Comparing Website Fingerprinting Attacks and Defenses

Tao Wang
Cheriton School of Computer Science
University of Waterloo

Abstract—Website fingerprinting attacks allow a local, pas-
sive eavesdropper to identify a web browsing client’s desti-
nation web page by extracting noticeable and unique features
from her traffic. Such attacks magnify the gap between privacy
and security — a client who encrypts her communication
traffic may still have her browsing behaviour exposed to low-
cost eavesdropping. Previous authors have shown that privacy-
sensitive clients who use anonymity technologies such as Tor are
susceptible to website fingerprinting attacks, and some attacks
have been shown to outperform others in specific experimental
conditions. However, as these attacks differ in data collection,
feature extraction and experimental setup, they cannot be
compared directly. On the other side of the coin, proposed
website fingerprinting defenses (countermeasures) are generally
designed and tested only against specific attacks. Some defenses
have been shown to fail against more advanced attacks, and
it is unclear which defenses would be effective against all
attacks. In this paper, we propose a feature-based comparative
methodology that allows us to systematize attacks and defenses
in order to compare them. We analyze attacks for their
sensitivity to different packet sequence features, and analyze
the effect of proposed defenses on these features by measuring
whether or not the features are hidden. If a defense fails to
hide a feature that an attack is sensitive to, then the defense
will not work against this attack. Using this methodology, we
propose a new network layer defense that can more effectively
hide all of the features we consider.

I. INTRODUCTION

In order to protect their privacy, Internet users may want
their web browsing activities to be hidden from curious
eavesdroppers. To hide their destinations, these users must,
at the least, encrypt their communication traffic and ob-
scure their destinations with a proxy. Website fingerprinting
refers to the set of techniques that seek to re-identify these
clients’ destination web pages by passively observing their
communication traffic. The traffic will contain features such
as unique packet lengths, packet length frequencies, packet
ordering, and interpacket timings. A number of attacks have
been proposed that would compromise a client’s expected
privacy, while defenses have been proposed to counter these
attacks.

Website fingerprinting is a threat to any client who may
expect her browsing behaviour to be monitored. Even users
of Tor, an anonymization network, are vulnerable to website
fingerprinting attacks [3], [19], [26]. Understanding the true
impact of website fingerprinting attacks and potential de-
fenses is imperative to protecting the privacy of its estimated

Ian Goldberg
Cheriton School of Computer Science
University of Waterloo

500,000 daily users [24], as well as users of SSH tunneling,
VPNs, IPsec, and other privacy-enhancing technologies. In
this paper, we will investigate the impact of website fin-
gerprinting attacks and defenses under different adversarial
scenarios.

Some website fingerprinting attacks achieve higher accu-
racy rates than others, but it is not clear why. In addition,
incomplete experimental techniques, small data sizes, strong
assumptions, and the fickleness of Internet traffic dumps
have placed the realistic effectiveness of some of these at-
tacks in doubt [21]. A comparison between different attacks,
beyond a simple comparison of accuracy rates, is lacking.
Possible barriers to an even comparison include differing
attack scenarios, contrary assumptions, and difficulties in
running large-scale experiments. For instance, training a
classifier to distinguish between 1000 web pages (with 100
instances each) will require a computation time on the order
of 10° CPU seconds for one of the latest attacks [26], and
collecting this data set for Tor would require approximately
4-10° seconds on a single connection. These factors make it
difficult to understand why certain attacks outperform others,
and what criteria a successful attack should satisfy.

On the other hand, proposed website fingerprinting de-
fenses are always evaluated against only a few attacks.
Often, the evaluation further assumes that the attacker is
not aware of the defense. In 2012, Dyer et al. [7] evaluated
a number of website fingerprinting defenses and showed
that they were ineffective against three particular website
fingerprinting attacks [12], [15], [19]. It remained unclear,
however, why defenses failed or succeeded, and deciding
whether a defense is worth its overhead has been difficult for
Tor developers [20]. Our methodology allows us to explain
these results.

In this paper, we present a feature-based comparative
methodology that aims to address the above problems. We
go further than Dyer et al. and survey a set of nine attacks
and six defenses in the literature. Additionally, we expose
the features that each attack focuses on by comparing them
on packet sequences that only differ by a single feature.
This allows us to explain the relationship between different
attacks by offering a unified basis for comparison. We
measure the sensitivity of each attack to our features; an
attack that is highly sensitive to a feature that distinguishes
web pages will be effective, while an attack that is highly

sensitive to a feature that is not useful in distinguishing web
pages will be ineffective and easily misled. Similarly, we
evaluate whether each defense is able to hide these features:
defenses that successfully hide a feature will be effective
against attacks that rely on that feature. We present these
defenses while estimating their overhead in bandwidth and
in time taken to load a page by analyzing real traffic. This
allows us to explain why certain defenses have proven to
be ineffective in the past, and what can be done to improve
them.
The contributions of this paper are as follows:

1) We present a new feature-based comparative methodol-
ogy, described in Section III, which offers a high-level
intuition into the workings of each proposed website
fingerprinting attack and defense. Such a comparison has
been lacking in the literature. We implement and test all
of the attacks and defenses on the same platform and
same data set, and we present the results in Sections IV
and V.

2) Using the above methodology, we gain new insights
and are able to answer several key questions in the
literature. In Section IV-B, we are able to pinpoint
the reasons behind the success or failure of different
attacks in various scenarios. In Section V-B, we compare
and classify defenses, expose some of their flaws, as
well as answer questions posed by Tor developers on
their applicability to Tor. To help privacy-sensitive users
choose a suitable defense, we present the overhead of
each defense in Section V-C.

3) We present a new defense, Tamaraw, in Section VI
that hides all of the features we identified more suc-
cessfully than any of the surveyed defenses. We do so
by optimizing the BuFLO defense from Dyer et al. [7]
to reduce unnecessary overhead and fix a gap in its
defensive properties.

II. FUNDAMENTALS

Website fingerprinting (WF) is the problem of analyzing
the traffic of a web browsing client to identify her destination
web server, even when the client is using secure encryption
through a proxy to hide this information. WF is a sub-
problem of traffic analysis in general, which is a diverse
set of methods used to extract different types of information
from communications traffic. A WF attack is a set of tech-
niques used to expose the client’s web browsing behaviour,
involving data collection, processing, feature extraction, and
classification; a WF defense is a set of countermeasures used
to protect the client against a WF attack by obfuscating, or
covering, features of the web traffic. When a feature is cov-
ered, it becomes less distinguishable across different classes
of interest; for example, across different web pages. This
reduces the accuracy of the attack if the classifier depends
on this feature. In this section we discuss the background of
WE. We first describe different attacker scenarios and client

scenarios found in the literature, and then describe how a
web page is loaded and how this allows fingerprinting to
occur.

A. Attacker scenario

The attacker in our scenario is a curious eavesdropper who
wishes to identify which web page the client is loading. Cai
et al. [3] and Chen et al. [5] describe variants wherein an
attacker aims to identify a web site instead of a web page; for
consistency across the literature, however, we focus on the
identification of single web pages. The attacker must possess
some method of observation. For example, he could have
wiretapped the client’s connection, or he could control some
of the intermediate routers. For each page load the attacker
observes its packet sequence, which is an ordered list of
packet lengths and their corresponding times. The contents
of the packets are assumed to be encrypted and yield no
useful information. The client uses a proxy to obfuscate her
destination; the proxy is at or after the attacker’s tap. Luo
et al. [18] give an overview of possible attack vectors for
various technologies. We show the respective locations of
the attacker and proxy in Figure 1.

The attacker is assumed to be local and passive: the
attacker taps and observes from only one location, and
he is not allowed to add, drop, or change packets. This
means that the attacker is weak, but is also resource-light
and essentially undetectable. Active attacks such as packet
spoofing [10], remote ping detection [11] and measuring
memory fingerprints [14] may achieve the same goals as
WF attacks; however, we do not consider these attacks here,
as they all use different types of information and involve
vulnerabilities or assumptions of vulnerabilities which do
not fall under our systematization.

We retain two assumptions that all previous works on
WF have made of the attacker. First, the attacker is able to
notice exactly when a new page is requested. In other words,
the attacker knows which sequence of packets corresponds
to a single page. This assumption is sometimes made in
a stronger form — that the client’s think time always
dominates the page load time — which implies that a distinct
pause exists between any two packet sequences of different
page loads. Second, any background activity the client may
have will not interfere with the client’s traffic. For example,
a client will not download a file while visiting a web
page; alternatively, these file download packets can be easily
discarded by the attacker. These assumptions are used by all
previous works on WF as they simplify the problem, though
it should be noted that these assumptions are advantageous
for the attacker.

Client interaction with a web page (e.g. AJAX) is outside
the scope of this work; we refer the reader to previous
works on attacking or defending against interaction-based
fingerprinting [4], [S].

3
|

Attacker
‘
~
\-/\J—J

Client

Internet Web servers

Figure 1.
Before the attack, the attacker gathers a training set by
visiting the pages that the attacker is interested in detecting
(mimicking the client’s setup) and collecting the packet
sequences. The training set is used to train a classifier,
which learns how to decide which page each testing packet
sequence belongs to. The training set is often assumed to be
up to date, but at least one work [26] has explicitly used
training sets that are somewhat out of date to take into
account the high training time of the attacker’s classifier.
In a closed-world attack scenario, the attacker trains on a
limited set of pages, and the simulated client is only allowed
to visit those pages; the attacker’s goal is to determine which
page was visited. In an open-world attack scenario, the client
can visit any page, and the attacker’s goal is to determine
whether that page was one of particular interest.

Diagram indicating the attacker’s location.

B. Client scenario

While the attacker scenarios in the works we survey are
similar, the assumptions regarding the client’s setting differ
significantly. Attacks against one client setting can be inef-
fective against another. Roughly speaking, the assumptions
regarding the client can be classified into three categories, in
terms of the amount of information leaked to the attacker:

1. Resource lengths. To load a web page, a client must
load each constituent resource of that web page, such as
images and scripts. In this setting, the attacker is able
to observe the length of each resource on a web page.
This information is not usually available; however, it may
be leaked, for example, if different concurrent connections
can be distinguished from each other, in which case the
packets between each GET request correspond to a single re-
source [23]. This strong assumption was used by the earliest
WEF attacks [6], [13], [23]. As it is not known how to extract
individual resource lengths from within modern protection
technologies, such as SSH tunneling, VPNs, IPsec, and
Tor, this setting has become inapplicable, and we do not
implement any of the attacks under this setting.

2. Packet lengths. In this setting, the attacker is able
to observe the length of each packet. This is the more
common WF setting, and corresponds to privacy-enhancing
technologies such as SSH tunneling, VPNs, and IPsec over
a proxy. These technologies, by default, make no extra effort
to obscure packet lengths or timings, and most attacks under
this setting focus on uniquely identifiable packet lengths,

whereas defenses attempt to cover them. This setting is
strictly more difficult to fingerprint than the first setting.

3. Obscured packet lengths. In this setting, fixed-length
packets are sent so that packet lengths will not uniquely
identify a web page. This corresponds roughly to Tor’s
setting; with Tor, content is delivered in fixed-size 512-byte
cells, a variable number of which are then sent together in
SSL records. The newest attacks are focused on this setting,
which is strictly more difficult than the first two, so attacks
that achieve success under the second setting may prove
ineffective in this setting [12].

None of the WF attacks we survey assume that the client
obscures packet timing, so we will assume it is revealed to
the attacker.

The client is assumed to have disabled caching, although
Cai et al. have done some work for the case when the client
has cached the destination web page [3]. This assumption
is justified on the Tor Browser, for example, which disables
disk caching. Enabling caching may allow an active timing
attack where the attacker spoofs a request to a web page in
order to determine if the client has visited it before [8].

C. Loading a web page

When loading a web page, the first resource requested by
the client is the main HTML page. The main page usually
requests other resources, such as scripts, images, text, or
other components of the web page. Upon being notified of
each required resource, the client generally tries to request
the resource as soon as possible.

Different resources on a web page may be fetched from
different servers. For each resource, the client opens (persis-
tent) HTTP connections to its server. After the connection is
established, the client sends a GET request for the resource.
The number of permitted parallel HTTP connections to the
same server and to different servers can be different for
each browser and each browser version, with the recent
trend being an upwards increase. For example, in Firefox
3, the maximum number of connections to any one server
is 2, and the maximum number of connections overall is
40; in Firefox 23.0, they are 6 and 256 respectively. Upon
receiving a new resource GET request, Firefox attempts, in
order, to find the first idle connection and either reuse (if the
servers are the same) or drop it; open a new connection if
the connection limit is not reached; or place the request in
a queue. Other browsers may handle this logic differently.

Whenever a connection is idle or closed, a request from
the request queue can be sent. At this time, the browser may
instead choose to send out multiple requests at the same time
for resources located at the same server — without waiting
for the resources to arrive in between. This is known as
pipelining. Pipelining saves round-trip times, but it must be
supported by the end server. Pipelining is currently disabled
by default on Firefox and Chrome; however, it is enabled
by default on the Firefox distribution in the Tor Browser

1 T

0.8 i
w 06 i
[m)]
O o04f .
02 Outgoing —— |
O 1 1 1 1 InCOTIT"ng I77777I
0 200 400 600 800 1000 1200 1400
Packet length (bytes)
Figure 2. Packet lengths observed when loading one instance of each of

Alexa’s top 800 sites. Packets sized 1500 bytes are discarded.

Bundle, as part of an experimental defense against WF (see
Section V-A).

We can see that the order of requests is logically de-
terministic, induced by the structure of the web page (the
list of resources, their lengths, and which resources each
resource requests). If there is only one connection, then the
sequence of packet lengths (but not their timings) can be pre-
determined, allowing easy website fingerprinting. However,
the interaction of multiple connections causes randomization
in packet ordering. Two connections opened to the same
server would often handle different subsets of the resources
required to load a page each time the page is loaded. The
difficulty is compounded by the fact that the resources of
most web pages vary, as many pages have randomized
content such as advertisements. A successful WF attack
will therefore tolerate these randomized differences while
learning to distinguish different web pages.

III. FEATURES AND OUR METHODOLOGY

A classifier succeeds at distinguishing between two
classes when it is able to discover a consistent difference be-
tween them. This can be viewed as a difference between their
features, which characterize a class. Implicitly or explicitly,
classification techniques such as WF attacks extract features
to classify. Conversely, a successful defense covers these
features. In this section, we describe how our methodology
leverages features to allow us to compare WF attacks and
defenses.

A. Features

In general, packet sequences have four major features.

The first is unique packet lengths. Packet lengths are
a simple and strong feature of a web page. GET request
lengths are partly determined by the length of the resource
name. Incoming packets are almost always sent at the
Maximum Transmission Unit (MTU), with the length of the
last packet indicating the size of the resource (modulo the
MTU). Most packet lengths of a page are unlikely to change
unless resource lengths change. WF attacks almost always
consider packet lengths unless they are designed for the Tor
scenario, in which case packet lengths are covered. When
unspecified, we assume that packet lengths are not hidden
from the attacker, but we address the scenario where they are

and the algorithms that continue to work under this scenario.
To identify the distribution of unique packet lengths, we
visited Alexa’s top 800 sites [1] once each and present the
distribution in Figure 2, excluding the approximately 75%
of packets that were sized 1500 bytes. Outgoing packets are
concentrated in the 400-600 byte range, whereas incoming
packets are relatively evenly distributed with a spike at 1470
bytes, which was the MTU of some of our connections. TCP
and IP header lengths sometimes change over the course of
page loading, which in turn changes the amount of data
inside an MTU packet and thus affects the resulting unique
packet lengths.

The second major feature is packet length frequency.
Packet length frequency is the number of times each packet
length occurs. The number of incoming packets at MTU
size is a rough estimation of the total size of the page,
which changes due to random advertisements and updated
content. Most of the earlier WF attacks explicitly discard
packet length frequencies [12], [15], [17]. We will show that
all current WF defenses fail to cover the total traffic size,
as doing so is difficult and would necessarily incur a large
traffic overhead.

The third major feature is packet ordering. The structure
of a page induces a logical order onto its packet sequence.
As an example, a GET packet for a resource can only be
sent once the reference to that resource is received by the
client. The attacker may be able to infer information about
the content of each packet from observing packet ordering.
Packet ordering depends on network conditions: it may vary
due to bandwidth and latency, and it may be affected by
changing the parameters for persistent HTTP connections,
pipelining, and so on. Tor developers have implemented a
prototype defense based on packet ordering by randomizing
request order (see Section V-A).

The fourth major feature is interpacket timing, which
reveals the logical relationship between packets. For ex-
ample, viewing from the client’s end, the outgoing server
connection SYN and the incoming SYNACK will differ by
a round-trip time; so will the GET request and the first
packet of that resource. If the attacker’s tap is near the client,
then a short inter-packet time between an incoming packet
and a following outgoing packet suggests that the outgoing
packet could be caused by the incoming packet. On Tor, the
client’s circuit would have different latency, congestion, and
bandwidth values from those the attacker trained on, making
it more difficult for the attacker to use interpacket timing.

A packet sequence P can be written as:

P = <(t17‘€1)7 (t27€2)7 s (tnven»

In the above, ¢; is the difference in time observed between
packets i and ¢ — 1 (interpacket timing), with ¢; = 0; ¢; is
the byte length of packet i. The sequence length, |P|, is
equal to n. We write P, and P, as the sequences of only the

interpacket times and only the packet lengths, respectively.
We indicate the packet length as a positive value if the packet
is outgoing and as a negative value if it is incoming.
We define the four features mathematically as follows.
Unique packet lengths. P and P’ are said to have
different unique packet lengths if their sets of packet lengths
are different:

(AL e P|L ¢ P})v (3L € PJ|L ¢ P,)

Packet length frequencies. Suppose ny,(FPy) is the num-
ber of times packet length L appears in Py. P and P’ are
different under this feature if their packet lengths occur
at different frequencies. However, packet lengths that are
unique to either P or P’ are not considered here:

3L|TLL(P¢) * nL(Pé) /\nL(Pg) >0 A?’LL(Pé) >0

Packet ordering. We denote M, as the multiset of packet
lengths in P, without ordering. We say that two sequences
P and P’ have different packet ordering if:

Mg:Mé/\Pg#Pé

Interpacket timing. Suppose P and P’ have sequence
lengths |P| and |P’|. P and P’ are said to have different
interpacket timings if their timings are different:

3i,1 < i <min(|P|,|[P']) : (P); # (P),

We next discuss some properties of our feature set.

Fact 1. If packet sequences P and P’ are not the same, then
they must differ in at least one of the four features above.

This fact demonstrates that our choice of features is, in
some sense, complete, in that it represents any difference
between two packet sequences. We can therefore claim
that successful attacks should expose at least one of those
four features between packet sequences, while defenses are
effective if they can cover all four features.

Fact 2. Given any packet sequence P and any subset of
the above features, there exists a packet sequence P’ such
that P and P’ only differ in this subset of features, with the
exception that different packet ordering implies that unique
packet lengths and packet length frequencies do not differ.

This fact implies that our features are somewhat inde-
pendent of each other (except packet ordering). It should
therefore be possible to find generators that change one
specific feature without affecting the others, allowing us
to pinpoint which features various attacks depend on, and
which features various defenses attempt to cover.

B. Comparative methodology

We describe our feature-based comparative methodology
as follows. To determine if an attack is able to extract a
feature, we apply the attack to two classes, C' and C’, which
differ only by that feature. We use a generator G to transform
C into C’ by causing a change in some feature of each
packet sequence P € C' and inserting the output into C’. We
parameterize G(*) by v, a non-negative integer such that the
greater the value, the more “different” P and P’ = G(*)(P)
will be; we require G(*)(P) = P. We design each generator
to modify only one specific feature.

G™) operates from the start of the packet sequence. Infor-
mally, G(*) is equivalent to G(!) repeated v times, possibly
from different starting points in the packet sequence. For all
of our generators, this interpretation ensures that v functions
as a magnitude.

Our generators are not randomized. We designed each
generator to accept values of v up to |P|/5; the maximum
value of v used in our experiments is 180. None of the
generators produce a packet length greater than the MTU.

We give a textual description of each generator below and
explicitly define each generator G(*) in Table L

Unique packet length generators.

1) Small packet length changes. All packet lengths are
increased by v, up to MTU.

2) Large packet length changes. v packet lengths are in-
creased by 1000, up to MTU.

3) Diffusing packet lengths. v packet lengths are increased
by their position divided by 5, up to MTU.

Packet length frequency generators.

4) Appending incoming MTU packets. v incoming MTU
packets are appended to the end.

5) Appending outgoing packets. v outgoing packets are
appended to the end, their lengths being the lengths of
the first outgoing packets of P.

6) Inserting incoming MTU packets. v incoming MTU
packets are added, one per 5 packets.

Packet ordering generators.

7) Adjacent transpositions. v packets are transposed with
the previous packet.

8) Short-distance transpositions. v packets are transposed
with the packet 4 elements ago.

9) Long-distance transpositions. v packets are transposed
with the packet 19 elements ago.

Interpacket timing generators.

10) Delays. Each packet is delayed by a linearly increasing
amount of time, multiplied by v.

We chose these generators from our prior knowledge of
how WF attacks and defenses behave, in order to highlight
their differences.

Table T
GENERATORS. PACKET SEQUENCE P = {p1,p2, ..., pN } WHERE p; = (¢;,4;), t1 = 0. WITH Pyt AS THE SEQUENCE OF OUTGOING PACKETS IN P,
WE DEFINE Poyt; ASITS " ELEMENT (WRAPPING BACK TO THE BEGINNING IF 7 > |Pout\). d; IS THE DIRECTION (1=0UTGOING, -1=INCOMING) OF
p;. A(P, 4, p) APPENDS PACKET p AFTER p;. T(P, %, j) TRANSPOSES THE PACKET LENGTHS OF p; AND p.

Feature type Generator name

Transformation for G)

Small packet length changes
Large packet length changes
Diffusing packet lengths

Unique packet lengths

For 0 < ¢ < [P[: £; < d; min(]¢;] + v, 1500)
For 0 < i < w: £5; < ds; min(\£5i| + 1000, 1500)
For 0 < ¢ < v: 5; < ds; min(|¢5;] + ¢, 1500)

Appending incoming MTU packets
Appending outgoing packets
Inserting incoming MTU packets

Packet length frequencies

Repeat v times: P < A(P, N, (tn, —1500))
For 0 < i <w: P+ A(P,N, (tn, Pout;))
For 0 < i < v: P « A(P, 5, (t5;, —1500))

Adjacent transpositions
Short distance transpositions
Long distance transpositions

Packet ordering

O 00 AN D KW N —| FHF

For 0 < i< v: T(P,5i,5i — 1)
For 0 < ¢ < wv: T(P,5i,5i — 4)
For 0 < i < [v/5],0< j < 5: T(P,25i — j,25i — 19 — 5)

Interpacket timing Delays

(=]

Vp; € P,t; < t; +v-i-0.020ms

C. Data Collection and Experimental setup

Our attacker trains a classifier on labeled training in-
stances, and tests the classifier on testing instances for which
the label is not known to the classifier; this is known as
supervised machine learning. In this paper, we focus on
distinguishing between two classes:

C ={Py, P, ..., Pyo}

¢ ={GW(P),GV(Py), ..., G (Pyo0)}
These are the original class and the generator-modified class
with one feature changed. Since our generators operate on
packet sequences, the elements of C' and C’ are packet
sequences. We use the first 200 elements for training and the
last 200 elements for testing. The training and testing sets
are denoted Clyrqin and Ci.qs, With the generator-modified
sets being CY,,,, and C}

We construct C' by connecting to bbc. co.uk 400 times
with caching disabled. The reason why we do so is as
follows. C should contain packet sequences of the same page
rather than different pages, because WF attack classifiers are
designed to tolerate the randomness within the same page
while exposing the differences between different pages. A
successful classifier should therefore be able to distinguish
C and C' despite the randomness in C' (and therefore C’).
On the other hand, the elements of C' need to differ from
each other; this will allow us to measure how sensitive each
classifier is to the generators’ operations. The page we chose
has a suitable amount of randomness and has therefore been
difficult to classify [26].

We extract the packet length of each TCP packet, using
the packet length indicated in the IP total length field; this
value includes the lengths of both the TCP and IP headers.
We chose to include the lengths of these headers to help
identify the MTU packets.

A class C' may have a convenient classifier representation
denoted as M¢; for example, M could be a list of the
unique packet lengths in C, or the mean length of packet
sequences in C. M¢ is learned from C' and used to test
incoming packets.

Our experimental setup is as follows. We load pages over
a 100 Mbps Ethernet connection with MTU set at 1500.

est*

Although our feature-based methodology allows us to use
a smaller data set for training and testing, the computational
time required was still high for several of the attacks. For
automated page loading, we used iMacros 9.00 on Firefox
23.0. We collected data with t codump and parsed the data
into packet sequences with our code. We implemented all
of the attacks and simulated defenses in this paper in a
combination of Python, C++, and C, and all of them are
available upon request.

IV. WEBSITE FINGERPRINTING ATTACKS

We present the list of WF attacks we have surveyed
in Section IV-A. We apply our feature-based comparative
methodology to each of these attacks, and present the results
in Section IV-B. Finally, we include a summary of the run
time and storage costs of the attacks in Section I'V-C.

A. List of attacks

Our list of attacks is given in chronological order. For
each attack we assign a name by which it will be referred,
starting with the first two letters of the first author’s surname,
followed by hyphen and then a descriptive phrase. We
discuss implementation details of each attack to clarify our
decisions where the original authors of the attack were not
clear.

Resource length attacks

Some of the earliest WF attacks assumed that web re-
source lengths were revealed to the attacker, such as Cheng
et al. in 1998 [6], Sun et al. in 2002 [23], and Hintz in
2003 [13]. In these works, web resource lengths are used
as unique identifiers for a web page. Without the persistent
connections offered by HTTP/1.1, older technologies such
as SafeWeb [13] expose individual resource lengths to an
attacker who can distinguish between connections, as the
data transferred for a connection corresponds to one re-
source. Most modern privacy-enhancing technologies, such
as SSH tunneling and Tor, do not leak resource lengths. As
such, resource lengths are not assumed to be available to the
attacker in all of the following works we will survey, and
so we will not analyze schemes that require them with our
methodology. However, the observation that unique resource

lengths are important will remain relevant in the form of
unique packet lengths in overall packet sequences.

Cross correlation on timing and lengths (Bi-CrossCor)

Bissias et al. in 2006 published the only attack we are
aware of that uses interpacket timings [2]. It does not rely on
knowing the resource lengths of the web page. The classifier
representation for class C in Bi-CrossCor is a sequence
of interpacket times M¢c = (mq,ma,...,my), where N is
the length of the longest packet sequence in class C, and
m; is the mean of the interpacket times of the i packet
in each packet sequence (in order). The cross correlation

between two ordered lists S = (s1,892,...,8,) and T =
<t1,t2, . ,tn> is:
o (si=8)(t;i =T
X(S,T) _ Zz:l(sl)(L)

asor

where S, T, os and o are the means and standard devia-
tions of S and T respectively. To classify packet sequence
P, we compute X (M¢, P;) for each class C, taking only
the first | P| interpacket times for M. We also carry out the
same computation by replacing interpacket times with packet
lengths (discarding the direction). Bissias et al. found that
the best results are achieved by multiplying the two cross
correlation values obtained for interpacket times and packet
lengths.

Jaccard’s coefficient on packet lengths (Li-Jaccard)

Liberatore and Levine in 2006 described two new WF
attacks [15]. These attacks demonstrated that unique packet
lengths help classify a web page. Packets are almost al-
ways sent at the MTU whenever possible, and therefore
packet lengths which are not the MTU are indicative of
the remainders of resource lengths. The first attack they
proposed relies on the Jaccard coefficient. The classifier
representation for class C is a set Mo = {l1,0s,...,4,}
of unique packet lengths for each packet sequence P € C.
A packet length ¢; is inserted into M if £; is present in the
majority of packet sequences in C'. The direction is included
as a positive/negative sign on the packet lengths.

The Jaccard coefficient is a measurement of the similarity
of two different sets (S and T") as follows:

_lsnT]

ﬂ&T%_WUN

Two packet sequences are therefore more similar if they
share more packet lengths. To classify P, we find the set
of all packet lengths in P, denoted Up. We then measure
J(Me,Up) for all classes C, and classify P as the highest
scoring class.

Li-Jaccard discards packet timing, ordering, and fre-
quency, keeping only packet lengths. Liberatore and Levine
showed that it achieved a greater accuracy compared to
Bi-CrossCor, which relied on more features, indicating
that unique packet lengths are an important identifiable

feature. However, Li-Jaccard had a lower accuracy than
the same authors’ second attack, described below.

Naive Bayes (Li-NBayes)

The second attack proposed by Liberatore and Levine
was a Naive Bayes classifier based on packet lengths and
their frequencies within a packet sequence. Suppose we
want to decide if packet sequence P belongs to class
C. We extract S(P) = {({1, fe,), (U2, fes), s bns fo,)}
Here, ¢; are packet lengths in P with direction and fy,
are the numbers of times they appear in P. The classifier
representation M¢ for class C' is:

Mc = {(l1, Fe,), (b2, Fy), oos (UN, Fy) }

Fy, are multisets of all observed frequencies of that packet
length in each sequence. That is to say, if there are |Clyqin|
training packet sequences, then each F; will have length
|Ctrain|- Then, the Naive Bayes assumption says that we
assume that the packet lengths and their frequencies (¢;, fv,)
occur independently of each other, and the score assigned
to Pe(Cis:

H p(féz EF&')

1<i<|S(P)|

The probability p(f,, € Fy,) can, for example, be com-
puted with a normal kernel density estimation, that is to say,

Uy —n)?

p(fli GFEi):ie 7

i

In the above, u; and o; are the mean and standard
deviation of Fj,. We set the minimum of the standard
deviation o; to be 1.0, and the minimum of this term to
be 10719, to apply Cromwell’s rule: we never allow the
probabilities to be zero.

Liberatore and Levine found that Li-NBayes trumped
Li-Jaccard in almost every situation under their exper-
imental setting; this may be because Li-NBayes keeps
packet length frequencies whereas Li-Jaccard does not.

Multinomial Naive Bayes (He-MNBayes)

Herrmann et al. proposed a number of improvements to
Liberatore and Levine’s scheme by incorporating techniques
from text mining that are known to improve the accuracy
of matching documents (web pages) when searching with
keywords (unique packet lengths) [12]. They use the Multi-
nomial Naive Bayes classifier, with the term frequency (TF),
inverse document frequency (IDF), and cosine normalization
(CN) schemes.

The Multinomial Naive Bayes classifier changes the com-
putation of p(f; € F;). We denote S; as the sum of all
elements in Fj. Instead of using the normal kernel, we
compute p(f; € F;) as follows:

Si

~)fi
Zi:l Si

p(fi € Fy) = (

TF, IDF and CN modify f;, that is, the exponent term, of
the above formula. TF transforms the power logarithmically:

TFE(f;) =log(fi+1)

IDF discards common packet lengths, magnifying the
effect of unique packet lengths. We note that specifically, all
incoming MTU packets will be discarded by IDF. Suppose
C; C Chrain is the set of training packet sequences that
contain the packet length 7. Then:

lCtrain|
|Cil
CN is used to further modify the frequency by dividing the

modified frequency with the Euclidean norm of all modified
frequencies:

fi = TF(f:) - log

1075, S5 PRI

All of these transformations are applied to the exponent
term of p(f; € F;), such that it becomes CN(f/).

Herrmann et al. achieved a higher accuracy than Libera-
tore and Levine in comparable experiments. However, they
also demonstrated that their attack is ineffective on Tor.
Our feature-based comparative methodology will be able to
explain these results.

Levenshtein distance on unique packet lengths (Lu-
Levenshtein)

Wright et al. proposed a WF defense called traffic mor-
phing (see Section V-A). In response, Lu et al. published
an attack that is capable of distinguishing morphed packet
sequences [17]. It does so by heavily focusing on packet or-
dering, choosing to explicitly discard packet length frequen-
cies and packet timing. The attack relies on the observation
that the order of non-MTU packets does not often change
between packet sequences derived from the same web page.
From each packet sequence P two sequences M,,; and
M, are extracted, where M,,; are all the outgoing packet
lengths in order and M, are all the incoming packet lengths
in order, with MTU packets (size 1500) removed.

To classify a testing packet sequence P;.s:, We compare
the similarity between the testing packet sequence and each
training packet sequence Pj.4;n, and assign the testing
packet sequence to the class of the most similar training
packet sequence. Similarity is computed as:
1_0-6'D(Moutzesw MOUttrain)_0'4'D(Minctest) Minctrain)

D 1is the Levenshtein distance, which is equal to the
number of insertions, deletions and substitutions of packet
lengths to transform one packet sequence into another, and
then normalized by the length of the longer sequence. This
process is done separately for the incoming and outgoing
packet sequences, and combined linearly with weights 0.6
and 0.4. Lu et al. chose these weights as they produced good
results, and demonstrated that their attack is able to achieve

CN(f7)

WF at a high accuracy as well as defeat traffic morphing.
The authors also pointed out the importance of the open-
world scenario (which they called the problem of detection).

Features extraction on SVM (Pa-FeaturesSVM)

Panchenko et al. published an attack that specifically
targeted web browsing clients that use Tor, as Herrmann et
al. were not able to successfully perform WF on Tor [19].
On Tor, unique packet lengths are obscured by Tor’s padding
of traffic to fixed-size cells. Panchenko et al. therefore
leveraged a number of other features, which are processed by
a Support Vector Machine (SVM).! An SVM feature is either
a number or a list of numbers; some of the features used
by Panchenko et al. have a fixed length while others have
variable lengths that are dependent on the packet sequence.
A full list of features is given by Panchenko et al., and we
implement them all. Features with fixed lengths are placed
at the front of the list, followed by features with variable
lengths, in the order presented by Panchenko et al.

Panchenko et al. demonstrated that this attack is powerful
enough to achieve WF on Tor at an accuracy comparable to
attacks on clients who are not using Tor, and they were the
first to do so. With our implementation, we were not able
to achieve WF using their cost parameter C' and smoothness
parameter . This is because the cost and smoothness
parameters depend on the nature of the problem; ours is
a two-class problem with controlled differences between the
classes whereas theirs is a multi-class problem We decided
to optimize Pa-FeaturesSVM on G((f), which is a suitable
goal for the attack, by varying these parameters over powers
of 2°. We achieved the best results with C' = 225, v = 245,

Damerau-Levenshtein distance (Ca-DLevenshtein)

Cai et al. improved the accuracy of WF on Tor
by using the Levenshtein distance, but with transpo-
sitions included [3]. They called their algorithm the
Damerau-Levenshtein distance?; an optimal algorithm for
the computation of this distance is known in litera-
ture [16]. An SVM is trained by calculating the dis-
tances between all pairs of training packet sequences. Like
Lu-Levenshtein, to classify a testing packet sequence
Piest, Ca-DLevenshtein compares P;.s; with each train-
ing packet sequence Pi.q.;n. The distance matrix replaces
the kernel matrix normally derived from features. (More
details on SVMs are given in the book of Vapnik and
Chervonenkis [25].)

As Tor cells hide actual packet lengths, Cai et al. round
each TCP packet length upwards to the nearest 600 in order
to estimate the number of Tor cells transmitted. We did not
change their parameters.

lDyer et al. [7] later use a similar but smaller set of features for a variable
n-gram classifier, but their classifier did not perform better in any of the
scenarios they considered.

2The algorithm given by Cai et al. is more commonly known as the
optimal string alignment distance.

Combined Optimal String Alignment Distance (Wa-
OSAD)

Wang and Goldberg further improved the accuracy of
Cai et al’s scheme on Tor by incorporating a number of
modifications into the optimal string alignment distance
algorithm [26]. Before calculating the distance, Tor cells are
extracted directly from the packet capture by reconstructing
TCP streams and parsing the SSL records contained therein.
The locations of the Tor SENDME control cells are guessed
and they are removed from the sequence. As our generators
operate on TCP packet lengths, our methodology does not
support these methods, and we will therefore revert to Cai’s
round-by-600 scheme.

The other modifications made by Wang and Goldberg
to the distance computation are as follows. They disable
substitutions as these do not correspond to the variations
caused by loading the same page repeatedly. They increase
the cost for outgoing packet operations as it is less likely
for the same page to have a different number of outgoing
packets; this number is closely related to the total number of
resources, after removing SENDME:s. They also increase the
transposition cost near the beginning of the packet sequence
than at the end. These modifications increase the accuracy
of fingerprinting in both the closed-world and open-world
scenarios. Similar to Ca—DLevenshtein, these distances,
once computed, are fed into an SVM.

Fast Levenshtein-like distance (Wa-FLevenshtein)

Wang and Goldberg showed another attack with weaker
accuracy than both Ca-DLevenshtein and Wa-OSAD
under comparable experiments, but which was around three
orders of magnitude faster to train and test. Rather than
finding the least-cost sequence of insertions, deletions, and
transpositions, the algorithm first performs the necessary
number of deletions from the end, and follows up with trans-
positions. This reduces the time complexity from quadratic
to linear in terms of the packet sequence sizes. The complete
algorithm is given by Wang and Goldberg [26].

B. Results

We tested the nine attacks in Section IV-A against the
ten generators in Table I. We present the results in Table II.
For each generator G(*) we vary v from 1 to 180, and we
present three figures: the minimum values of v such that for
all greater values of v (up to 180), the attack achieved a
higher accuracy than 0.55, 0.75, and 0.9 respectively. These
values show us the sensitivity of the attack to the generator
G, as v functions as the magnitude of the feature change.
An attack that achieves a higher accuracy at lower values of
v i1s more sensitive.

We highlight the following results:

1) Despite its lower accuracy, Bi—-CrossCor is highly
sensitive to packet ordering. This suggests that sensitivity
to a feature does not translate directly into accuracy; in
fact, as some features (such as packet ordering) change

across multiple accesses of the same page, a successful
classifier must also be sufficiently insensitive to changes
within the class.

2) He—-MNBayes is only sensitive to unique packet lengths,
and not to packet length frequencies, ordering, or timing.
As Tor covers unique packet lengths, this explains why
He-MNBayes was shown to have a very low accuracy
on Tor [12]. The superior sensitivity of He-MNBayes
on the unique packet length generators compared to
previous attacks may explain its success in distinguishing
web pages without packet length obfuscation.

3) Li-Jaccard, Li-NBayes, He—-MNBayes all discard
packet order and interpacket timing, achieving no success
on any of those generators. It is interesting to see that
while at first glance He-MNBayes is a slight modifi-
cation of Li—-NBayes, He—-MNBayes is not dependent
on packet length frequencies at all, unlike Li—NBayes.

4) The accuracy of the four SVM attacks can be roughly
seen from their sensitivities to the three packet
length frequency generators: Pa-FeaturesSVM
and Wa-FLevenshtein are lower, while
Ca-DLevenshtein and Wa-OSAD are higher.

As a whole, we see that attacks generally became more
sensitive to more features over time; Bi—-CrossCor iS an
exception to this trend. Only Bi—CrossCor is sensitive
to changes in interpacket timing (if it does not cause
re-ordering). While attacks on systems that reveal packet
lengths (Li-Jaccard, Li-NBayes, and He-MNBayes)
ignored packet ordering, attacks designed for the Tor setting
(Pa-FeaturesSVM, Ca-DLevenshtein, Wa—-OSAD
and Wa-FLevenshtein) use both packet ordering and
packet length frequencies, which is necessary for accurate
WF attacks on Tor.

C. Run time and storage costs

Ca-DLevenshtein and Wa-OSAD are the most expen-
sive attacks to train. The training time was around 2 CPU
hours on a set of 400 training packet sequences, compared to
several seconds for all of the other attacks. Real-time classi-
fication of a testing packet sequence is possible for all of the
attacks except Lu-Levenshtein, Ca-DLevenshtein,
and Wa—O0OSAD, for which testing time is significant (as we
need to compute the distance between the testing packet
sequence and each training packet sequence). The storage re-
quired is much larger for Ca-DLevenshtein, Wa-OSAD
and Wa-FLevenshtein than for other attacks (to store
the entire set of distance comparisons), but it is not large.
For these attacks, around 320 KB is enough for 400 training
packet sequences; it increases with the square of the number
of training sequences.

V. WEBSITE FINGERPRINTING DEFENSES

Having seen what features each website fingerprinting
attack uses to distinguish web pages, we now turn our

Table II
RESULTS ON THE SENSITIVITY OF OUR ATTACKS TO FEATURES. FOR EACH GENERATOR, THE COLUMNS SHOW THE MINIMUM VALUES OF v FOR
WHICH THE ATTACKER HAD A HIGHER ACCURACY THAN 0.55, 0.75 AND 0.9 RESPECTIVELY FOR GREATER VALUES OF v. THEY ARE MARKED WITH
AN ASTERISK IF THE CORRESPONDING ACCURACY IS NOT REACHED FOR v < 180. HIGHER VALUES (AND ASTERISKS IN THE LIMIT) INDICATE LESS
SENSITIVITY TO THE FEATURE IN QUESTION.

Attack Unique packet length Packet length frequency Packet ordering Timing
(Chronological) G1 | Ga | Gi3 G4 Gs | Ge [e | G | Gy Gio

Bi-CrossCor [2] || 16 | 161 * [1| 3 | 3 [69 | * [*|[4[11| * [4| 8 | * [1[2|6 |[43|*| * [1|1|47 [4[4]|19][95]130]*
Li-NBayes [I5] || 1 | T [1T [*| * [* [* | * [*][838]62[5] 9 |9 |8[38[62(| * [*| * [F[*]| x |*|*F] & (x| & %
Lu-Levenshtein [17] || 1 | I | 1 [1| 2 [3| 1T |3 [3f*|* [* |1 1| 1T|*[*|*|3[3[4][L|L] 1 [4[4]4] *| * [*
Pa-FeaturesSVM [19] |[19| 68 |82 3| 45 [* [177 | * [*[|4|21[43[1[10]|21|2|14[50([68|*| * [1|3]| 53 [4|4] * | *| * [*
Ca-DLevenshtein [3]|[1 | I |1 [3[19 (49|61 | * [*[|1| 1 [2 1|23 |13 |10 1 [3[43]4(4]| 4 [1|[1] 1| *| * [*
Wa-OSAD [26] (| 1 | 1 [3 (2| 4 [41[27 [* [*|[1| 1 |32|1| 1[4 [L[10|16| * |*]| * [4][4] 49 |[4]|4[49(* | * |*
Wa-FLevenshtein [26] || 1 | 20 |22 1| 3 [4 | 52 |76 * || 8|28 (521 6 [13|1| 8 [34|[11|*| * [1|1|176|4 |44 | * | * [*

attention to the other side of the coin: proposals of defenses
to cover these features in order to defend against such
attacks. In this section, we describe the list of WF defenses
we have surveyed and simulated. Our simulated defenses
operate on packet sequences (packet lengths and timings,
but no content) rather than raw packets; they do not directly
modify packets during page loading. This allows us to
observe if a defense is able to cover a feature modified by
a generator. We give our list of defenses, present results
on how effectively they covered the features we identified
earlier, and follow up by measuring and comparing their
bandwidth and time overheads.

A. List of defenses

Packet padding

Packet padding refers to adding garbage data to the end
of packets in order to obscure their true lengths. Packet
padding schemes have been known in the literature; a large
number of different padding schemes were analyzed by Dyer
et al. [7] and shown to be ineffective against Li—-NBayes
and Pa-FeaturesSVM. Packet padding schemes are meant
to obscure the unique packet length feature. We implement
two packet padding schemes, described as follows:

1) Maximum padding (PadM). All packet lengths are
padded to the MTU.

2) Exponential padding (PadE). All packet lengths are
padded upwards to the closest power of 2, but not
exceeding the MTU.

No extra packets are added in either of the two schemes.
PadE is meant to be a bandwidth-cheaper version of PadM.
The effect of using Tor is similar to PadM, as Tor traffic is
delivered in fixed-size cells.

Traffic morphing (Wr-Morph)

Wright et al. [27] published a WF defense that is meant to
obscure packet lengths, known as traffic morphing. Unique
among the defenses, this defense is designed to allow the
client to set a target page C'r and mimic the page by
modifying packet lengths.

The defense first learns the packet size frequencies of the
target page C'r to construct the distribution We,.:

WCT = {(flvfl)v (EQaf2)7 () (znafn)}

10

In the above, ¢; are packet lengths and f; are their cor-
responding normalized packet length frequencies, such that
> fi = 1. The packet sequence P is morphed so that its
packet length distribution is the same as Cr as follows.
A matrix M is learned for which each row represents a
potential packet length in P and each column represents a
packet length in We,.; the element M; ; of the matrix M
is the probability the packet length ¢ would be morphed
into packet length ¢;. The simplest matrix which satisfies
the above is one with each row being (f1, fa,..., fn); this
effectively just samples packet sizes from the target distribu-
tion, and ignores the source distribution entirely. Wright et
al. minimized the overhead (the expected amount of padding
added) by solving a quadratic optimization problem over the
source and target distributions; the optimal solution then
yields the desired morphing matrix. This process is done
separately for outgoing and incoming packets.

It should be noted however that simple padding of course
cannot be used to transform a larger packet into a smaller
one. When this is required, Wright et al. suggest that
we repeatedly sample directly from the distribution W,
and ignore the matrix until the (longer) packet has been
fully transmitted. We point out that this strategy violates
the quadratic optimization. If the client will often morph
larger packets into smaller ones, then the resultant traffic
will deviate far from the optimized minimal overhead. On
the other hand, if the client rarely or never has to morph
higher length packets into lower length packets, then the
total overhead is the same no matter what the matrix M
is (it is roughly equal to the length of P multiplied by the
frequency-weighted average packet length in W¢,.). These
observations combined imply that the optimization stage
will either be weakened or insignificant. We have found
no easy resolution to this problem, and we will therefore
simply sample from the target distribution for all packets,
which offers the same defensive properties as any matrix M
(but potentially different overhead). In our implementation,
we use google.com as Cr, our target morph page; it is
reasonable for the client to attempt to hide her traffic features
by using the most commonly accessed page as a decoy.

HTTP Obfuscation (Lu-HTTPOS2)

HTTPOS (HTTP Obfuscation) was presented by Luo et
al. [18] in 2010 as a platform for website fingerprinting
defenses. Unlike many other defenses, HTTPOS is imple-
mented entirely client-side, with no need for support from
any proxy or the end server. It does so by cleverly using TCP
advertised windows, HTTP pipelining, and HTTP ranges in
order to control the sizes of both outgoing and incoming
packets.

HTTPOS contains four modules. The first module is used
only when the page is not known to HTTPOS. The third and
fourth modules are used to reduce round-trip times and speed
up page loading; they do not offer defensive properties. We
focus on the second module. In terms of packet sequences,
the operations induced by HTTPOS module 2 are relatively
simple: Given any incoming packet sized ¢ where £ is not
the MTU, HTTPOS chooses a uniformly random 0 < r < ¥,
and splits the packet into two packets of size r and ¢/ — r.

The authors also described several other possible defenses,
such as manipulating interpacket timing and sending dummy
packets, but the implementation of these are not described.
We acknowledge that these defenses are possible within their
platform; we implement and analyze only the above strategy.

Our simulated implementation is not done at the applica-
tion layer; rather, we simply go through the packet sequence
and split up each incoming packet of size less than the MTU.
In the implementation of HTTPOS, this requires a new
outgoing packet between the two splits which signals the
end server that the client is ready to receive the second split,
which costs one round-trip time. In our simulated defense,
we assume this can be done without the signal and round-trip
time, which is possible with the cooperation of a proxy or
the end server.> We complete this defense by also padding
all outgoing packets to a fixed size of 1500; the authors
describe how outgoing packet padding can be done, but they
are not clear as to what they implemented. Our choice gives
maximum protection for unique packet lengths, at the cost
of extra overhead.

Background noise (Pa-Decoy)

Background noise can be used to add randomness to each
page load in order to make them less distinguishable. Tor
has some background activity that makes fingerprinting more
difficult, such as circuit construction, circuit measurement,
and stream SENDMEs.

Panchenko et al. proposed a simple defense using back-
ground noise to defeat their own attack [19]. Whenever a
page is loaded, a decoy page is loaded in the background,
using its own connections and connection limit so as not to
interfere with the connections of the intended page. This
defense has a high overhead. We used a different page
from Alexa’s top 800 sites as background noise for each

3This assumption is reasonable for us as many of the other defenses also
require the cooperation of a proxy or the end server.

11

of the training and testing elements in order to simulate the
intended effect that the attacker cannot predict which page
the client picked. Our simulated defense assumes that the
decoy page does not interfere at all with the page load of
the true page.

Tor pipelining and request order randomization

Tor developers implemented a prototype defense with no
bandwidth overhead in response to the Pa-FeaturesSVM
attack [20]. The defense is entirely applied at the application
layer: HTTP pipelining is enabled, and when a connection
becomes idle and a request is selected from the request
queue, a random request is chosen rather than the first-in
request. The maximum connection limit is also frequently
randomized.

As our defense analysis framework is at the network
layer, not the application layer, we do not simulate this
defense directly. Rather, we note that it acts as a set of
transpositions, with some outgoing packets merged together.
We can therefore estimate its effect on various attacks from
the sensitivity of those attacks to transpositions (G7, Gg and
(g in Table II). Previous authors have shown [3], [26] that
a version of this defense is not effective against the latest
attacks, such as Ca-DLevenshtein and Wa—-OSAD, as
these attacks are sensitive to packet length frequencies as
well.

Buffered Fixed-Length Obfuscator (Dy-BuFLO)

After Dyer et al. analyzed a large number of traffic analy-
sis countermeasures and found that efficient defenses failed,
they presented their own Buffered Fixed-Length Obfuscator
defense and demonstrated its relative success against the
attacks of the day [7]. The BuFLO defense is an obfuscator
with large bandwidth and time overhead that is applied to
both the incoming and outgoing traffic. Packets are sent over
a possibly wiretapped connection at fixed intervals with fixed
length, and if no data needs to be sent, dummy packets
are sent instead. The traffic must continue for a minimum
amount of time, after which it may terminate if no more
data needs to be sent.

BuFLO is parameterized by three values: d the fixed
size of packets (set to 1500), p the interpacket timing
(set to one packet per 20 milliseconds), and 7 the fixed
minimum amount of time for which data must be sent (set
to 10 seconds). These parameter settings were the strong
(and more bandwidth-intensive) choice presented by Dyer
et al., which was able to sharply decrease the accuracy of
Pa-FeaturesSVM. However, this attack was still much
better than random guessing against BuFLO; this is because
the load time of many web pages exceeded 10 seconds, so
BuFLO could not cover their packet length frequencies.

Cai et al. proposed, but did not evaluate, a modification
of BuFLO with varying packet rate [3]. They proposed two
changes to BuFLO. First, the packet rate would depend on
the page being loaded. Second, the total transmission size
would be padded. We could not analyze this modification as

Cai et al. did not elaborate on how to select the packet rate,
which significantly affects the overhead and privacy proper-
ties of the defense. We will present our own modification of
BuFLO, and show it is a more effective and efficient defense
than the original, in Section VI.

B. Analyzing defenses

We use our comparative methodology to analyze the
above defenses. We consider a defense D to be successful
in covering the feature modified by a generator G() if after
applying D to get D(P) and D(G™)(P)) = D(P’), no
difference between them can be observed. If a classifier is
able to distinguish between P and P’, but cannot distinguish
between D(P) and D(P’), then D seems to be successfully
covering the distinguishing feature.

We specify what we mean by “no difference observed” as
follows. We use four feature classifiers, each one specializ-
ing on one specific feature. The defense D is applied to each
element in the training set C,q;, and the generator-modified
training set Cj,.,;, to produce D(Cirqin) and D(CY, .in)s
the feature classifiers are trained to distinguish them. D is
applied to the testing sets Cis¢ and Cj,,, as well, and used
to evaluate the feature classifiers. As the objective is simply
to find any difference between two classes differing by a
single feature, we will specialize our classifiers to focus
on one specific feature each. We choose the four feature
classifiers as follows:

1) Unique packet length (Fi): Modified Li-Jaccard.
Given any unique packet length in P, if it is in any
packet sequence P € C and no P’ € C’, add 1 to the
score of class C' and vice versa.

Packet length frequency (F»): Simplified Naive Bayes.
For training, we simply count the total size sum of
incoming and outgoing packets, as well as the total
number of incoming and outgoing packets, and take the
mean and standard deviation over the packet sequences in
each class. Each testing packet sequence is then scored
using the normal distribution kernel against those four
values for each class, with the incoming and outgoing
packets scored separately and then multiplied.

Packet ordering (F3): Half of Bi—-CrossCor. We use
the packet length portion of Bi-CrossCor. For a
testing packet sequence, each packet length (discarding
direction) is compared to the mean of all training packet
lengths at that position.

Interpacket timing (Fj): Classification based only on
total elapsed time. We use this classifier because G1g
is a delay. This reveals whether or not the total load
time of a page would still be a useful feature after the
defense is applied.

The results are given in Table III. For each defense, we

only present the most successful feature classifier. We only

use the interpacket timing classifier on G19. We vary v

from 1 to 180 and present the minimum value of v for

2)

3)

4)

12

which the feature classifier had a higher accuracy than 0.55
and 0.75 for all greater v. A lower v indicates that the
defense was less successful in covering the feature against
our classifiers, whereas an asterisk indicates that our feature
classifiers could not expose the feature after the defense is
applied. This table also includes our new proposed defense;
see Section VI for more details.

We highlight the following results:

1) We can explain prior results from the literature using
the table. PadM, PadE and Lu-HTTPOS2 have all
been shown to be effective against Li-Jaccard [15],
[18], which is dependent on unique packet lengths;
these defenses achieve some success in covering unique
packet lengths. Pa-Decoy and Dy-BuFLO are ef-
fective against Pa-FeaturesSVM [7], [19], which
is dependent on packet length frequencies and these
defenses can partly cover packet length frequencies.
PadM and PadkE are also shown to be ineffec-
tive against Li—-NBayes and Pa-FeaturesSVM [7],
as these defenses only cover unique packet lengths
but the attacks rely on packet length frequencies.
Ca-DLevenshtein succeeds against Lu-HTTPOS2
as it attempts to remove unique packet lengths as a
feature, but Ca—DLevenshtein is not affected as it
is designed for Tor, for which unique packet lengths are
not a useful feature. Cai et al. informed the authors of
HTTPOS of this result, and the latter modified HTTPOS
further, but the modified version is still not effective
against Ca-DLevenshtein [3].

The table exposes several defense flaws. PadM, PadE,
Wr—Morph and Lu-HTTPOS2 are not designed to cover
total transmission size (packet length frequencies), so
they would be ineffective against the attacks which
leverage them. Pa-Decoy fails to completely cover
interpacket timing because it only covers the total trans-
mission time roughly half the time (when the decoy page
takes longer to load than the desired page), which may
leak the total page size, a powerful feature. Dy—BuFLO
does not cover total transmission time if it is over
10 seconds at p 0.020 s/packet, which happened
quite often. Trying to cover packet length frequency
on GS’) becomes a race between v and the overhead
of Dy-BuFLO; a larger v requires a larger setting of
minimum time 7 to cover it.

Tor developers want to understand what WF defenses
would work with Tor [21]. As Tor already covers
unique packet lengths, PadM, PadE, Wr-Morph, and
Lu-HTTPOS2 are not meaningful on Tor, as all of
these defenses are focused on covering unique packet
lengths (although only PadM truly does so). We note
in particular that HTTPOS is a platform valuable for
its client-only implementation (requiring no cooperation
from a proxy or the end server), but Tor bridges can

2)

3)

Table III
UPPER BOUNDS ON THE QUALITY OF THE DEFENSES. RESULTS ARE GIVEN IN THREE COLUMNS: THE FIRST COLUMN IS THE FEATURE CLASSIFIER
THAT WAS ABLE TO ACHIEVE THE HIGHEST MEAN ACCURACY, THE SECOND IS THE VALUE OF v FOR WHICH THE FEATURE CLASSIFIER IN COLUMN 1
HAD AN ACCURACY GREATER THAN 0.55 FOR ALL GREATER VALUES OF v, AND THE THIRD IS SIMILAR, BUT FOR 0.75; ASTERISKS INDICATE WHEN
THESE ACCURACIES WERE NOT REACHED FOR v < 180. ASTERISKS AND HIGHER VALUES INDICATE MORE SUCCESSFUL DEFENSES.

Defense Unique packet lengths Packet length frequencies Packet ordering Timing

Gi | G» | Gs Gs | Gs | Gs Gr | Gs | Gy G1o
PadM || * | * | * | * | * | * | * | * |*NE5| 16 |5T|Fo|3 | O |Fo|16|ST|| * | * |*| * |*|*| * | * |*| Fa| 23 | 47
PadE || Fo | 28 |91 | F3| 1 | 3 [F3(59|*||F3| 2 |27|Fo|2 | 9 |F3| 1 |1 |[F3]|29 |*|F3|2|3|F3| 4 |4| Fa|23 |47
Wr-Morph [27]|| Fo | 13 |74 F5 | 29 |180| * | * |*||Fo| 43 |72 Fo | 2 | 11 [Fp|32]68| * | * |[*| * [*|* | * | * [*| [y | 23 | 47
Lu-HTTPOS2 [18] || F53| 29 |30| F3| 23 | 50 | F3|45|*||F3| 6 |18|Fo|3 | 9 |F3| 1 |3 ||[F3|179|*|F3|2|*|F3| 4 |4| Fa|23 |47
Pa-Decoy [19]||F1| 1 [68|Fy| 48 |178| Fy |34|*|[F3| 93 | * |Fo |38 |15 |F3| 1 | * || * | * |*| * |*|*|F3|14|*||Fy|111]|146
Dy-BuFLO [7] || Fo [147| * | * | * | * | * | ® [*||Fp| 23 [85(Fp |78 | * [Fp|20[94|| * | * |*| & [*|*&| x| % k) & x| &
Tamaraw [this work] || Fo | 177 | * | Fo |180| * | * | * [*||Fp|122] * | Fo |68 | 168 | Fo |82 * || * | * |*| & |#[*] & | & [#| & | & | %

be made to cooperate by implementing a WF defense A. Design

as a pluggable transport. Pa-Decoy and Dy-BuFLO
achieve only limited success at covering packet length
frequencies. In short, none of these defenses can be
considered a perfect fit for Tor.

Table IV

SIZE AND TIME OVERHEADS FOR VARIOUS DEFENSE SCHEMES OVER 70
INSTANCES OF ALEXA’S TOP 100.

[Defense || Total Size [Total Time]

PadM 7.3% + 0.5% 0% + 0%
PadE 3.61% + 0.09% 0% + 0%
Wr-Morph [27] 29.5% + 0.8% 0% + 0%
Lu-HTTPOS2 [18] 8.1% £ 0.2% 0% + 0%
Pa-Decoy [19] 100% + 4% 33% £+ 6%

Dy-BuFLO [7] 149% + 6% 310% + 80%

C. Overhead

We estimate the overhead of each defense in terms of
two important metrics: additional bandwidth consumed, and
additional time taken. These overhead costs determine the
realistic applicability of each defense. On Tor, which is
bandwidth starved [22], any bandwidth overhead implicitly
reduces the number of clients that will be served. A large
time overhead may frustrate users.

We estimate these values by running our simulated de-
fenses on Alexa’s top 100 sites. We performed 70 iterations
of loading the home page of each of the 100 sites. For
Pa-Decoy, the decoy page for instance 7 of page j was
set to be instance ¢ + 1 mod 70 of page j +1 mod 100;
the same was done to choose the morph page of Wr-Morph.
We present the results in Table IV, with means and standard
deviations taken over the 70 iterations. We can see that
the bandwidth and time overhead for Dy—BuFLO are both
largest; the defenses which were successful against most
feature classifiers, Pa—Decoy and Dy—-BuFLO, have a high
total size overhead.

VI. A NEW DEFENSE

In this section we present a prototype of a new de-
fense that can be considered a heavily modified version of
Dy—-BuFLO.

Our defense is designed with three goals in mind:

1) Feature coverage. We demonstrate that it is possible to
cover all four features in our feature set to a reasonable
degree.

Overhead reduction. Dy-BuFLO is troubled by the
dilemma that increasing 7 will increase its defensive
coverage, but also increase its overhead. We address this
dilemma and we are able to find ways to significantly
reduce the overhead of Dy—BuFLO in both bandwidth
and time.

Proof of concept. We wish to show that it is not im-
possible to design a strong defense with lower overhead;
there is hope. We are currently working on implementing
our defense as a pluggable transport on Tor. As Dyer et
al. noted, a perfect implementation of timing intervals is
certainly non-trivial [9].

2)

3)

We describe our defense, Tamaraw,* as follows. As in
Dy-BuFLO, traffic is still sent in MTU-size packets and at
fixed intervals; however, incoming and outgoing traffic are
treated differently. Outgoing traffic is fixed at a higher packet
interval, which saves overhead as outgoing traffic is much
less frequent. We denote the packet intervals as p,,; and p;,
(measured in s/packet). We use experimentation to choose
these values in Section VI-B.

Dy—-BuFLO only attempts to cover total transmission size
if the total amount of time for one page is less than 7.
This makes the choice of 7 especially awkward: increasing
7 would increase the number of web pages covered by
Dy-BuFLO, but it would also increase the overhead. In our
new defense, the number of packets sent in both directions
are always padded to multiples of a padding parameter, L.
This means that if L is large enough, then it is likely that
for each web page there exists some other web page that is
mapped to the same multiple of L. The way we pad is as

4A tamaraw is a lightweight cousin of the buffalo.

31t is non-trivial for the proxy to know when to pad, as it does not know
when the data stream has ended. One way for the proxy to know this is to
set a parameter K, such that if the last K packets were dummy packets,
then the traffic is determined to have ended. In our analysis we assume that
the client and proxy know when to pad.

13

:\O\ 400 T T T T T
g 300 | x Dy-BuFLO |
g Pout %512
g 200 pln - .
3
o 100 b
E 0 Tamaraw ——
|_ 1 1 1 1 1

0 50 100 150 200 250

Size overhead (%)

Figure 3. The lower-left boundary of the two-dimensional feasibility region
of size and time overhead for Tamaraw when varying poyt and p;p,. Our
chosen parameters and the overhead of Dy-BuFLO on the same data set
are marked. The overhead includes the padding mandated by L = 100.

follows. Suppose the total number of incoming packets is I,
where AL < I < (A+1)L. We pad to (A+ k)L at the rate
pin With probability (1/2)*. This will increase the possible
range of I, compared to simply padding to the next multiple
of L, which is (A+1)L. We do this separately for outgoing
packets as well. If the client visits the same page multiple
times and the attacker knows this, then this padding scheme
effectively reverts to padding to the next multiple of L, as
the minimum padding is highly likely to be observed.

B. Experimental results

We experiment with Tamaraw. First, we want to choose
Pout and p;,. These values were 0.02 for the implementation
of Dy—BuFLO, but it is expected that p,,+ should not have to
be as large as p;,. As the distinguishability of two different
web pages is controlled by the padding parameter L, our ob-
jective in the choice of p;,, and p,,,; is to minimize overhead.
We test the bandwidth and time overhead of Tamaraw on
Alexa’s top 100 pages, loaded 70 times each. We vary p,.:
and p;,, from 0.005 to 0.16 seconds/packet. We present all
values for which no other choice of parameters had both a
lower time and bandwidth overhead in Figure 3. Generally,
as p;n, and p,,; increased, size overhead decreased while
time overhead increased. Here we set L to 100, for reasons
discussed below. With p,,; = 0.04 and p;,, = 0.012, we
achieve a 17% decrease of total transmission size overhead
from Dy—-BuFLO’s 149 + 6% to 123 £ 10%, with the time
overhead roughly the same, changing from 330 + 80% to
320 £ 70%. We will experiment with these parameters as
they offer a reduction in bandwidth overhead.

In our implementations of Dy—-BuFLO and Tamaraw, we
pessimistically required that the original logical ordering
of the real packets must be maintained. For example, if
the defense allowed an outgoing packet to be sent, but
the next real packet to be sent is an incoming packet,
then a dummy outgoing packet is sent, even if there are
other outgoing packets waiting after the incoming packet.
This is to guarantee that the causal order is preserved:
it could be that the subsequent outgoing packets depend
on the incoming packet. This rule has a large effect on
the bandwidth. A practical implementation could achieve a

14

§ T T T T T

= 0r \ Dy-BuFLO ----- 1
g 60 r Tamaraw ——]|
5 90 1
S 40t 1
S 30t .
o 20 r R
é 10 L e i
£ 0 L— S

< 1000

Transmission size overhead (%)

Figure 4. Maximum attacker accuracy against transmission size overhead
for Dy—-BuFLO (varying 7 from 1 to 200 seconds) and Tamaraw (varying
L from 5 to 5000) on the same data set. The x-axis is in log scale and
starts at 60%.

lower size and time overhead as re-ordering is possible for
both defenses when subsequence is not consequence; our
simulations are therefore pessimistic on the overhead but
necessary to guarantee correctness.

We apply the same defense methodology in Section V-B,
and give the results in Table III, presented earlier. We chose
Pout = 0.04, p;, = 0.012, L = 100. We can see that
Tamaraw is much more successful at protecting all features
than other defenses, although it cannot achieve a perfect
cover of total packet length frequency either. We set L =
100 so that Tamaraw would perform better than previous
defenses. Looking at the table, we see that Tamaraw is
not perfectly successful against generators that significantly
change the total transmission size (including the unique
packet length generators G; and G2). As Dy—-BuFLO sends
more dummy outgoing packets than Tamaraw, Dy—-BuFLO
is more able to cover changes in outgoing transmission
size (G2, Gs), but it is less able to cover changes in
incoming transmission size (G, G4, Gg). We next show
why Tamaraw is a more effective defense than Dy—-BuFLO.

In order to produce an upper bound on the attack
accuracy of any classifier on Tamaraw, we experiment
on Alexa’s top 800 sites, one instance each. We define
the ambiguity set of each page as the set of pages
that look the same to the attacker. For Tamaraw, it is
calculated as follows. Let D be Tamaraw where L is set
to 0 (no dummy packets appended to the end). Suppose
the number of incoming packets for defended packet
sequence D(P) is |D(P);nc| and the number of outgoing
packets is |D(P)out|- Two packet sequences D(P) and
D(P') are the same under Tamaraw if they satisfy:
\“D(P)iHC‘J — \“D(Pl)lncw \“D(P)out‘J — \“D(Pl)ouﬂ

L L J L L
This is the case even if the attacker is able to observe
those packet sequences multiple times with the knowledge
that they belong to two pages. We only need one instance
for each of 800 pages because we make the simplifying
assumption that each web page will produce the same
number of incoming and outgoing packets on each page
load; this assumption is advantageous for the attacker as
packet length frequency becomes a more identifying feature.

We then consider those two packet sequences to belong to
the same ambiguity set. For Dy—-BuFLO, we consider two
packet sequences to belong to the same ambiguity set if
the total transmission size is the same, as total transmission
size is the only observable difference.

The number of ambiguity sets is directly linked to the
maximum classification accuracy. For an ambiguity set of
size s, the attacker can at best achieve an accuracy of 1/s on
each element in the ambiguity set. Therefore, the maximum
accuracy is the total number of ambiguity sets, divided by
the total number of packet sequences (800 in our case).

We plot the maximum attacker accuracy against the trans-
mission size overhead in Figure 4. The results show that
Tamaraw is significantly better at reducing the accuracy
at any given overhead. For reference, at a size overhead
of 130%, there are 553 ambiguity sets (maximum accuracy
of 69%) in Dy—-BuFLO (7 9) and 40 ambiguity sets
(maximum accuracy of 5%) in Tamaraw (L = 182).

VII. TAKEAWAYS AND CONCLUSION

As we have observed, the relationship between WF attacks
and defenses had been unclear, which raised questions about
why and how they worked. In this paper, we developed
and tested a new feature-based comparative methodology
that classifies and qualifies WF attacks and defenses. We
observed how attacks work to uncover certain features that
characterize a web page, and how defenses attempt to cover
them. We saw that newer attacks are sensitive to more
features than older attacks. This allows us to explain why
some attacks have achieved a higher success rate than others,
and to argue how useful our surveyed defenses would be as
a countermeasure to these attacks. Our methodology also
exposes some flaws of previous defenses.

While previous work has shown that current WF defenses
are either ineffective or inefficient, and while our work
has explained these results using a systematic methodol-
ogy, we argue that the situation is not hopeless for web
browsing clients who desire privacy. We propose a new
prototype defense, Tamaraw, that is able to reduce the
overhead of Dy—-BuFLO. Using our methodology, we show
that Tamaraw provides better protection against website
fingerprinting attacks than all previous defenses.

ACKNOWLEDGMENTS

We would like to thank Scott E. Coull, Andriy Panchenko,
and Kevin P. Dyer for their correspondence with us, which
helped us improve the paper.

REFERENCES

[1] Alexa — The Web Information Company. www.alexa.com.

[2] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine.
Privacy Vulnerabilities in Encrypted HTTP Streams. In
Privacy Enhancing Technologies, pages 1-11. Springer, 2006.

15

[3] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from
a Distance: Website Fingerprinting Attacks and Defenses. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pages 605-616, 2012.

P. Chapman and D. Evans. Automated Black-Box Detection
of Side-Channel Vulnerabilities in Web Applications. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security, pages 263-274. ACM, 2011.

S. Chen, R. Wang, X. Wang, and K. Zhang. Side-Channel
Leaks in Web Applications: A Reality Today, a Challenge To-
morrow. In Security and Privacy (SP), 2010 IEEE Symposium
on, pages 191-206. IEEE, 2010.

H. Cheng and R. Avnur Traffic Analysis of SSL-
Encrypted Web Browsing. http://www.cs.berkeley.edu/
~daw/teaching/cs261-f98/projects/final-reports/ronathan-
heyning.ps.

K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-
Boo, I Still See You: Why Efficient Traffic Analysis Counter-
measures Fail. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, pages 332-346, 2012.

E. W. Felten and M. A. Schneider. Timing Attacks on Web
Privacy. In Proceedings of the 7th ACM Conference on
Computer and Communications Security, pages 25-32. ACM,
2000.

X. Fu, B. Graham, R. Bettati, W. Zhao, and D. Xuan. Ana-
lytical and Empirical Analysis of Countermeasures to Traffic
Analysis Attacks. In Parallel Processing, 2003. Proceedings.
2003 International Conference on, pages 483-492. IEEE,
2003.

Y. Gilad and A. Herzberg. Spying in the Dark: TCP and Tor
Traffic Analysis. In Privacy Enhancing Technologies, pages
100-119. Springer, 2012.

X. Gong, N. Kiyavash, and N. Borisov. Fingerprinting
Websites using Remote Traffic Analysis. In Proceedings of
the 17th ACM Conference on Computer and Communications
Security, pages 684-686. ACM, 2010.

D. Herrmann, R. Wendolsky, and H. Federrath. Website
Fingerprinting: Attacking Popular Privacy Enhancing Tech-
nologies with the Multinomial Naive-Bayes Classifier. In
Proceedings of the 2009 ACM workshop on Cloud computing
security, pages 31-42, 2009.

A. Hintz. Fingerprinting Websites Using Traffic Analysis. In
Privacy Enhancing Technologies, pages 171-178. Springer,
2003.

S. Jana and V. Shmatikov. Memento: Learning secrets from
process footprints. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 143-157. 1IEEE, 2012.

M. Liberatore and B. Levine. Inferring the Source of
Encrypted HTTP Connections. In Proceedings of the 13th
ACM Conference on Computer and Communications Security,
pages 255-263, 2006.

R. Lowrance and R. Wagner. An Extension of the String-
to-String Correction Problem. Journal of the ACM (JCM),
22(2):177-183, 1975.

L. Lu, E.-C. Chang, and M. C. Chan. Website Fingerprinting
and Identification Using Ordered Feature Sequences. In
Computer Security—ESORICS 2010, pages 199-214. Springer,
2010.

X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and
R. Perdisci. HTTPOS: Sealing Information Leaks with
Browser-side Obfuscation of Encrypted Flows. In NDSS,
2011.

(4]

(51

[6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]
[25]

[26]

[27]

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website
Fingerprinting in Onion Routing Based Anonymization Net-
works. In Proceedings of the 10th ACM Workshop on Privacy
in the Electronic Society, pages 103-114, 2011.

M. Perry. Experimental Defense for Website Traffic
Fingerprinting. https://blog.torproject.org/blog/experimental-
defense-website-traffic-fingerprinting, September 2011. Ac-
cessed Feb. 2013.

M. Perry, E. Clark, and S. Murdoch. The Design and
Implementation of the Tor Browser [DRAFT]. https:
/Iwww.torproject.org/projects/torbrowser/design/. Accessed
Oct. 2013.

R. Pries, W. Yu, S. Graham, and X. Fu. On Performance
Bottleneck of Anonymous Communication Networks. In
Proceedings of the 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1-11,
2008.

Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Pad-
manabhan, and L. Qiu. Statistical Identification of Encrypted
Web Browsing Traffic. In 2002 IEEE Symposium on Security
and Privacy, pages 19-30. IEEE, 2002.

Tor. Tor Metrics Portal. https://metrics.torproject.org/. Ac-
cessed Oct. 2013.

V. Vapnik and A. Chervonenkis. Theory of Pattern Recogni-
tion. Nauka, 1974.

T. Wang and 1. Goldberg. Improved Website Fingerprinting
on Tor. In Proceedings of the 12th ACM Workshop on Privacy
in the Electronic Society, 2013.

C. Wright, S. Coull, and F. Monrose. Traffic Morphing:
An Efficient Defense against Statistical Traffic Analysis. In
Proceedings of the 16th Network and Distributed Security
Symposium, pages 237-250, 2009.

16

