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ABSTRACT

By evaluating and resumming the large s be-
havicur of string loops to all corders we are
able to obtain an explicitly unitary operator
for the light (closed) superstring S-Matrix
above Planckian energies: it is dominated by
graviton exchange at large impact parameters
and by absorption at small impact parameters.
In an intermediate, eikonal region a semi-
classical description emerges as 1if, for
small deflection angles at least, each string
was moving in a static Schwarzschild metriec,
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Superstringsl) are presently attracting much attention as possibly
consistent fundamental theories giving rise, at low energies, to gauge
interactions of the usual type as well as to gravity. It is obviously at high
energies - or short distances - i.e., around Planckian scales that strings should
reveal their virtues, offering novel solutions to the long lasting problems of

classical singularities and quantum infinities in general relativity,

Not much work has been devoted so far to these regimes, in spite of the fact
that the finiteness of superstring loops is usually regarded as a consequence of
their very soft short-distance behaviour evidentiated, for 1instance, in the

exponential drop of fixed angle scattering or large P inclusive distributions.

There is another regime, the high s, small t limit of two—body scattering,
where, instead, tree-level string collisions do not differ much from their field
theoretic counterpart. The partial wave amplitudes grow too fast with energy, due

to graviton exchange, crying for loop effects to restore unitarity bounds.

This is the regime we shall study here. One would like to know, for
instance, if the price to pay for unitarity is a disastrous mass shift for the
graviton. More generally, at high energy one is entering a strong coupling regime

and loops become essential: what is saved of the tree level picture?

Quite unexpectedly, we were able to go quite a long way into evaluating

these effects, as we shall now discuss.

In order to define carefully the relevant kinematical regiom, we remind that
the theory contains, besides the fundamental scale a', a dimensionless coupling,
the string loop expansion parameter, and some other parameters expressing, in
units of a', the size of 10-D compactified dimensions. Out of these we can

express the D-dimensional gauge coupling g2 and the Newtoun constant GN which are

related by:
i
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While considering the loop expansion parameter as small (GNa << 1), we
278D 5y,

look at energies for which the tree amplitude is large, i.e., GNs «

Therefore, we are interested in the region where
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d's > (M V') > a (2)
and
ot M (3)
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where M;l is the compactification radius. This last restriction inmsures that

compactified momenta are not appreciably excited.

— ~L
The smallness of Gy ot 1720 gza.Z D

of contributions to the high energy limit., In fact (in units of a' = 3a' = 1) the
c

in (2) allows us to define a hierarchy

leading (graviton) trajectory is at a(t) = 2+t, and therefore the h-loop
contributions are expected to generate N-graviton Regge cuts (N = h+l) at
aN(t) = }+N+(t/N). The energy dependence will therefore be given by a sum of
terms of type

L+ bV

-p, 2 N
(Eo%s) (%5) 5 (1+O(¢}2)) , N2, @)

where the 0(g?) terms are generated by contributions which are subleading by
powers of s (like, e.g., gravitino exchanges) that will not be considered in the

following.

One could evaluate the large s behaviour of amplitudes from the string
multi-loop expression. An alternative way is to use well-known Regge-Gribov
techniqueSZ) in order to obtain multi-Regge exchanges by sewing superstring tree
amplitudes. At the one~loop level, which has been recently analysed3)

4)

methods yield eventually the same result ". We will then show how the

, the two

Regge—Gribov techniques can be extended to any number of loops, leading to a

resummation of the whole series.

Let us concentrate on type II superstrings (to avoid tachyons), where the

four-graviton tree amplitude is asymptotically given by

Ao (ab »cd) = oy, (s8) (e84 ) (Eeree)

o o o .% [-th) (i)ﬂt Tt (5)
tvee F{ast/2) 2 ¢ ’

£y being the graviton polarization tensors. It is a simple matter to showS) that
the impact parameter transform of (5) [given below, Eq. (23)] violates partial

wave unitarity at high energies.
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In order to compute the two-gravitonm Regge cut (Fig. 1), let us first obtain

the two-"gravireggeon" (GR) amplitude Aa o (M2) by factorizing the six-graviton
142

tree amplitude at the Regge poles J] = a(t]), J2 = alta) (Fig. 2). This amplitude

can be written in terms of the matrix element
e | W, (i, v\/iz(k“z,)wz;(k,,z,?) “{g“(k,',z.z,?)lg‘,}kd)} )

where Wa(k,z) is the vertex for graviton emission and z, are Koba-Nielsen

variables to be integrated over all the complex plane.

. o .

Note now that the Regge behaviour ~ s lsza2 15 controlled, as usual, by the
z] » 1, z2 * 1 region of integration. Therefore, Aal052
the leading (1—zi) singularities given by the operator product expansion of pairs

of vertices WE. By the methods of Ref. 6) we find

is obtained by isolating

~2-af-(bthey)?)

Wil(k')i) V‘{c_z (j'zlz) = (‘C—I'EZ) (4" l‘l'kZ)z H-—Z[ Wo(’t,i-kz,‘l)-l' ey
(7)

where \ )((3,?)
W,(4,3) = i "1 : 8

is the vertex for an off-shell scalar emission of the closed string and the

factor (l-kjkg)? =(1/4) a?[~(k1+k3) 2], due to SUSY, cancels the would-be tachyon
pole.

We thus obtain Aad = (e _.e.)a , where
(ALP) a 4" ajay

2
z -1 d*z Az
O, (M, 42 ) = (80-24) T 151 " (e ka | W, (9,,1) -

n - z 29.9. )
. Wo (18] Jegkd> = [£2 13 s

In order to define the angular momentum representation ~ J conjugate to M2 —
L - . . 7}
1t 1s useful to consider, instead of a Mellin transform, the beta-transformed

amplitude z&(ql,qz), which has the exact form4)
-2
Y (l’l [APY |
q,I(q,,q,) = T (T+ alt) ralt)-a(®) 1 (+) [r(:f+l+ i—}i‘%—’l-u)_] | (o)

where t] = wqf, ty = '(Q‘QI)Z, £ = _qzv
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The expression for 2& shows a Regge pole at J = =2+4t-t]1-t2 and a fixed pole

at J = -1 with a residue Vg, where

bety -t ) 2
v, (@na)= OBt s Ty T(aden)

[-r (1 + i’(tt*tz‘t))]z " h! m(-99,)
O 2

= J d‘i?’ Im Ay, (M%7 %% (n
[~

is what we call the 2-GR (GR) vertex since it provides the leading {gravitom)

trajectory contribution.

We have shown in (l1) the usual sum rule for the J = -1 fixed pole in order
to recognize the "diffractive" excitation spectrum of the string. Furthermore,

the sum rule allows us to extract the residue directly from Eq. (9), i.e.

100 4 N 217 . 20! q
M EX. r12
V, = j — a‘d.xt(”z) = j ds 1-& 1 (12)
e 20T ax )
thus realizing that V2 is simply obtained by setting |{] = 1 in the integral

representation of aalaz.
It is important to note that Vy = 1 + O[(ql.qg)z] for small qq2, so that
the inelastic channels decouple in the soft graviton limit (|31I > 0, or
gzl = 0).
The loop representation in the t-channel angular momentum J (conjugate to s)

. . . 2 . .
is directly obtained from Eq. (10) by known methods ) and is given by

1) 4 )
[-\(:l(t)= ‘_3_)” (ean)(sbec)J da, rEhI) rtb)
(2T T3-bt-tr T(1eb2) r(ietalz)

(13)
—a’(_tl)-oi(tz)
2

-4
s T(birbs) [ (g-2-t) T (3-2-§(bobrts)) |

We recognize the J-plane singularities generated by the 2-GR cut with tip at
J = az(t) = 3+(t/2), and by simple and double poles at J = g{t) = 2+t. The latter
are subleading contributions, vanishing at gqiqz = t-t]-tz = 0 due to the -
factor*? The cut represents the leading contribution, and is given in terms of

the square of the 2-GR vertex, 1i.e.,

We know that the pole residues at the one—~loop level wvanish exactly at t = 0,
due to SST no-renormalization theorems®’/. This cancellation of course needs
other subleading contributions at I, = a(ti)—ni, that we have not considered
here.
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(h=1) ' p-2 p-2
A Gom = e £ (dadm on |
70 @e)? 1T

_ 2
Rree (s,q.) Atyee (S'qz) ,'V:l G ‘:Iz)_] ,

(14)
V, being given in Eq. (11},

Therefore, apart from the vertex correction VE, the loop amplitude,

including phase, becomes a simple convolution of the tree amplitudes in Eq. (5).

Before generalizing the preceding method to higher loops, let us remark that
a direct analysis of the one-loop expression in superstrings, carried out in part
in Ref. 3}, 1ead34) to exactly the same result as in Eq. (14). The corner in
parameter space responsible for the large s behaviour of the amplitude is related
to & limit configuration of the torus (gzi > 0, i.e., Imt » =) far away from the

singularity of the partition function (IIzi > 1).
i

Since in the standard representation the loop momentum is integrated first,
compactification effects enter simply through the standard factor
10-D 10-D 10-D . 2 .
F2 Imt™> = (MCJImT) . The M_ factor is needed to convert glO into our
D~dimensional coupling g2, while the (Imr)s_(D/Z) factor makes up for the

D-dependence of rhe loop phase space.

The agreement of the two calculations is an explicit check of perturbative
s—channel unitarity, coupled to Regge behaviocur of tree amplitudes, which are the

ingredients used in Eq. (14).

The advantage of the Regge-Gribov approach is its simple generalization to
the multi-loop case. Indeed the N-Reggeon cut can be obtained in terms of N-GR

vertices VN(ql,...,qN) which are residues at multiple fixed poles of the Reggeon

amplitudes A (N = h+l). The latter are obtained in turn from
C(]_...C(.N

(2N+2)-graviton tree amplitudes by the OPE of N pairs of graviton emission
operators. Finally, the N-GR vertex is obtained from the integral representation

of the corresponding amplitude by setting ICiﬂ =1, i.e.,

N-1 ol”‘z . 2
Vy (‘i;-..qu) = 51'51 2“.1. 0“‘."“" (”; My, ; 5[;”‘1”) =

W N . D
. 39, X () . a5 as 2959

SRR RS i I S P I Bl
0 o 4=t AT asycheN /
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where X{o) is the non-zero mode contribution to the usual closed string position

operator at T = 0:

AL .S . ans wtl —ilne
X'(s) = 1 L(ane 4+ &ne ) (16)
w0 *
[The zero mode, at ICiI = 1, just provides the momentum and helicity conserving

t . k +k +%q.).
factor €, Ey a( 2Ky ql) ]

The leading asymptotic expression for the h-lcop contribution to the

four—graviton amplitude is then

) d ‘h B d‘iu (p-2)

’ s, € ¢ ¢ i _ Y.
A ) ;;.:( e )(25) (hen)! (2mr) ™% (-2a:) an
ha bt

T A [T 28 “"1<om i e -xep) |

4= 2 (w)?
Equations (15) and (17) for the N-GR vertex and the h-loop amplitude, being

written in operatorial form, show very interesting properties.

To start with, the N-GR vertex VN is operatorially factorized, and tis
symmetrical in the N-Reggeon momenta, as expected in a theory of closed strings,

Furthermore, it shows the infra-red decoupling, in the sense that

V%+¢(ql"'qu+1) ﬂ;;:?O V; (ﬁ-‘“ 1”) J; Mg =1

Vy =4 + 0(52(‘15'%)1) :

{18)

(h)

Finally, the operator factorization implies that A" "{s,q) in Eq. (17) is a
multiple convolution, thus diagonalized by an impact parameter transformation., By

defining

- aAq-b
Als9q) ::(E«EJ)(E;,E‘){, Sdbzb € jﬂa,(s,b) (19)

we obtain

h
(%) hed (z0)

a (s, ): (] [S(GL;g,g')] ]o)}




with
6= _ Aa
L PP O )
4 7 @nPt s bee (2a)* - . (21)

-
being an operator functiomal of the string field X(g). The 1/(h+1)! in Eq. (20}
has the physical meaning of a Bose counting factor of (h+l) identical Reggeons,

probably related to the 3 factor noticed in the literatureg) at one-loop level.

Summing Eq. (20) over loops yields the final result for the amplitude

.
v

00 (k) A a '
a s,b)zi_oa (s,b) = (olli(up['a;S(;,L;x,x/)] _4)]0}} (22)

which has an operator eikonal form. This fact, together with the simple
dependence of the ''phase" & on ﬁ, shows that the collision process can be
interpreted as a rescattering series at displaced impact parameters (§+g—£'), as
pictured in Fig. 3. Furthermore, due to factorization, the S-operator in (22)
- or the amplitude in (17) -~ satisfies s-channel unitaritya), if use if made of
the AGK ruleSZ) in order to relate the phases of "inelastic'" cuts (through a;ree

A
in Fig. 3) to the ones of "diffractive" cuts (through string states in X).

In order to discuss the physical content of our results, let us start by

A -
neglecting string excitations in the vertex, which amounts to setting X = 0 1in

Eq. (21). In this case

(b o's 4~ @l £
= C\. s e e -3 B
% (b,s) tree™ / ) P “,%(D-Z) ‘D 5 dE t* e ~
D=4
~ be - WY's © L (23)
by 2¥¥ (1’_) ¥ ¢32 (w1 (—Z?) /

where ¥ = log s, b‘::D“4

d/2
gzs/(SnQD_A) has & pole at D = 4, and Qd =25 / JT(d/2})
is the solid angle in d dimensions. Equation (23) is restricted to D > 4, in
order to avoid the infrared (IR) divergence: we shall discuss later on the

limiting D = &4 case,

It appears from the expression (23) that Imd is large for b < bI = 2Y, dying
out exponentially for b > bI. Therefore, exp{(2id8) + 0 (a » 1/2) for b < bI’
leading to an absorptive black disk, expanding logarithmically with energy. The

cross—section in this region is mostly inelastic, with

p-2
6., (s) =~ 533 s (z ?o%s) _ (24)
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On the other hand, for b > b_, & is mostly real, with Red decreasing as a
power, controlled by bc ~ (gzs)l¥(D_4). Therefore, only for b > bC is the
perturbative expansion in powers of & justified. In the remaining <{(eikonal)
region bI <b « bc’ the unitary amplitude a{b,s) is characterized by a large real

phase and has therefore an oscillatory behaviour.

Going back to g-space by a Bessel transform of Eq. (22), we obtain the
asymptotic result
LG w2 T, () b (23 ()]
oo
1 L
s ip-2 ~;D¢+2 - b.q Db
+ YAPL r(iD—l)j de x &) (=) Lxh [z:. (_;‘l) }

(25)
92 b D1
4

The first term shows the diffractive pattern of the black disk mentioned above,

while the second (eikonal) term summarizes contributions for b > b that we

I)
shall now analyse.

For gq < b;l ~ (gzs)—ll(Dh4), i.e., in a region of very small ¢2 = -t,
shrinking with s as a power, the loop expansion of the eikonal controls the t = 0

singularities. At one-loop level we obtain the behaviour

D-2
“ 1 * 1p-3 2} D4
i a(sq) — 23 + A const ) 1&1 (%5) (26)
S

—— 4 —
tso  [b] ®-4)(e-D (0-4) (p-¢)

We can see that the graviton pole is still there, with unrenormalized

residue, while ImA has an IR lt|(D/2)—3

singularity for D < 6 (log |t| at D = 6),

and therefore vields an infinite elastic cross-section (no aptical theorem). This
*

is the usual infinity connected with the Coulomb singularity ). For D > 6, o , is

(D-4) el

finite and increases as gD_Z)/ , thus violating the Froissart bound. This is

not surprising, in view of the exchange of a massless particle.

For larger values of t, i.e., b;l << g <1, the eikonal term in Eq. (25) has
a large phase, whose variation compensates the diffractive phase of the Bessel

function around a saddle point in b located at

Other IR t-singularities, starting at D = 4+{(2/h) arise at h-loop level,
accumulating at D = 4. This explains why the loop expansion is actually never
valid at D = 4 (see below).
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s/
%5 Z . SIT G’ﬂ (I‘akb)
- -
v b oo 27

corresponding to the behaviour

q:

D-4 D4
2 2 402 - = 2R pg
s adp p gsHP) 20 7 (T
%Q(S,q)]_:' %__e (? ) (i;-) (%) , @8
ok {bl Zﬂp_z D-3
with
ip-2, 2
2 ER =
by = (L 1" )% p (29)
28%., D4
Let us first note that Eqs. (27) to (29) are suitable for discussing the
D = 4 limit [which is never perturbative, due to the divergent (Coulomb) phase

(29)]. In fact, by factorizing the infinite part of the phase, i.e., by
subtracting the D = 4 pole in (29}, we get the results

5\ = 46‘1\; (kml‘b) B-i

7
- G .
: m(g,q)]m_{‘ = ?._El{:- % (4 Gs &%lbl) , (b-.—c.) . (30)

This means that the eikonal contribution reduces to the tree term, modified by

the well—knownlo) Coulomb-phase factor.

In general, Eq. (27) defines a relation between impact parameter and
momentum transfer which is typical of a classical scattering process. This is

confirmed by the fact that the amplitude (28) yields an elastic cross—section
D-2
dsyg = d b(@) (31)

which is of Rutherford type, i.e., given by the surface element in D-2 transverse

dimensions implied by the relation (27).

It is interesting to mote that the same saddle point (27) alsc dominates the
eikonal amplitude at small, but fixed, deflection angle € = q/k = 2q/vs, provided

the stationary value b in (27), i.e.,

th% $mwéuVs

= 5 ) (32)
o2
. 11 . .
is much larger than bI . This can be roughly understood by unoting that the
eikonal sums a rescattering series through angles 91,...,6n, where each partial
D=4,~1/(D-3)

angle Gi = g/<n> =~ 6(g?sq } is much smaller than ©.



_10_.

Furthermore, the deflection angle (32) is identical to the one of a massless

- . 3 * -
particle which scatters, at impact parameter b, off a mass M = vs ), to first
non-trivial order in the Schwarzschild metric.

More precisely, the angle (32) equals the one obtained classically from the

effective potential

5 p-3 2
- Vs s z 2z RO
Vegg (b,2) = 2 (F) (%) , (b))
where
rD“‘!’ _ gn- Gn\f;
5 (D”Z)Rp-l (34)

is the Schwarzschild radius in D space~time dimensions. Both terms in the
potential (33) contribute in a non-trivial way to an overall factor

~ (D-2)/(D-3) which is important in order to get (32) for any D.

In other words, the high energy scattering of two (massless) gravitons in
the eikonal region seems to be equivalent, up to this order, to classical

scattering in a non-trivial metric, obtained from the Einstein equations.

Let us now recall that Eq. (25), whose physical content we have just
discussed, has been obtained by neglecting higher string coutributions to the
N-GR vertex VN. The latter will give corrections, due to "diffractive" excitation
of massive string states, whose magnitude at small qi's is given by Eq. (18).
Hence, there will be corrections of relative order (va'/b)“ and higher to both
Imé and Red. Such terms could modify some quantitative features of our results

(e.g., the black disk could turn into a grey one).

Furthermore, there is a whole lot of terms, subleading by powers of s that
we have not considered (like gravitino and charged state exchange), among which

are residual graviton pole contributions to the loops, away from t = 0.

More generally, in an arbitrary lorentz boosted frame, each string "sees" a
Schwarzschild metric with a mass equal to twice the energy of the other
string.
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To sum up, we have obtained a simple picture for the scattering of massless
states (gravitons) at energies s »> M2 , High—order contributions are important
and, as expected, restore unitarity. Thepresulting amplitude, obtained by summing
loop effects, has an operator eikonal form that leads to a simple picture in
impact parameter space, Inelastic scattering occurs mostly at small b,
corresponding to an expanding black (or grey) disk. Elastic scattering occurs at

larger b values and has a classical geometrical interpretation.
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FIGURE CAPTIONS

Fig. 1:
Fig. 2:
Fig. 3:

Large energy behaviour of one-loop four graviton amplitude in closed
superstrings, as given by the two-graviton Regge cut in terms of the

gravireggeon vertex V,.

Factorization of the six-graviton tree amplitude at the leading Regge
trajectories J; = @1, Jg = ap, to yield the 2-GR amplitude Aalaz'
Picture of loop contributions to asymptotic string collisions, as given
by N-GR vertices VN in terms of the impact parameter displacement

X(o)-X'(c").
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