which is the risk of overfitting the data. The ultimate goal is to select the model that minimizes the
There is a trade—oH` between bias, which is the networks ability to solve the problem, and variance,

3.1.3 Number of hidden units

the appropriate time lagged inputs [49].
as good solutions as recurrent networks, within much shorter training times, given that one is using
with feed-back connections. However, in our experience with time series the simple MLP produces

12 OCR Output

the simulations are run on small personal computers.
whatsoever when the simulations are run on RISC workstations. It might however be relevant if
tangent for the sigmoid, in order to speed up the training procedure. We have not found any speedup
It is sometimes suggested to use piecewise linear functions instead of the more complicated hyperbolic

function.

Of these, JETNET 3.0 implements all possibilities except for the Gaussian bar and radial basis

be chosen linear.

where ai is the summed signal arriving at output i. For function fitting problems the output should

Oi :o(a1,a2,...,a..,,,T) I
ea;/T

such that they sum to one, by using so-called Potts or softmax output
For classification tasks, the standard choice is the sigmoid. The outputs can also be normalized,
Output units

is local.

the effective dimension of the problem is lower than the actual number of variables, or if the problem
the radial basis function [42]. These are examples of local activation functions that can be useful if
Other choices are the Gaussian bar [41], which replaces the sigmoid function with a Gaussian, and

very efficient for making sweeping cuts in the feature space.
one where the response is approaching 1 and another where it is approaching 0 (-1). Hence it is
form. The sigmoid function is global in the sense that it divides the feature space into two halves,
The standard choice is the sigmoid function, eq. (4), either in symmetric [-1, 1] or asymmetric [0, 1]

Hidden units

The choice of activation function can change the behaviour of the ANN network considerably.

3.1.5 The activation function

decision surface is very simple, like a hyperplane or a hypersphere.
decision surface is complicated. In fact, it is completely unneccesary to use an ANN at all if the
one hidden layer often is enough. Networks with many hidden layers are not justified unless the
HEP classification problems seem to have simple discrimination surfaces, which would explain why
two hidden layers are preferable for function fitting problems. We emphasize though that many
experience, MLP networks with one hidden layer are sufficient for most classification tasks, whereas
practice, two hidden layers can be more emcient [41, 43, 49] but more difficult to train. In our
In theory, an MLP with one hidden layer is sufficient to model any continuous function [55]. In

3.1.4 Number of hidden layers

13 OCR Output

though, that this statement refers to the "on-line" variant of BP, where the weights are updated
and, most importantly, it often outperforms other methods in spite of its simplicity. We emphasize,
Back-propagation is the most widely used learning algorithm since it is very simple to implement

3.2.1 Back—pr·opagation

other learning algorithms.
implemented in JETNET 3.0. Ref. [58] contains a review of other ANN packages that implement
algorithm. In what follows we summarize our experiences with the different learning algorithms
tasks. It is a very stable learning algorithm that reaches as low or lower errors than any alternative
that BP learning, sometimes with noise added, is not only sufficient but often superior for most
learning algorithms. Though, after extensive explorations of these new learning algorithms, we find
One major difference between JETNET 3 .0 and older versions is the existence of several alternative

3.2 Choosing the Learning Algorithm

process.

class interferes with the recognition of another class due to the non-locality of the MLP division
a larger network. This avoids the problem of interference, which occurs when the recognition of one
tasks, where it may be wise to train n networks to recognize one class and then combine them into
remain even after the final hidden layer in the MLP. Another example is the n—class classification
MLP for classifying hadronic events. The superficial LVQ layer is able to resolve non-linearities that
where an MLP with a superficial LVQ network is shown to be more efficient than just the single
upon a single architecture only. They are also easier to train. One example is presented in [39]
the subtasks. Such modular systems are often more efficient and easier to train than systems based
problem into smaller subtasks, like separating “location" from "form", and use different models for
The optimal model is not necessarily one single model. Instead, it may be profitable to divide the

3.1.7 Modular methods

error measure (see the section on pruning below).
weight sharing" [57], which clusters the weight values by adding a complexity term to the usual
lf it is suspected, but unknown, that the problem has a symmetry, then it is possible to use “soft

in an invariant form [56].
robust and time saving technique is to preprocess the data such that it is presented to the network
essentially the same as “receptive fields" without the shared weights property. If possible, the most
feature only occupies a small part of the input field, then one can use "selective fields", which is
input field is divided into subfields with shared weights Also, if it is known that the important
of the network. For translational symmetries one can use so-called “receptive fields”, in which the
Symmetries in the problem can and should be exploited to reduce the connectivity and complexity

3.1.6 Exploiting symmetries

14 OCR Output

EXPCTICIICC.

BW: have not performed extensive benchmarks of QP and its failure could therefore be related to our insufiicient

Also, the SCG algorithm is usually faster than standard CG since it avoids the line search.
is a waste of resources to search for a very exact minimum position along each conjugate direction.
BP sweeps in order to get out of the flat region. The use of a coarse line search is recommended. It
lf one insists on using CG in such cases it is profitable to initialize the CG learning by a couple of

often occur for networks with many hidden layers.
search will attempt to find a minimum along a flat direction. As previously stated, fiat surfaces
valleys. However, it breaks down whenever the error surface is more or less flat, since the CG line
The strength of CG is in the rare cases when the path to the minimum follows a few long narrow

Consequently, we see no reason to recommend using CG, although it learns toy problems very fast.
conclusion was reached in an extensive benchmark test of different ANN learning algorithms [59].
CG on HEP problems is the opposite; it is often unable to find the true global minimum. The same
ln ref. [7] the CG method outperformed BP on the parity problem. However, our experience with

3.2.4 C0njugateG1·adients

makes BP perform as well, if not better
related to its use of individual learning rates. Normalizing the data in the way described below
learning algorithms, both in speed and quality. However, its superb performance in this test is
In a recent benchmark test on a medical data set [59] “Rprop” was reported to outperform all other

3.2.3 Rprop

very large weights and gets stuck
works well on parity and decoder problems but has difficulties with HEP problems - it often reaches
In using "Quickprop" [9] we frequently encounter problems with getting a stable performance. It

3.2.2 Quickprop

efiicient as compared to other alternatives.
becomes ill-conditioned with a Hat subspace where the random search in Langevin updating is very
(eq. (9)), where noise is added to the BP equations This is because the Hessian matrix easily
For networks with more than one hidden layer it is beneficial to use the Langevin updating variant

mode BP.

after presentation of only a small subset of training data. On-line BP is much faster than batch

15 OCR Output

°Ref. [62] provides F77 code for doing this estimation

the validation set signals that the ANN is overlearning the training data and that training should
used indirectly to monitor the performance on unknown data. A deteriorating performance on
This validation set is not used directly in the training, i.e. not presented to the network, but
To determine the termination point for the training it is customary to use a validation data set.

model.

[34, 50, 62]*. With such an estimate at hand, it is much easier to evaluate the quality of the ANN
be estimated by the use of simpler classifiers, like the k-nearest-neighbours or Parzen windows
[34], which equals the Bayes risk with zero-one loss function. This upper classification limit can
a classification problem, the optimal classification performance is the Bayes limit or Bayes error
Before attempting an ANN model on a problem, one should if possible estimate the outcome. For

3.4 When to Stop Training

of units. This is useful if the data is not available beforehand to compute the relevant scales.
A method suggested in [26] is to let the network handle the normalization by adding an extra layer

for the network by an order of magnitude.
useful when the data contains outliers. In some cases, such normalizations reduce the learning time
is useful if the data is more or less evenly distributed over a limited range, whereas the latter is
range [0, 1], or translate them to their mean values and rescale to unit variance. The former method
very different learning rates. Two simple normalization options are; either scale the inputs to the
Normalization of the input is done to prevent "stiifness”, i.e. when weights need to be updated with

variables.

that the function is continuous and uses conditional probabilities to select the significant input
tional dependencies between input and output is the so-called 6-test [61]. This test only assumes
For function mapping problems the most powerful method, to our knowledge, for extracting func

might hence loose nonlinear information by employing it.
largest variance. Also, one should keep in mind that PCA assumes linear dependencies and one
guarantee that the chosen inputs are relevant for the output, it only selects the inputs with the
and select the n first principal axes as the basis in feature space. The PCA does not however
The input space dimension can be reduced by performing a Principal Component Analysis (PCA)

• To simplify the problem by precomputing useful signatures from the data [60].

• To avoid "stiffness" in the learning process by rescaling the data.

• To prevent overfitting by reducing the number of inputs and hence the number of weights.

Preprocessing the data is important for many reasons.

3.3 Preprocessing the data

16 OCR Output

the new constraints.

The network must be retrained after a posteriori pruning, in order to find the global solution given

normalized.

Remove all weights with a magnitude less than some threshold, provided that the inputs have been
extremely simple method that works surprisingly well is a posteriori pruning by visual inspection:
the units [64] or by computing the Hessian matrix to remove superfluous weights [65, 66]. One
There also exist a posteriori methods for pruning trained networks by measuring the relevance of

symmetries, is not implemented in JETNET 3.0.

widths are adjusted during learning. This method, which is valuable if the problem has unknown
where the weight distribution is assumed to be a multimodal mixture of Gaussians whose means and
is the case for problems with symmetries and shared weights. In ref. [57] a procedure is suggested,
and only a few large weights. It may well be that the optimal weight distribution is multimodal, as
Of course, it is by no means necessary that an optimal network solution contains a set of small weights

and the pruning method above are options in JETNET 3 .0.
corresponds to a prior weight distribution P(w} or exp[—(1 + wg/w2)‘1)]. Both the weight decay
which has zero cost for small weights and A cost for large weights. Similar to weight decay, this

j

<25>E ~ E + A E i1 + wi, /w§
Ld? /w2

pruning option is [63]
distribution P(w) oc exp[—}\w2/2] with — ln P as the complexity cost. A slightly more sophisticated
relative cost for large weights. Eq. (24) constrains the weights to a prior Gaussian probability
The sum extends over all weights in the network and A is a Lagrange multiplier controlling the

w

(24)" 2 E~E+;Zw,,

The simplest such pruning procedure is weight decay, which reads
A more general approach valid for all weights is to add a complexity term to the fitness error (eq.
overfitting. With respect to weights connecting to sensor nodes this can be done by preprocessing.
As mentioned in Sect. 2 it is important to keep the number of weights minimal in order to avoid

3.5 Regularization and Pruning

of trial runs.

each network until it reaches a prespecined training error, which has been determined by a couple
threshold value on the training error. For instance, when computing CV estimates one can train
In cases where data is scarce and the use of a validation set is too costly, one can instead use a

is indirectly used in the training to choose a stopping point.
performance. It is however imperative that the validation data are not used in the test set, since it
be stopped. When the training is stopped, a test set can be used to estimate the generalization

17 OCR Output

procedure where MSTJN(2) is small. Routinely we use ten patterns per update for most applications
number of patterns per update MSTJN(2). We strongly advocate the use of an on-line updating
are the learning rate PAR.JN(1) (1; in eq. (7)), the momentum PAR.JN(2) (oz in eq. (8)), and the
The BP algorithm, eq. (7), is selected by setting MSTJN(5) : 0 (default). Its main parameters

4.1.2 Backpropagation

automated in JETNET 3 .0.

each unit equal to zero. Other suggestions are found in refs. [67, 68]. None of these methods are
training data through the network once and adjust the thresholds to make the average argument of
Another method, suggested in [59], is to set the width PAR.JN(4) to any value and then process the

PARJN 4) : ——+ (max[“fan-in"] 26 ()
0.1

“fan-in"). A suitable normalization for this is
unit size, one simply scales the weights in proportion to the number of units feeding to a unit (the
inhibits learning. This can be avoided by proper weight initialization. If the input is normalized to
extreme values. The derivative of the activation function (eq. 4)) is zero for saturated units and thus
It is of utmost importance to ensure that the units are "active 1earners” and not saturated to their

4.1.1 Initial weight values

PARJN(4). Naturally, these switches and parameters must be set prior to calling JNINIT.
MSTJN(1) and MSTJN(10-19). The distribution of the initial weights is set by the parameter
The ANN architecture (number of hidden layers, nodes, etc.) is designed through the switches

that need to be initialized. The default values of these parameters give good results in most cases.
learning rates at convenience during execution, but each learning algorithm uses specific parameters
JETNET 3 .0 is initialized by calling the subroutine JNINIT. It allows for switching between diferent

4.1 Initialization

and because the JETNET 3 .0 user should be aware of their existence.

because we consider them important, although we have not had the opportunity to implement them,
In some rare cases we mention techniques that are not part of the JETNET 3.0 package. This is

and switches mentioned here are described in the program components section.
those in the earlier version that generated questions from the users. All subroutines, parameters
aspects of using JETNET 3.0. We include information on all new features of JETNET 3 .0 and on
This section is intended as a guide to the program components section and addresses the practical

4 Practical Implementation Issues

18 OCR Output

and PARJN(29). They correspond to the step used in computing the difference approximation s in
the line search etc., are described in a separate section below. The SCG parameters are PARJN(28)
options in eq. (18) for computing the next search direction. The CG parameters, which control
(eq. (15)) and Scaled CG (MSTJN(5) : {10,11,12,13}) (eq, (19)) come with the four different
There are eight different variants of CG in JETNET 3.0. Both standard CG (MSTJN(5) : {4, 5, 6, 7})

4.1.6 Conjugate Gradient

It is recommended to run QP using a small weight decay (PAH.JN(5)).

have not done extensive tests to to determine the problem dependence of these parameters.
other three parameters are; PARJN(1) of order unity, PARJN(23): 0.1 and PAPtJN(21) : 1.75. We
magnitude PARJN(22). The latter is quite unimportant. Default values recommended in [9] for the
prime addition PARJN(23) (e), the maximum growth factor PARJN(21) and the maximum weight
parameters and two control parameters. These are the "learning rate" PARJN(1) (1;), the sigmoid
Quickprop (MSTJN(5):3), which estimates the updating step through eq. (13), has two learning

4.1.5 Quickprop

parameters as BP.

(PARJN(6)), to which it is not very sensitive provided it is less or equal to 0.1, it uses the same
hidden layers, even though it requires somewhat more CPU time [6, 49]. Except for the noise level
(eq. In our view, LV is the most powerful of all the algorithms for networks with many
Langevin learning (MSTJN(5) : 2) is identical to BP except for an additional Gaussian noise term

4.1.4 Langevin

sigmoid, the learning rate must be a few orders of magnitude smaller.
learning parameters as BP. However, since the weight update is not reduced by the derivative of the
Manhattan learning (eq. (10)) is selected by setting MSTJN(5) : 1. It uses basically the same

4.1.3 Manhattan

the learning parameters are independent of the number of patterns used per update.
In contrast to earlier versions, JETNET 3 . 0 uses a normalized error to make the gradient, and hence

close to unity is needed.
momentum values above 0.5 are seldom required. For parity problems and such, a momentum value
used for different weight layers. The momentum should be in the range [0,1]. For HEP problems
learning rate in inverse proportion to the fan-in of the units so that different learning rates are
attention. Typical initial values are in the range [0.1,1] and it is usually profitable to scale the
occasionally an order of magnitude more. The learning rate is the parameter that requires most

19 OCR Output

LV we use a so-called "bold driver” method [69] where the learning rate is increased if the error is
whereas final adjustments should be small in order for the network to settle properly. For BP and
adjustments in general need to be large, since the probability of being close to the minimum is small,
large learning rate and decrease it as the network converges towards the solution. Initial weight
The optimal learning rate varies during learning. For BP and LV one should start out with a

4.3 Dynamic Learning Parameters

tine JNTRAL. The sample program illustrates how this is done.
After initialization, the network is trained by presenting training patterns and invoking the subrou

4.2 Training the Network

3 .0 will be evaluating the correct error function all the time.
to the total number of training exemplars and MSTJN(9) equal to one. This ensures that JETNET
are used so that fluctuations are negligible. This is done in JETNET 3 .0 by setting MSTJN(2) equal
is important that the same patterns are used for consecutive updates unless very large data samples
rithms depend heavily on changes in the error value between consecutive positions. Consequently, it
Care must be taken when using batch type algorithms, like QP, CG, SCG and Rprop. These algo

4.1.8 Batch training

learning rates.

which are set as in the BP case. JETNET uses the value stored in PARJN(1) or ETAL to initialize the
very sensitive to the choice of the scale factors. Hence the only concern are the initial learning rates,
allowed scale-up and scale-down factors (PAPtJN(30-31)). According to [59] the final result is not
learning rates (in vector ETAV); the scale factors 7+ and 7- (PARJN(28-29)) and the maximum
according to eq. (14). It has two learning parameters and two control parameters besides the
Rprop (MSTJNCE) : 15) uses individual learning rates that are dynamically tuned during training

4.1.7 Rprop

to always guarantee a descent direction and is hence more robust (but slower).
(MSTJN(5) :4) or Hestenes-Stiefel (MSTJN (5) :5) formulas. However, the Shanno formula is designed
direction (MSTJN(5):10). The CG algorithm, with line search, runs best with the Polak-Ribiére
The SCG runs best in combination with the Polak-Ribiére formula for computing the next search

the algorithm is sometimes speeded up by increasing PARJN(28).
usually work fine and the user should not need to set any parameters when using SCG, although
eq. (19) and to the initial value used for A, respectively. The default values for these parameters

20 OCR Output

are then repeated until the line search finds a satisfactory minimum or until it has used up the
it makes a new parabolic fit and moves to the predicted minimum position. Such parabolic steps
step computed from a parabolic fit using the gradient information. From these three error values
along the search direction, with the first step equal to the learning rate PARJN(1) and the second
and the gradient along the search direction. It then computes the error at two subsequent positions
In coarse outline, the line search works as follows: First it computes the error at `the initial position

JETNET 3 .0 has moved to the best configuration so far and stopped.
SCG is used, and continue training until the value of MSTJN(5) changes to 9, which signals that
minimum error so far. This is done by setting MSTJN(5) to 8 or 14, depending on whether CG or
JETNET 3 .0 must be told when the user stops training so that it can move to the position with the
is the minimum error achieved during the learning that is important. However, this means that
weight space. Hence there is no cause for alarm if the error value fluctuates during learning. It
somewhat confusing behaviour since JETNET 3 .0 outputs the error value at its current position in
3.0 does not move back to its original position after evaluating the error function. This results in
the function at a different point, and then move back to the original point, the line search in JETNET

somewhat unorthodox. ln contrast to traditional line searches that start out in one point, evaluate
Although inspired by algorithms in [23, 73], the line search algorithm implemented in JETNET 3 . O is

4.4.1 The line search

search gets confused.
an identical set of training patterns must be used for each evaluation of the error, otherwise the line
learning algorithm that depends strongly on the uniqueness of the error function. Most importantly,
Several things must be kept in mind when using the CG option in JETNET 3 . O since it is a batch-type

4.4 Conjugate Gradient Learning

each epoch. However, no improvements have been observed using these options.
Also implemented in JETNET 3 . O are options of having the momentum and the temperature change

noise level can also be justified given that the simulation time is finite [74].
From the perspective of simulated annealing and global optimization, an exponentially decreasing
procedure is sufiicient to significantly improve the learning for networks with many hidden layers
learning rate. We use an exponential decay governed by the scale parameter PARJN(20). This
The noise level used in LV updating should also decrease with time, preferably faster than the

are found in refs. [70, 71, 72].
value for PAR.JN(11). Examples of other more advanced methods for regulating the learning rate
learning we recommend an exponential decrease of the learning rate, realized by choosing a negative
The scale factor 7, which is set by the parameter PARJN(11), is close to but less than one. For MH

= - .7%+1 [nt · (1+ Q6!) otherwise 7 (2)
Th "Y if EH-1 > Ez “

decreasing, and decreased if the error increases:

21 OCR Output

where E, is the current training error and the other quantities are defined as

• If (E, 2 E,-, and E, 2 A, and E, 2 D) => rescale A : cA, where c < 1.

• If (E, 2 E,-, and E, < A, and E, 2 D) :> decrease A : A — AA.

• If (E, < D or E, < E,-1) :> increment A : A + AA.

Following (63], we tune A in eq. (25) according to

Small weights that lie inside a fiat subspace can be omitted.
based pruning can be done by computing the Hessian matrix, its eigenvalues and eigenvectors:
Lagrange multipliers correspond to parameters PARJN(5) and PARJN(14) respectively. Hessian
JETNET 3.0 implements the weight decay and the pruning method of eqs. (24) and (25). The

4.6 Pruning

(according to the value of MSTJN(4)), which is useful if one wants to use the pruning option.
while older versions always produced a summed square error, J ETNET 3 . 0 gives the appropriate error
used in JETNET 3 . O is scaled with the size of the training data set according to eq. Furthermore,
The main output from JETNET 3 .0 is the training error. In contrast to previous versions, the error

4.5 Output

minimum has been bracketed.

the second control parameter (PARJN(25)). These convergence criteria are only checked for if the
current distance from the initial position, Tpred is the predicted position of the minimum, and 6 is
the line search was started), 8dEO is the initial gradient along the line search direction d, r is the
where 6 is the first control parameter PARJN(24), E0 is the error at the initial position (where

if lr — r,,,.ed| S 6 (29)

or

E < Eg —}- €T3dE0 (28)

increased for real problems. The convergence criteria are
value for both MSTJN(35) and MSTJN(36) is 10, which works fine for toy problems but need to be
allowed in searching for the minimum, and the latter two set the convergence criteria. The default

and PARJN(25). The first two control the number of iterations and number of restarts that are

The most important control parameters for the line search are MSTJN(35), MSTJN(36), PAR.JN(24),

rescaled PARJN(1).

number of restarts, the whole CG process is restarted from the current minimum position, using a
for PARJN(1). If the line search does not find a satisfactory minimum even within the prespecified
prespecified number of trial steps. In the latter case the line search is restarted with a new value

22 OCR Output

example is when the input units consist of a matrix of cells, e.g. EL cells in a calorimeter, where
JETNET 3 . O offers the possibility to use shared weights for exploiting translational symmetries. An

4.8 Receptive Fields and Shared Weights

JNHESS assumes the summed square error in eq.

with obvious interpretation and extension to more layers.

wjkwjrkr

gjwjvkr
30 ()wgjwgrjv w,j0j· wijwjrkl

are ordered in JETNET 3.0 according to (cf. fig. 1 and eq.
the subroutine JNSTA'1`. However, anticipating possible questions, the terms of the Hessian matrix
eigenvectors replace the columns of the Hessian matrix. The Hessian can be printed out by invoking
puted by invoking JNHEIG (single precision). Eigenvalues are then placed in the vector OUT and the
If the Hessian has been symmetrized, the eigenvectors and eigenvalues of the Hessian can be com

normalizes and symmetrizes the Hessian and places it in the internal common block / JNINT5/ .
one full epoch, the size of which is controlled by MSTJN(2) and MSTJN(9), has been presented, it
training patterns are iteratively placed in the vectors OIN and DUT before JNHESS is called. When
invoking the subroutine JNHESS. The computation is done much in the same way as the training;
A novelty in JETNET 3. O is the possibility to compute the Hessian matrix for an MLP network by

4.7 Computing the Hessian

Of these, PARJN(15), PAB,JN(18) and 1>A1=.JN(19) are crucial.
PARJN(16) for cy, PARJN(17) for c, PARJN(18) for wo, and PARJN(19) for the desired error D.

In JETNET 3.0 these pruning parameters correspond to; PAR.JN(14) for }., PARJN(15) for A}.,

of magnitude) above the suggested default value of 1 · 10`
inputs. Also, on toy problems we find that the parameter A}. can be increased considerable (orders
number of inputs ranged between two and ten, whereas the largest networks in [63) have up to forty
that wg should follow w ~ 1/ "fan-in". However, our tests were performed on problems where the
functions for the units are of order unity. This agrees with our experience, with the modification
toy and real-world problems. The recommended value for wg in [63] is of order unity if the activation
Altough it is quite tricky to get it to work properly, we have used this procedure successfully on both

on.

problems that D is set to random performance, which in practice means that pruning is always
D are not pruned unless the training error is decreasing. In ref. [63] it is advised for hard

D : The desired error, which acts as a threshold for the procedure. Solutions with error above

A : The weighted average error: At : ·yA,-1 + (1 — 7)E,.

23 OCR Output

the feed-forward net all begin with the letters JN, as in .letNet, whereas the self-organizing map
back-propagation networks and another for self-organizing maps. The subroutines associated with
a main program written by the user. JETNET 3.0 is divided in two parts, one for feed-forward
JETNET 3 . O is a F77 subroutine package and contains a number of subroutines that are called from

5 Program Components

set the bit precision of the different components of the network.
JETNET 3 . O has an option of training a network with limited precision. The switches MSTJN(28-30)
Since the final goal of many ANN applications in HEP is to design hardware to use for triggering etc.

4.10 Limited Precision - Hardware Implementations

out.

network is learning or not. This is practical when proper learning parameter values are being tried
is monitored by a nonzero value for MSTJN(22), is consequently a measure of to what extent the
up its mind" whereas an s value close to zero means that it is still learning. The saturation, which
and measures the resolution of the units. An s-value close to unity signals that the unit has "made

Z, *1} if y(¢¤) 6 [-1,1]
(31)$:4 jE(1-2~h?) ifg(m)€[0, 1]

The saturation s is defined as

4.9 The Saturation Measure

The above solution is inefficient for large input matrices, since all weights are nevertheless updated.
However, it is faster to train small network modules and later combining them into a larger network.

hidden units are assumed to have full connectivity from the inputs.
units are generated if the specified number of hidden units is less than necessary. Any remaining
with maximum overlap, i.e. the fields are only shifted one (2: or y) unit at a time, and new hidden
receptive field is specified by MSTJN(27). At initialization, an array of receptive fields is generated
specified with MSTJN(25) and MSTJN(26), where ni S Ni. The number of hidden units used for each
conditions are assumed if these values are negative. The geometry of the receptive fields (rz., >< ny) is
of the input matrix (Nx >< Ny) is specified with MSTJN(23) and MSTJN(24). Periodic boundary
Such configurations can be achieved in JETNET 3 . O using the switches MSTJN(23—27). The geometry

i.e. assumed to be identical.

matrix. Weights connecting to corresponding parts of the different receptive fields are then shared,
several overlapping smaller portions (large enough to cover the size of a subfeature) of the input
symmetry. It is then profitable to configure the network so that the hidden (feature) nodes cover
it is known a priori that identical features can occur anywhere in the matrix with translational

24 OCR Output

J ETNET 1 . 1.

Same as JNREAD(NF) except that it reads files produced by the older versions JETNET 1 . O and

SUBRDUTINE JNRDLD(NF)

here.

prior to a call to JNREAD are lost. The comments about the file number for~JNDUMP apply also
described there. All switches and parameters in common blocks /JNDAT1/ and /JNDAT2/ set
Reads the information from the file ABS(NF) produced by JNDUMP and initializes the network

SUBRDUTINE JNRE.AD(NF)

file is opened with write access accordingly.

is unformatted, otherwise it is formatted. The user must make sure that the corresponding
Writes all relevant information of a network to the file ABS(NF). If NF is negative the output

SUBRDUTINE JNDUMP(NF)

the vector DUT.

Feeds the input signal in the vector DIN through the net and places the produced output in

SUBRDUTINE JNTEST

is specified by the switch MSTJN(5).
Updating of the weights is performed every MSTJN(2) call to JNTRAL. The training algorithm
determine the change of the weights. The produced output pattern is stored in the vector DUT.
which is compared to the target pattern in the vector DUT. The resulting error is used to
Takes the pattern stored in the vector DIN and calls JNFEED to produce an output pattern,

SUBRDUTINE JNTRAL

Weights are given initial random values according to PARJN(4) or WIDL(I).
Initializes the network according to the setting ofthe switches in /JNDAT1/ and /JNDAT2/.

• SUBRDUTINE JNINIT

the target values.
a test pattern in DIN, calling JNTEST and comparing the produced output values, stored in DUT, with
output values in the vector OUT and calling JNTRAL. Subsequent testing of the net is done by putting
and calling JNINIT. The net is trained by putting an input pattern in the vector DIN, the desired
the only routines the user has to invoke. The network is initialized by setting switches in /JNDAT1/
The main routines are JNINIT, JNTRAL, JNTEST, JNDUMP and JNREAD (JNROLD). These are usually

5.1.1 Main subroutines

5.1 Feed-forward Network (JN)

compatible with earlier versions.
components here since they are basically unchanged from JETNET 2 .0 JETNET 3 .0 is backwards

subroutines all start with JM, as in JctMap. We will not discuss any ofthe JctMap subroutines and

25 OCR Output

Subroutines are presented in the order they are used when training the network.

5.1.3 Internal subroutines

METHOD.

separate two overlapping Gaussian distributions. Which method to use is set by the switch
installed on your computer, just invoke this subroutine. It trains a feed—forward network to
A "test deck" that automatically tests JETNET 3 .0. To check whether JETNET 3.0 is properly

• SUBROUTINE JNTDEC(METHDD)

presented with the full training set (no more and no less) before JNHEIG is called.
stops and writes out an error message if the Hessian is asymmetric, i.e. if JNHESS has not been
the columns of the Hessian matrix (stored in the internal common block /JNINT5/). JNHEIG
are placed in the vector OUT. If IGRAD ¢ 0 then the eigenvectors are computed and placed in
Diagonalizes the Hessian matrix and computes its eigenvalues. The eigenvalues ofthe Hessian

SUBROUTINE JNHEIG(IGRAD)

normalized and the upper diagonal copied onto the lower diagonal.
ing pattern currently stored in DIN and OUT. After MSTJN(2)*MSTJN(9) calls, the Hessian is
Computes the upper diagonal ofthe Hessian, assuming a summed square error, for the train

SUBRUUTINE JNHESS

IS:5 writes out the diagonal elements ofthe Hessian matrix.

IS:4 writes out the Hessian matrix.

IS:3 writes out an approximate time factor and the effective number of weights in the net.
IS:2 gives the switches and parameters used in common block /JNDAT1/ and /JNDAT2/.
is initialized).
IS:1 gives a header and number of nodes in each layer (done automatically when the network
Writes out information about the network on file number MSTJN(6).

SUBRDUTINE JNSTAT(IS)

to using receptive fields.
Helds means that a hidden node only sees a portion ofthe input pattern, which is not identical
be used for selective input fields or for training only portions of the network. Selective input
are set to zero and if NO:l the weights are reinitialized. This choice of enabling/disabling can
ILA and nodes J1 to J2 in layer ILA-1. The input layer has number 0. If N0:0 the weights
Switches off (NU S 0) or on (NU > 0) the updating of weights between nodes I1 to I2 in layer
SUBROUTINE JNSEFI(ILA,I1 ,I2,J1 ,J2,NO)

Furthermore, the subroutine JNTDEC is a “test—deck” used to test the program on different platforms.

and JNHEIG.

windows, compute statistics and compute the Hessian matrix. These are JNSEFI, JNSTAT, JNHESS
Besides the main subroutines there are other subroutines that the user can use to define input

5.1.2 Other user invoked subroutines

26 OCR Output

Gives the node vector index of node I in layer IL if .]:0, otherwise it gives the weight vector
• INTEGER FUNCTION JNINDX(IL , I , J)

5.1.4 Internal functions

and compute its eigenvectors and eigenvalues.
These routines are taken directly from [23] and are used to diagonalize the Hessian matrix
SUBROUTINE JNTRED and SUBRUUTINE JNTQLI

Controls the Scaled Conjugate Gradient training. It calls the subroutine JNCGBE.

SUBROUTINE JNSCGR

block /JNINT4/.

quadratic interpolation. All parameters used in the line search are stored in the common
Performs the line search with an algorithm that is a mixture of golden section search and

SUBROUTINE JNLINS

gradients.

If IOP : 0, JNCGBE sets BETAK : 0 and computes the scalar product ofthe current and previous
If IOP : 1, JNCGBE computes the CG momentum term in eq. (17) and returns it in BETAK.
SUBROUTINE JNCGBE(BETAK,IOP)

selected. JNCGGR calls the subroutines JNCGBE and JNLINS.

Controls the Conjugate Gradient training. It is called from JNTRAL if CG learning has been

SUBROUTINE JNCDGR

called and writes out an error message and stops the execution.
If something goes wrong or if any inconcistensies are encountered during execution, JNERR is

SUBROUTINE JNERMIERR)

precision. The bit precision is set by switches MSTJN(28-30).
tions. If ICHP 2 O the current values ofthe weights and thresholds are chopped to the fixed
Switches on (ICHP>0) or off (ICHP<0) fixed precision weights, thresholds and sigmoid func
SUBROUTINE JNCHUP(ICHP)

MsrJN<22> ge 0.
Calculates the saturation measure s in eq. (31) for each layer. JNSATM is only called if

SUBROUTINE JNSATM

Calculates the error from the output nodes and current values in OUT.

SUBRGUTINE JNDELT

without writing to OUT.
Feeds the values in DIN through the network and calculates the values ofthe output nodes,

SUBROUTINE JNFEED

Writes a header on file number MSTJN(6).

SUBROUTINE JNHEAD

receptive fields are used, the defined geometries are checked for inconcistencies.
Sets the internal parameters and switches in common blocks /JNINT2/ and /JNINT3/. If

SUBROUTINE JNSEPA

27 OCR Output

0 —-+ normal updating
MsrJN(s) (D:0) updating procedure

E : Z t ln(t / 0)

>2 -—» Kullback error with Potts nodes of dimension MSTJN(4)
1 -+ entropy error: E : E {(1 —- t)h1(1 — 0)- tln(0)}
0 -—> summed square error: E : %E(0 — t)2
-1 —» log-squared error: E : — Zln(1 — (0 — t)2)
error measureMsrJN(4> (D;0)

5 —» g(a:) : (only used internally for entropy error)
4 —+ g(m) : Z
3 —> g(z) : exp (only used internally for Potts-nodes)
2 —> g(m) : tanh(m)

I n Wl =
Msrm<s) (D:1) overall activation function used in the net

MSTJN(2) (D:l0) number of patterns per update in JNTRAL
MSTJN(1) (D:3) number of layers in the net

MSTJN is a vector of switches used to define the feed-forward network used:

MXNDJM

• c0MMON /JNDAr1/ MsrJN(40),PARJN(40),MsrJM(20),PAaJM(20),0IN(1000),our(1000),

block while /JNDAT2/ is intended for the "advanced” user.

The user interface common blocks are /JNDAT1/ and /JNDAT2/. /JNDAT1/ is the main common

5.2.1 Interface common blocks

5.2 Common blocks

much to [75].
routine is taken, basically unchanged, from the Lund program JETSET but the code owes very
A random number generator that returns random numbers in the open interval]0,1[. The
REAL FUNCTION R.JN(IDUM)

Returns the error of the network, determined by the switch MSTJN(4).

REAL FUNCTION ERRJN(IDUM)

for use in Langevin updating.

Generates a Gaussian distributed random number with standard deviation 1.0 and mean 0.0

REAL FUNCTION GAUSJN(IDUM)

is determined by switches MSTJN(3) or IGFN(I).
g’(m) and g"(1:) and stores them in the common block /JNSIGM/. The activation function type
Returns the activation function g(z) of type N with argument X. It also computes the derivatives
REAL FUNCTION GJN(X,N)

/JNINT1/ for details on the node and weight vectors.)
index ofthe Weight between node I in layer IL and node J in layer (IL—1). (See common block

28 OCR Output

MsTJN(40) not used.

MSTJN(39) number of calls to JNHESS(I)
MsTJN<s8> number of restarts in QP/CG/SCG(I)

1 —» searching for minimum

0 —+ minimum found

MsTJN(s7> current status of the line search(I)
MSTJN(36) maximum number of allowed restarts for the line search(D:10)
MSTJN(35) maximum number of iterations allowed in line search(D:10)
MSTJN(34) number of warnings issued by the program so far(I)
MSTJN(33) code for latest warning issued by the program(I)

(see description above)
MSTJN(32) maximum number of warning messages to be issued(D:10)

in any case, only MSTJN(32) warning messages are issued
1 —» execution is terminated after MSTJN(32) warnings
0 —> warnings are ignored

MSTJN(31) procedure for handling warnings(D21)
functions (28), thresholds (29) and weights (30)

MsTJN(2a-30) (D=0) bit-precision (0 —» machine precision) for sigmoid
MSTJN(27) number of hidden nodes per receptive field(D=1)
MSTJN(25,26) (D20) (x,y)-geometry of receptive fields

see COMMON /JNINT3/ for further explanations
< 0 —+ periodic boundary conditions

MsTJN<2z,24> (x,y)-geometry of input field when using receptive fields(D=0)
MSTJN(22) saturation measure s (¢ 0 —» on)(D20)
MSTJN(21) pruning (> 0 —·+ on)(DID)
MSTJN(13-20) (D20)
MSTJN(12) (D=1)
MsTJu(11) (D=8)
MsTJu(10) (D:16)
MsTJN(10+1) number of nodes in layer I (I:0 —> input layer)
MsTJN(9) (D:100) number of updates per epoch
MSTJN(8) (I) initialization done
MSTJN(7) (R) number of calls to JNTRAL
MsTJN(6) (D:6) file number for output statistics

15 —> Rprop updating

14 —» terminate Scaled Conj. Grad. updating
13 —> Scaled Conj. Grad. updating — Shanno
12 —+ Scaled Conj. Grad. updating — Fletcher-Reeves
11 ——> Scaled Conj. Grad. updating — Hestenes-Stiefel
10 —> Scaled Conj. Grad. updating — Polak-Ribiere
9 —> no updating
8 —» terminate Conj. Grad. updating
7 —» Conj. Grad. updating — Shanno
6 —> Conj. Grad. updating — Fletcher-Reeves
5 —» Conj. Grad. updating — Hestcnes-Sticfcl
4 —» Conj. Grad. updating — Poiak-Ribicrc
3 —+ Quickprop updating
2 ~ Langcvin updating
1 —> Manhattan updating

29 OCR Output

DIN is the vector used to pass the values of the input nodes to the program.

(See [1] for descriptions on switches MSTJM and parameters PARJM.)

All parameters can be changed at any time by the user.

PARJN(s4—40) not used

PAnJN(ss) minimum scale-down factor in Rprop(1):10*6)
PARJN(s2) (D:50.0) maximum scale-up factor in Rprop

PARJN(31) scale—down factor cy- used in Rprop(D:0.5)
pARJN(so) (D:1.2) scale—up factor 1+ used in Rprop
PAaJN(29) initial value for A in SCG(1):10-6)
pAnJN(28) constant 0*0 used in SCG for computing s(D:10·4)
pARJN(27> maximum allowed step size in line search(D:2.0)
PARJn(26) (D:U.UO1) minimum allowed change in error in line search
PAnJN(2s) (D:0.05) tolerance 6 of minimum in line search

PAsJN(24> (D:0.1) line search convergence parameter 6

PAsJN(2s> (D:0.0) constant added to g’(:z:) to avoid “Hat spot” in QP
PAaJN(22) (D:1000.0)maximum allowed size of weights in QP
PAnJN<21) (D:1.75) maximum scale in QP updating
PARJN(20) (D:1.0) decrease in Langevin noise (scale factor per epoch)
PARJN<19> (D:0.0) target error D used in pruning
PAaJN(18) (D:1.0) scale parameter wg used in pruning
PAnJN<17) (D:0.9) pruning rescaling factor c
PAsJN(1e) (D:0.9) parameter 7 used for calculation of PARJN(10)
PAsJN(1s> (D:1O‘6) change AA of A
PAaJN(14) pruning parameter A(D:U.())
PAaJN<1z> (D:1.0) decrease in temperature T (scale factor per epoch)
PARJN<12> decrease in momentum alpha (scale factor per epoch).

< 0 ——> geometric decrease
> 0 ——+ "bold driver” dynamics

PAaJN<11> (D:1.0) decrease in 1] (scale factor per epoch)
PAaJN(10> (R) weighted average error An used when pruning

PARJN(9> (R) mean error last epoch (equal to MSTJN(9) updates)
PARJN<s> mean error in last update(R)
PAxJN<7> last error per node(R)
pAaJN(6> width 0 of Gaussian noise in Langevin updating(D:0.0)
pAaJN(s> weight decay parameter X(D:0.0)

< 0 —» [0,-1>ARJN<4>]
> 0 -» [-1>ARJm(4),1>ARJN(4)]

PAsJN<4> width w of initial weights(D:0.1)
PAnJN(s> (D:1.0) overall inverse network temperature B : 1/T

momentum parameter 11PAaJN(2> (D:0.5)
PAnJN(1> (D:0.001) learning rate ry
PARJN is a vector of parameters determining the performance ofthe feed-forward net:

Switches 2, 5, 6, 21, 22, 28, 29, 30, 31, 32, 35 and 36 can bc changed at anytime by the user.

30 OCR Output

G(IW) temporary weight and threshold vector used in CG, SCG and QP
1 ~—+ update

0 ——> do not update
NTSELF(I) switches for updating threshold for node I.

for self-organizing map, NSELF is equivalent to the vector NBHD
1 —+ update
0 —-+ do not update

NSELF(IW) switches for updating weight with index IW

DW(IW) current value of the update for weight with index IW

W(IW) current value for weight with index IW
D'l`(I) current value of the update A0, for the threshold at node I
T(I) current value of the threshold 9, (see eq. at node I
D(I) current value of the 6, at node I

A(I) current value of the summed input u., to node I

O(I) current value of node I in the network, does not include the input units

vectors are MAXV : 2000 and MAXM : 150000.

and ODT. Weight vectors are W, DW, NSELF, G, ODW and ETAV. The default dimensions for these
/JNINT1/ contains weight and node vectors for the net. Node vectors are O, A, D, T, DT, NTSELF

ODW(MAXM),ODT(MAXV),ETAV(MAXM+MAXV)

ow(MAxM),NsELF(MAxM),NrsELF(MAxv),G<MAxM+MAxv),

• COMMON /JNINT1/ O(MAXV) ,A(MAXV) ,D(MAXV) ,T(MAXV) ,DT(MAXV) ,W(MAXM) ,

5.2.2 Internal common blocks

of nodes in layer I.
if MSTJN(22) qé 0 this vector contains the average saturationsATM(1) (R)
weight values in weight layer I.

wroL(I) (D:0.0) if greater than 0.0, this value is used for the width w for initial
be changed at any time by the user.
hidden layer is considered to be weight layer number one. Can
weights in weight layer I. The weights between input and Hrst
if greater than 0.0, this value is used for the learning rate 1) forETALU) (D:0.0)

network is initialized with subroutine JNINIT.

by MSTJN(3) is used. These switches are only active before the

to be used in layer I, otherwise the overall function determined
if greater than 0, these switches determine the sigmoid functionrsFN(r) (D:0)

the user.

temperature PARJN(3) is used. Can be changed at any time by
in the sigmoid function for layer I, otherwise the overall inverse
if greater than 0.0, this value is used as inverse temperature Br1Nv(1) (D:0.0)

• common /JuoAT2/ TrNv(10),1GFN(10),srAL(10),wroL(10),sATM(10)

in DIN.

supervised training and to pass the output produced by the network given an input pattern
OUT is a vector used both to pass the desired value ofthe output nodes to the program during

31 OCR Output

/JNINT4/ common block for CG line search parameters and SCG parameters.

STEPMN ,ERR.MN , IEVAL , ISUCC , ICURVE`. , NSC ,GVEC2

• COMMON /JNINT4/ ILINON ,NC ,G2 ,NIT ,ERR.LN(O:3) ,DERRLN,STEPLN(O :3) ,

Each receptive field node in the first hidden layer scan an area of NXRF*NYRF input nodes.
Note that the coordinates (IX,IY) corresponds to input node number IN=(IX—1)*NYIN+IY.
ganized in a plane of NXIN*NYIN nodes (with periodic boundaries if NXIN or NYIN are negative).
The geometry of the receptive fields is defined as follows: The input nodes are assumed to be or

first hidden layer to each node in the second hidden layer are shared.
If NHPRF is negative, weights from equivalent receptive field nodes in the

NHPRF number of nodes per receptive field — set from MSTJN(27)

NRFW number of weights per receptive field

NHRF total number of receptive fields

NYHRF number of overlapping receptive Helds in y—direction

NXHRF number of overlapping receptive field in x-direction

NYRF y-height of receptive field — set from MSTJN(26)

NXRF x-width ofthe receptive field — set from MSTJN(25)

set from MSTJN(24)

NYIN y-height of input-field (if negative ——> periodic boundary)
set from MSTJN(23)

NXIN x-width of input field (if negative —» periodic boundary)

/JNINT3/ common block for receptive fields indices.
• COMMON /JNINT3/ NXIN,NYIN,NXRF,NYRF,NXHRF,NYHRF NHRF,NRFW,NHPRF

1 —> on

ICPON switch for precision chopping

SM(I) internal variable used for calculating saturation measures
EB.1 , ER2 internal variables used for calculating PARJN(7-9)

IPOTT : dimension of Potts units

IPOTT switch for use of Potts units

NL number of layers except input layer

NG(I) activation function g(m) for layer I
the last weight going from layer (I-1)

MMO(I) oftset index for weight vectors - tells the index in the weight vectors for
last node in layer (1-1)

MVO(I) offset index for node vectors - tells the index in the node vectors for the

M(I) number of nodes in layer I (I:0 —» input layer)

/JNINT2/ contains pointers and internal switches for the feed-forward network.
• c0MMON /JNrNr2/ M(0:10),Mv0(11),MMO(11),NG(10),NL,rPOTT,ER1,ER2,sM(10),IcPON

E'1`AV(IW) individual learning rates used in Rprop
stores 0id threshold gradient in CG, SCG, QP and Rprop0DT(I)

0DW(IW) stores old weight gradient in CG, SCG, QP and Rprop

32 OCR Output

difiicult to find a situation where more than 4 is needed.

The maximum number of layers in JETNET 3 .0 is 11, including the input layer, although it is very

JETNET 3 .O automatically.
JETNET 3 .O includes a “test deck" subroutine called JNTDEC. If you call this subroutine, it will test

6 Restrictions and Technical Information

GPPJN(I) second derivative g"(1:)
GPJN(I) first derivative g'(:c)

They are computed when the function GJN is called.

/JNSIGM/ common block containing first and second derivatives of the activation function

• COMMON /JNSIGM/ GPJN(MAXV),GPPJN(MAXV)

D2E(IW , IW) the Hessian matrix

/JNINT5/ common block used to store the Hessian matrix.

• COMMON /JNINT5/ D2E(MAXD2E,MAXD2E)

GVEC2 squared magnitude of the vector G(IW)

NSC number of attempted steps in the SCG algorithm

1 —» curvature information exists

0 —> curvature information does not exist

SCG algorithm.

ICURVE switch to tell whether curvature information exists or not — used in the

> 0 ——> successful step

ISUCC switch that tells if a successful step was made in the SCG algorithm
1 —+ compute the comparison parameter

0 —> do not compute the comparison parameter

IEVAL switch for the comparison parameter in SCG training

ERRMN minimum error so far

STEPMN position, relative to current point, of best minimum so far

to ERRLN(I)

STEPLN(I) coordinates, relative to current position, for previous points corresponding
DERRLN gradient along search direction at initial point

I>0 —> previous errors

I:0 ——» current error

ER,RLN(I) stored errors used in line search

NIT number of calls to the line search (along current direction)

G2 squared magnitude of the vectors DW(IW) and DT(I)

NC number of steps taken in CG minimization
-1 —> on and looking for the minimum (knowing that its been bracketed)
1 —> on and trying to bracket the minimum

0 ——» off

ILINON switch that tells the current status of the line search.

33 OCR Output

WRITE(MSTJN(6) ,621)XI

wRITE(MSTJN(6) ,620)WID1 ,WID2

WRITE(MSTJN(6) ,610)INDIM

wa1TE(MsrJm(e),e00)

DIMENSION TIN(NTRAIN+NTEST,INDIM) ,TOUT(NTRAIN+NTEST)

PARAMETER(WID1=1 . , WID2=2 . ,XI=O .00 ,BAYES=85 . 2)

PARAMETER(INDIM=5,HIDDEN=10,NTRAIN=5000,NTEST=1000O,NEPOCH=100)

sAvE /JNDAr1/

& OIN(MAXI) ,OUT(MAXO) ,MXND.IM

COMMON /JNDAT1/ MS'I`.TN(40) ,PARJN(40) ,Msr.m(2o),1>ARJM(20),

PARAMETER(MAXI=1000,MAXO=1000)

C...switch MSTJN(5).

C. . .method specified by METHOD, with values corresponding to the

C. . .distributions in the input space. The test-program uses the

C. . .Runs a test-program using data from two overlapping Gaussian

C...JetNet subroutine Test—DECk

SUBRGUTINE JNTDEC(METHOD)

used.

This sample program is the subroutine JNTDEC. It demonstrates how all training algorithms are

7 Sample Program

the characters JN or JM, except for the functions GAUSJN, GJM, GJN, ERRJN and RJN.

The code is written entirely in FORTRAN 77. All subroutine and common block names start with

parameter MAXD2E in all relevant PARAMETER statements.
The maximum size of the Hessian matrix is 300 >< 300. This can be changed by changing the

MAXM in the PARAMETER statement in each routine.

The maximum total number of weights is 150000 . This can be changed by changing the parameter

by changing the parameter MAXV in the PARAMETER statement in each routine.
The maximum total number of nodes is 2000 (not including the input nodes). This can be changed

MAXO in the PARAMETER statement in each routine.

The maximum number of output nodes is 1000. This can be changed by changing the parameter

MAXI in the PARAMETER statement in each routine.

The maximum number of input nodes is 1000. This can be changed by changing the parameter

34 OCR Output

.Normal Backprop

IF (MSTJN(5).E0.0) THEN
.Set parameters suitable for the given method of updating

CALL JNINIT

.Initialize network:

ENDIF

STOP O

WRITE(MSTJN(6),660)

&(MSTJN(5).LT.O).OR.(MSTJN(5).GT.15)) THEN

IF ((MSTJN(5).EO.8).OR.(MSTJN(5).EQ.9).OB..(MSTJN(5).EO.14).OR.

MSTJN(5)=METHOD

.Ch0ose updating method

PARJN(4)=0 .5

.Initial width of weights:

MSTJN(3)=1

.Set sigmoid function:

MsTJN(12)=1

MsTJN(11)=HIDDEN

MsTJN(10)=INDIM

MsTJN(1)=3

.MSTJN(10) inputs.

.MSTJN(11) hidden nodes, MSTJN(12) output nodes and

.Set network architecture: MSTJN(1)-layered network with

WRITE(MSTJN(6),626)

1OO CONTINUE

ENDIF

TOUT(IPAT)=0.0

120 CONTINUE

TIN(IPAT,I)=WID2*GAUSJN(IDUM)

DO 120 I=2,INDIM

TIN(IPAT,1)=WID2*GAUSJN(IDUM)+XI

ELSE

TOUT(IPAT)=1.0

110 CONTINUE

TIN(IPAT,I)=WID1*GAUSJN(IDUM)

DU 110 I=1,INDIM

IF (RJN(IDUM).GT.O.5) THEN

IDUM=IPAT

D0 1OO IPAT=1,NTRAIN+NTEST

WRITE(MSTJN(6),625)

C. . .Gcnerate data:

WB.ITE(MSTJN(6) ,=•=)

35 OCR Output

TRNMX=0.0

TE5TMX=0.0

WRITE(MSTJN(6),630)

WRITE(MSTJN(6),*)

.Other parameters keep their default values.

MsTJN(9)=MAx<1,NTRA1N/MsTJN(2))
.number of updates per epoch must be set to one.

.total number of training patterns, and hence MSTJN(9), the

.number of patterns per update, MSTJN(2), must be set to the

.Define the size of one epoch. Note that for batch training, the

ENDIF

MSTJN(2)=NTRAIN

PARJN(1)=1.0
.Rprop

ELSEIF (MsTJN(5).Eu.1s) THEN

MSTJN(2)=NTRAIN

.Scaled Conjugate Gradient

ELSEIF ((MSTJN(5).GE.10).AND.(MSTJN(5).LE.13)) THEN

MSTJN(2)=NTRAIN

PARJN(1)=1.0

. Conj ugat e Gradient

ELSEIF ((MSTJN(5).GE.4).AND.(MSTJN(5).LE.7)) THEN

M5TJN(2)=NTRAIN

PARJN(20)=1.0

PARJN(11)=1.0

PARJN(6)=0.0

PARJN(2)=0.0

PARJN(1)=2.0

.Quickpr0p

ELSEIF (MS'I'JN(5).EQ.3) THEN

PARJN(20)=O.99

PARJN(11)=O.999

PARJN(6)=0.01

PAR.JN(2)=O.5

PARJN(1)=1.0

.Langevi11

ELSEIF (MSTJN(5) .EQ .2) THEN

PAR.JN(11)=—O.99

PARJN(2)=O.5

PAR.JN(1)=0.05

.Ma.nhattan

ELSEIF (MsTJN(5).Eq.1) THEN

PARJN(11)=O.999

PAR,JN(2)=O.5

PARJN(1)=2.0

36 OCR Output

IF (TEST.GT.TESTMX) TESTMX=TEST

IF ((MSTJN(5).GT.3).AND.(MSTJN(5).LT.15)) THEN

TEST=FLOAT(NRIGHT)/FLOAT(NTEST)

330 CONTINUE

IF (ABS(OUT(1)—TOUT(IPAT)).LT.0.5) NRIGHT=NRIGHT+1

C...Calculate performance on test set (=generalization):

CALL JNTEST

C...Get network output:

340 CONTINUE

OIN(I)=TIN(IPAT,I)

DO 340 I=1,MSTJN(10)

C...Put pattern into OIN:

DO 330 IPAT=NTRAIN+1,NTRAIN+NTEST

NRIGHT=0

C...Testing loop:

IF (MOD(IEPOCH,10).E0.0) THEN

TRAIN=FLOAT(NRIGHT)/FLOAT(NTRAIN)

310 CONTINUE

IF (ABS(OUT(1)—TOUT(IPAT)).LT.O.5) NRIGHT=NRIGHT+1

C...Calculate performance on training set:

CALL JNTRAL

C...Invoke training algorithm:

0UT(1)=TOUT(1PAT)
C...Put target output value into OUT:

320 CONTINUE

OIN(I)=TIN(IPAT,I)

DO 320 I=1,MSTJN(10)
C...Put pattern into OIN:

ENDIF

IPAT=IP

ELSE

IPAT=INT(RJN(IP)*FLOAT(NTRAIN))+1
C...training patterns at random

C...Note that for non—batch training it is often a good idea to pick

IF (MSTJN(5).LE.2) THEN

DO 310 IP=1,NTRAIN

NRIGHT=0

C...Training loop:

DO 300 IEPOCH=1,NEPOCH

C...Main loop over epochs:

37 OCR Output

ELSEIF (METHOD.EQ.13) THEN

WRITE(MSTJN(6),770)

ELSEIF (METHOD.EQ.12) THEN

WRITE(MSTJN(6),760)

ELSEIF (METHOD.EQ.11) THEN

WRITE(MSTJN(6),750)

ELSEIF (METHOD.EQ.10) THEN

WRITE(MSTJN(6),740)

ELSEIF (METHOD.EQ.7) THEN

WRITE(MSTJN(6),730)

ELSEIF (METHOD.EQ.6) THEN

WRITE(MSTJN(6),720)

ELSEIF (METHUD.EQ.5) THEN

WRITE(MSTJN(6),710)

ELSEIF (METHDD.EQ.4) THEN

WRITE(MSTJN(6),700)

ELSEIF (METHOD.EQ.3) THEN

wR1TE(MsTJN(6),690>

ELSEIF (METHOD.EQ.2) THEN

WRITE(MSTJN(6),680)

ELSEIF (METHOD.EQ.1) THEN

wn1TE(MsTJN(6),6v0)

IF (METHOD.EQ.0) THEN

WRITE(MSTJN(6),650)BAYES

WRITE(MSTJN(6),*)

300 CONTINUE

ENDIF

ENDIF

TESTMX=0.0

TRNMX=0.0

ENDIF

MSTJN(5)=14

ELSE

MsTJN(5)=8

IF (MSTJN(5).LT.9) THEN

IF ((MSTJN(5) GT.3).AND.(MSTJN(5).LT.15)) THEN

IF (IEPOCH.EQ.NEPOCH-1) THEN
C...Terminate CG and SCG training:

ENDIF

WRITE(MSTJN(6),640)IEPOCH,TRAIN,TEST
C...Disp1ay performance:

ENDIF

TRAIN=TRNMX

TEST=TESTMX

IF (TRAIN.GT.TRNMX) TRNMX=TRAIN

38 OCR Output

and Medicine is acknowledged for financial support.
ence with Conjugate Gradients. The Goran Gustafsson Foundation for Research in Natural Science
One ofthe authors (T.R,) thanks Dr. M. Berggren for useful suggestions and for sharing his experi

Acknowledgements

END

C**** END OF JNTDEC **

RETURN

790 FORMAT(’ Rprop should reach (83.5 +— 2.2)% in 100 epochs’)

780 FORMAT(’ Shanno SCG should reach (70.7 +- 8.1)% in 100 epochs’)
&’ epochs’)

770 FORMAT(’ Fletcher-Reeves SCG should reach (81.4 +— 5.2)% in 100’,

&’ epochs’)

760 FORMAT(’ Hestenes-Stiefel SCG should reach (84.1 +- 2.6)% in 100’,

&’ epochs’)

750 FORMAT(’ Polak—Ribiere SCG should reach (84.0 +— 1.6)% in 100’,

740 FORMAT(’ Shanno CG should reach (71.7 +- 11.6)% in 100 epochs’)
&’ epochs’)

730 FORMAT(’ Fletcher—Reeves CG should reach (79.6 +- 5.6)% in 100’,

&’ epochs’)

720 FORMAT(’ Hestenes-Stiefel CG should reach (79.8 +- 5.6)% in 100’,

&’ epochs’)

710 FORMAT(’ Polak-Ribiere CG should reach (79.0 +- 7.0)% in 100’,

700 FORMAT(’ Quickprop should reach (82.8 +- 8.8)% in 100 epochs’)

690 FORMAT(’ Langevin should reach (82.9 +— 1.8)% in 100 epochs’)

680 FORMAT(’ Manhattan should reach (84.3 +— 0.6)% in 100 epochs’)

670 FORMAT(’ Backprop should reach (81.0 +- 2.2)% in 100 epochs’)

660 FORMAT(’ Undefined training algorithm in call to JNTDEC’)

650 FORMAT(’ The optimal generalization performance is ’,F4.1,’%’)

640 FORMAT(18,2x,2(· /*,F9.s,2x))

630 FORMAT(’ Epoch / Training / General. ’)

626 FORMAT(15X,’...done generating data.’)

625 FORMAT(15X,’Generating training and test patterns...’)

621 FORMAT(15X,’Their mean values are separated by ’,F4.2)

620 FORMAT(15X,’Their standard deviations are ’,F3.1,’ and ’,F3.1)

&I2,’ dimensions.’)

610 FORMAT(15X,’Two overlapping Gaussian distributions in ’,

GOO FORMAT(31X,’JETNET Test-Deck’)

ENDIF

WRITE(MSTJN(6),790)

ELSEIF (METHOD.EQ.15) THEN

WRITE(MSTJN(6),780)

39 OCR Output

Neural Networks 2, 475 (1989).
C. Peterson and E. Hartman, "Explorations ofthe Mean Field Theory Learning Algorithm",[17]

Commun. 77, 19 (1992).
M. Ohlsson, ”Extensions and Explorations of the Elastic Arms Algorithm", Comput. Phys.lla]

Elastic Arms Approach”, Comput. Phys. Commun. 71, 77 (1992).
M. Ohlsson, C. Peterson and A. Yuille, "Track Finding with Deformable Templates — The[15]

Seattle, WA (July 1991)
ings of 1991 IEEE INNS International Joint Conference on Neural Networks, Vol. 1, pp 7-12,
A. Yuille, K. Honda and C. Peterson, "Particle Tracking by Deformable Templates", Proceed[14)

Pattern Recognition", Comput. Phys. Commun. 66, 31 (1991).
M. Gyulassy and H. Harlander, "Elastic Tracking and Neural Network Algorithms for Complex[13]

(12] C. Peterson, ”Track Finding with Neural Networks”, Nucl. Instrum. Methods A279, 537 (1989).

Comput. Phys. Commun. 49, 429 (1988).
[11] B. Denby, ”Neural Networks and Cellular Automata in Experimental High Energy Physics",

The RPROP Algorithm", Proc. ICNN, San Fransisco (1993).
M. Riedmiller and H. Braun, "A Direct Adaptive Method for Faster Backpropagation Learning:{10]

Carnegie-Mellon Computer Science Rpt. CMU- CS-88-162 (1988).
S. E. Fahlman, "An Empirical Study of Learning Speed in Back-propagation Networks",[9}

Networks 6, 525 (1993).
M. F. M¢ller, “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning”, Neural[8]

291 (1992).
Feed-forward Neural Networks using the Conjugate Gradient Method", Int. J. Neur. Syst. 2,
E. M. Johansson, F. U. Dowla and D. M. Goodman, "Backpropagation Learning for Multilayer[7]

93-13 (to appear in Neural Comput.) (1994).
T. Riignvaldsson, "On Langevin Updating in Multilayer Perceptrons", Lund Preprint LU TP[6]

Explorations in the Microstructure of Cognition { Vol. 1}, MIT Press (1986).
Propagation”, in D. E. Rumelhart and J. L. McClelland (eds.) Parallel Distributed Processing:
D. E. Rurnelhart, G. E. Hinton and R. J. Williams, "Learning Internal Representations by Error[5]

Jet Features", Comput. Phys. Commun. 67, 193 (1991).
L. Liinnblad, C. Peterson, H. Pi and T. Rognvaldsson, "Se1f-organizing Networks for Extracting[4]

Phys. Rev. Lett. 65, 1321 (1990).
L. Lonnblad, C. Peterson and T. Rognvaldsson, "Finding Gluon Jets with a Neural trigger”,[3]

Nucl. Phys. B 349, 675 (1991).
L. Lonnblad, C. Peterson and T. Rognvaldsson, "Using Neural Networks to Identify Jets",[2]

with Artificial Neural Networks”, Comput. Phys. Commun. 70, 167 (1992).
L. Liinnblad, C. Peterson and T. Régnvaldsson, "Patte1·n Recognition in High Energy Physics[1]

References

40 OCR Output

R. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley: New York (1973).[34]

series F, Springer-Verlag (1993).
man and H. Wechsler (eds.) From Statistics to Neural Networks NATO ASI Proceedings, sub
B. D. Ripley, "Flexible Non-linear Approaches to Classification", in V. Cherkassky, J. H. Fried[33]

100, part 2 (1994).
Predictor Shootout — Overview and Discussion of Results", to appear in 1994 ASHRAE Trans.
J. F. Kreider and J. S. Haberl, "Predicting Hourly Building Energy Usage: The Great Energy[32]

Nucl. Instrum. Methods A330, 482 (1993).
[31] W. S. Babbage and L. F. Thompson, “The Use of Neural Networks in 7 —— no Discrimination",

mun. 78, 1 (1993).
G. Stimpf-Abele and P. Yepes, "Higgs Search and Neural Net Analysis", Comput. Phys. Com[30]

Phys. Commun. 67, 183 (1991).
G. Stimpf-Abele, “Recognition of Charged Tracks with Neural Network Techniques", Comput.[29]

17 (1993).
Evaluate the Performance of a Transition Radiation Detector", Comput. Phys. Commun. 78,
R. Belloti et al., “A Comparison Between a Neural Network and the Likelihood Method to[28]

eds. O. Benhar, C. Bosio, P. Del Giudice and E. Tabet, ETS EDITRICE (Pisa 1991).
Workshop in Neural Networks: From Biology to High Energy Physics, June 1991, Elba, Italy,
J. Proriol et. al., “Tagging B Quark Events in Aleph with Neural Networks", Proceedings of[27]

Instrum. Methods A329, 501 (1993).
Networks and Multivariate Statistical Methods — A Comparison of Both Techniques", Nucl.
K. H. Becks, F. Block, J. Drees, P. Langefeld and F. Seidel, “B-quark Tagging using Neural[26]

Neural Comput. 4, 1 (1992).
S. Geman, E. Bienenstock and R. Doursat, “Neural Networks and the Bias/Variance Dilemma",[25]

Probabilities", Neural Comput. 3, 461 (1991).
M. D. Richard and R. P. Lippmann, “Neural Network Classifiers Estimate Bayesian a posteriori[24]

bridge Univ. Press, Cambridge UK (1986).
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cam[23]

Neural Networks 3, 561 (1990).
T. Tollenaere, “SuperSAB: Fast Adaptive Backpropagation with Good Scaling Properties",[22]

works 1, 295 (1988).
R. Jacobs, “Increased Rates of Convergence Through Learning Rate Adaption", Neural Net[21]

(1991).
A. C. Veitch and G. Holmes, “A Modified Quickprop Algorithm", Neural Comput. 3, 310[20]

Newton’s Method", Neural Comput. 4, 141 (1992).
R. Battiti, "First- and Second-Order Methods for Learning: Between Steepest Descent and[19]

lem", SIAM J. Sci. Comp. 14, 693 (1993).
S. Saarinen, R. Bramley and G. Cybenko, "Ill-conditioning in Neural Network 'Training Prob[ls]

41 OCR Output

Street, IEEE Press, Los Alamitos CA (1991).
plication to Corporate Bond Rating Prediction", Proc. First Intl. Conf. on AI Appl. on Wall
J. Utans and J. Moody, “Selecting Neural Network Architecture via the Prediction Risk: Ap[52]

Determination", Pat. Rec. Lett. 11, 781 (1990).
A. A. Chilingarian and G. Z. Zazian, "A Bootstrap Method of Distribution Mixture Proportion[51]

San Diego CA (1990).
K. Fukunaga, Introduction to Statistical Pattern Recognition, 2:nd ed., Academic Press Inc.,[50]

(1994).
Shootout", Lund Preprint LU TP 93-24 (to appear in 19.94 ASHRAE Trans. 100, part2),
with Artificial Neural Networks — Methods and Results from the Great Energy Predictor
M. Ohlsson, C. Peterson, H. Pi, T.R6gnvaldsson and B. Siiderberg, "Predicting Utility Loads[49]

J. H. Friedman, "Multivariate Adaptive Regression Splines", Ann. of Stat. 19, 1 (1991).[46]

Wadsworth, Monterey CA (1984).
L. Breiman, J. H. Friedman, R. A. Olsen and C. J. Stone, Classification and Regression Trees,[47]

zation and its Application to Time-Series Prediction", IEEE Trans. Neur. Netw. 4, 558 (1993).
T. M. Martinetz, S. G. Berkovich and K. J.Schulten, "Neural-Gas Network for Vector Quanti[46]

Visuomotor-Coordination of a Robot Arm", IEEE Trans. Neur. Netw. 1, 131 (1989).
T. M. Martinetz, H. Ritter and K. J. Schulten, "Three-dimensional Neural Net for Learning[45]

Univ. of California Press, Berkeley (1967).
Proc. 5th Berkeley Symposium Math. Stat. and Prob., J. M. LeCam and J. Neyman (eds.),
J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations",[44]

Phys. Lett. B278, 181 (1992).
L. Léinnblad, C. Peterson and T. Régnvaldsson, "Mass Reconstruction with a Neural Network",[43]

Neural Comput. 1, 281 (1989).
J. Moody and C. J. Darken, "Fast Learning in Networks of Locally-tuned Processing Units",[42]

Comput. 3, 566 (1991).
E. Hartman and J. D. Keeler, "Predicting the Future: Advantages of Semilocal Units", Neural[41]

Mellon Computer Science Rpt. CMU- CS-90-100 (1990).
S. E. Fahlman and C. Lebiere, "The Cascade Correlation Learning Architecture", Carnegie[40]

in Nucl. Instrum. Methods A, (1994).
J. Proriol, "Multi-modular Networks for the Classification of e+e` Hadronic Events”, to appear[39]

of Scaling Behavior", Neural Comput. 5, 483 (1993).
T. Rognvaldsson, “Pattern Discrimination Using Feedforward Networks: A Benchmark Study[38]

(1990).
T. Kohonen, Self-organization and Associative Memory 3rd ed., Springer-Verlag, Heidelberg[37]

chine Learning 14, 115 (1994).
A. R. Barron, "Approximation and Estimation Bounds for Artificial Neural Networks", Ma[36]

Robust System", Neural Comput. 4, 366 (1992).
A. Murray, "Multilayer Perceptron Learning Optimized for On-chip Implementation: A Noise[35]

42 OCR Output

Descent", Proc. 1992 IEEE Worksh. Neur. Netw. Signal Processing, 3 (1992).
[70] C. Darken, J. Chang and J. Moody, "Learning Rate Schedules for Faster Stochastic Gradient

bern. 59, 257 (1988).
[69] T. P. Vogl et al., "Accelerating the Convergence of the Back-Propagation Method", Biol. Cy

Networks 6, 351 (1993).
[68] T. Denoeux and R. Lengellé, "Initializing Back Propagation Networks with Prototypes", Neural

Connections", IEEE Trans. Neur. Netw. 3, 899 (1992).
[67] L. F. A. Wessels and E. Barnard, “Avoiding False Local Minima by Proper Initialization of

Surgeon", Neur. Inform. Proc. Systems 5, 164 (1993).
[66] B. Hassibi and D. G. Stork, “Second Order Derivatives for Network Pruning: Optimal Brain

2, 598 (1990).
Y. Le Cun, J. S. Denker and S. A. Solla, “Optimal Brain Damage”, Neur. Inform. Proc. Systems[65]

Connection Science 1, 3 (1989).
[64] M. C. Mozer and P. Smolensky, "Using Relevance to Reduce Network Size Automatically",

Connectionist Networks”, Nonlin. Modeling and Forecasting, Addison-Wesley (1991).
[62.] A. Weigend, B. Huberman and D. Rumelhart, “Predicting Sunspots and Exchange Rates with

Phys. Commun. 54, 381 (1989).
[62] A. A. Chilingarian, "Statistical Decisions under Nonparametric a Priori Information”, Comput.

Series”, Lund Preprint LU TP 93-4 (to appear in Neural Comput.) (1994).
[61] H. Pi and C. Peterson, “Finding the Embedding Dimension and Variable Dependencies in Time

Lett. B313, 549 (1993).
[60] D. Buskulic, et. al., “Measurement of the Ratio Pb];/Thad using Event Shape Variables”, Phys.

rithms”, Proc. ESANN 93 Brussels (1993).
[59] W. Schiffmann, M. Joost and R. Werner, “Cornparison of Optimized Backpropagation Algo

Research and Neural Networks, MIT Press (1995).
[58] J. M. J. Murre, “Neurosimulators", review to appear in M. A. Arbib (ed.) Handbook of Brain

Comput. 4, 473 (1992).
[57] S. J. Nowlan and G. E. Hinton, "Simplifying Neural Networks by Soft Weight-Sharing”, Neural

Scale-invariant Data Classification”, Phys. Rev. E 48, 48 (1993).
[56] H. H. Szu, X. Yang, B. A. Telfer, Y. Sheng, “Neural Network and Wavelet Transform for

Systems 2, 303 (1989).
[55] G. Cybenko, “Approximation by Superposition ofa Sigmoidal Function”, Math. Control Signals

New-. Netw., (1993).
Number of Hidden Units for an ArtiHcial Neural Network Model”, to appear in IEEE Trans.

[54] N. Murata, S. Yoshizawa and S. Amari, "Network Information Criterion — Determining the

San Mateo CA (1992).
ization in Nonlinear Learning Systems", Adv. in Neur. Inf. Proc. Syst. 4, Morgan Kaufmann,

[53] J. Moody, “Thc Effective Number of Parameters: An Analysis of Generalization and Regular

43 OCR Output

329 (1990).
[75] F. James, "A Review of Pseudorandom Number Generators", Comput. Phys. Commun. 60,

nential Schedules", Ami. of Probability 20, 1109 (1992).
O. Catoni, "Rough Large Deviation Estimates for Simulated Annealing Applications to Expo[74]

F. James, “MINUIT”, Comput. Phys. Commun. 10, 343 (1975)[73]

Rev. A 45, 8885 (1992).
T. M. Heskes and B. Kappen, “Learning-parameter Adjustment in Neural Networks", Phys.[72}

On—Line Estimation of the Hessian’s Eigenvectors", Proc. Neur. Inf. Proc. Syst. 5, 156 (1993).
Y. LeCun, P. Y. Simard and B. Pearlmutter, "Aut0matic Learning Rate Maximization by[71]

