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Abstract. Image dehazing is widely used to improve the visual quality of dehazed im-
ages. While image dehazing has been extensively investigated, the relevant quality assess-
ment of dehazed images remains an open problem, which may hinder further improvement
of dehazing techniques. In this paper, a blind quality metric for dehazed images is pro-
posed. Three groups of features are extracted for characterizing the quality of dehazed
images, including information, contrast, and luminance. Specifically, a total of 11 per-
ceptual features are extracted and used to train a support vector regression (SVR) model.
Then, the trained SVR model is used for predicting the quality of dehazed images. A
dehazed image database is built to evaluate the performance of the proposed method. The
experimental results demonstrate the efficiency and advantage of the proposed metric.
Keywords: Image dehazing, Image quality assessment, No reference, Dehazed image
database, Information entropy, SVR

1. Introduction. Images of outdoor scenes are usually degraded due to the presence of haze and par-
ticles. Dehazing, also referred to as haze removal, is highly desirable for both consumer/computational
photography and computer vision tasks. Many computer vision algorithms can only work well in haze-
free environments. With the increasing prevalence of mobile devices, which have been equipped with
compact cameras, image dehazing functionality has been embedded into the image processing software
for providing better Quality of Experience (QoE). In the current image dehazing researches, the quality
of dehazed images is mainly judged by subjective test, which is laborious and not applicable to real-time
automatous systems. Objective quality models are useful for benchmarking and optimizing image dehaz-
ing algorithms. The current image quality models are mainly designed for degraded images, so they are
very limited in predicting the quality of dehazed images. Quality evaluation of dehazed images is still an
open problem.

So far, very little work has been dedicated to the quality evaluation of dehazed images. Hautière et
al. [1] proposed the blind evaluation of contrast enhancement algorithm based on the visible edge, then
Tarel et al. [2] directly used this metric for dehazed image quality evaluation. Wang et al. [3] directly used
the DIIVINE [4] indicator to evaluate the quality of dehazed images. More recently, Li et al. [5] devised
a full-reference (FR) framework for enhanced image quality evaluation, which consisted of a structure
module and a color module.

The aforementioned quality metrics are not specifically designed for dehazed images, so image dehazing
quality metrics are still lacking. This paper proposes a new quality model for image dehazing. We achieve
the goal by investigating three aspects of quality features in dehazed images, including information,
contrast, and luminance. A set of 11 features are extracted and used to train a support vector regression
(SVR) model. The quality of a query image is predicted based on SVR regression. A DEHazed Image
Database (DEHID) is built to evaluate the performance of the proposed method. Experimental results
on DEHID demonstrate the effectiveness and advantages of the proposed method.
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2. Proposed Quality Model for Dehazed Images. In the past few years, extensive image quality
metrics have been proposed, which are mostly based on the measurement of structural distortions [6].
However, in real world applications, the perceived quality is generally determined by many different
aspects, which also holds for dehazed images. As a result, measuring non-structural distortions is also
important for dehazed images, which will be demonstrated in the experiment section. Non-structural
factors like information, contrast, and luminance are needed [7, 8].

With these observations, we propose a new NR quality metric for dehazed images by measuring
information, contrast, and luminance. For information, we use entropy. Contrast and luminance are also
included in the overall quality of dehazed images. Finally, SVR is used to train dehazed image quality
model.

2.1. Information. Entropy measures the amount of information in an image. Typically, a high-quality
image has high entropy value, which can be changed by the presence of distortions. In [9], image entropy is
utilized to represent the information of tone-mapped images. Similar to [9], we calculate the information
entropy of a set of intermediate images by brightening/darkening the brightness of the original input
dehazed image. The produced intermediate images are defined by

Ii = min(max(Mi · I, 0), 255), (1)

where I is an input dehazed image, and Mi denotes the ith multiplier. The max and min operators are
applied to clip the intermediate images into the range of 0 ∼ 255.

Fig. 1 (a) and (b) show two dehazed images in DEHID database. A group of intermediate images with
M = {1, n, 1

n |n = 1.5, 2.0, · · ·, 10} for each of this pair of images is created before measuring the associated
entropy values. Fig. 1 (c) demonstrates how the entropy E varies with the changes of the multiplier M.
Referring to subjective human ratings in the DEHID database, (a) indeed has a higher quality score than
(b).

To find a good balance between efficiency and efficacy, we take advantage of only nine entropy values
that are measured using M = {1, n, 1

n |n = 3.5, 5, 6.5, 8} as features. It should be noted that we also
testify and compare the performance of numerous other choices for n, and results show that our final
selection can bring better performance boosts relative to the majority of choices.

Notice that the above-mentioned nine numbers are global based entropy. Broadly speaking, the per-
ception of the human brain to visual signals inclines to a local-and-global manner [10]. Hence the novel
defined image entropy of each of nine intermediate images state above is defined as [9]:

Et(Ii) = ωEg(Ii) + (1− ω)El(Ii)
ν , (2)

where Eg(Ii) and El(Ii) indicate the global and local entropy respectively, ω and ν are positive constants
for manipulating the relative importance of the two components above. Referring to the scheme in [11],
the local entropy is estimated as the mean of block-based entropy, which is defined by

El(Ii) =
1

L

L∑
j=1

E(Bi,j), (3)

where Bi,j represents the j th block of size 64×64 in the i th intermediate image, L is the number of the
blocks in the image.

2.2. Contrast. Contrast plays a vital role in image dehazing. The goodness of image contrast can be
a very important factor of image quality. Image contrast can be approximately described using image
histogram. An image with good contrast is expected to have uniform histogram distribution. Therefore,
the distance/similarity between a real histogram and the ideal uniform histogram can be used as a
measurement of goodness of image contrast. In this work, the Kullback-Leibler divergence is adopted to
compute the contrast feature [12]

DKL(P,U) =
∑
x

P (x)ln
P (x)

U(x)
, (4)

where P and U represent the histogram distributions of a query image and the ideal uniform distribution.
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Figure 1. (a) A comparatively high-quality dehazed image. (b) A low
quality dehazed image. (c) The relationship between the varied multiplier
M and the corresponding entropy E in (a) and (b). The top red curve and
bottom blue curve correspond to (a) and (b), respectively.

Figure 2. Example images selected from the DEHID database, their sub-
jective scores (MOS), and contrast values (DKL).

2.3. Luminance. In image dehazing, both under- and over- dehazings cause image luminance to be
uncomfortable. So a measurement of image luminance is needed. In this work, we employ the locally
weighted luminance value as the measurement of luminance quality [12]

QL = Iavg × CL, (5)

where Iavg denotes the average pixel value, and CL denotes the Michelson contrast:

CL =
Imax − Imin

Imax + Imin
, (6)
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where Imax and Imin denote the maximum and minimum intensity values. In implementation, the
luminance feature CL is computed block-wisely. Specifically, the original image is first partitioned into
non-overlapping blocks, and the luminance features are obtained. The mean of the values of all blocks is
calculated as the final feature.

Figure 3. Example images selected from the DEHID database, their sub-
jective scores (MOS), and luminance values (QL).

2.4. SVR-based quality prediction. With the aforementioned quality-aware perceptual features, we
employ the support vector regression (SVR) [13] to train a quality model. For a query image, the quality
can be predicted using the trained SVR model. In our implementation, the Radial Basis Function (RBF)
is used as the SVR kernel.

3. Experimental Results.

3.1. Dehazed Image Database (DEHID). In order to evaluate the performance of the proposed
method, a dehazed image quality database(DEHID) is needed, which should contain dehazed images and
their subjective scores. Since such an image database is not publicly available, we first build one and
then use it to conduct the experiments. Specifically, a number of degraded images are first selected.
Then each image is processed using the state-of-the-art image dehazing methods, producing the dehazed
images. Finally, a subjective test is conducted to collect the human scores, which are used as ground
truth.

We select 40 hazy images to cover diverse outdoor scenes, which is divided into mist, moderate and
thick. The contents of hazy images include humans, animals, plants, landscapes, traffics, architectures,
statics and morn scenes, as shown in Fig. 4.

Ten dehazing algorithms are selected to generate the dehazed images. These algorithms include ad-
vanced algorithms 1) fattal08 [14], 2) tarel09 [2], 3) meng13 [15], 4)he09 [16], 5) GDCP [17], 6) gao14 [18],
7) chen15 [19], 8) DEFADE [20], 9) MSRCR [21] and popular image processing software 10) Kolor pho-
toshop auto-contrast [22]. In processing the haze images, default parameter settings are adopted. To be
specific, each image is processed using the ten approaches, producing ten dehazed versions of the image.
Finally, a total of 400 dehazed images are produced, which constitute the DEHID database. It should be
noted that all images in the DEHID database are represented in color format. Fig. 5 shows some example
images in the database.

In order to obtain the ground truth of image quality, subjective test is performed using the single
stimulus (SS) method on an Absolute Category Rating-Hidden Reference (ACR-HR) scale 1 ∼ 10, cor-
responding to the worst-best quality. In the test, 30 inexperienced volunteers are involved, including
14 males and 16 females, all aged between 19 and 38. After obtaining the rating scores of all subjects,
outliers are removed using the method in [23]. For each image, an average of six outliers are removed.
Then the mean of the remaining scores are computed and used as the ground truth, which is also known
as the Mean Opinion Score (MOS).
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Figure 4. Ten of the original images used to build the DEHID database.

Figure 5. Example images and their dehazed versions using different de-
hazing methods. The leftmost column shows the original images.

3.2. Evaluation protocols. Three widely adopted criteria are adopted to evaluate metric performances,
including Pearson Linear Correlation Coefficient (PLCC), Spearman Rank order Correlation Coefficient
(SRCC) and Root Mean Squared Error (RMSE). PLCC and RMSE are used to measure prediction
accuracy, and SRCC is used to measure prediction monotonicity. Before computing them, a five-parameter
logistic mapping is performed between the subjective and objective scores

q(r) = τ1(
1

2
− 1

1 + eτ2(r−τ3)
) + τ4r + τ5, (7)

where τi, i = 1, 2, ..., 5 are the parameters to be fitted.

3.3. Results and comparisons. In our experiments, 80% of the images are randomly selected for
training, and the remaining 20% images are used for test. The training-test process is repeated by 1000
times, and the median values are used as the performance results. The performance of the proposed
method is also compared with the state-of-the-art FR and NR image quality metrics, including, FR:
SSIM [5], MS-SSIM [24], PSNR [25], FSIM, FSIMc [26], VIF [27], GSM [28], GMSD [29], SFF [30], PC-
QI [31], RIQMC [32], and NR: BIQI [33], BLIINDS2 [34], BRISQUE [35], CORNIA [36], DESIQUE [37],
DIIVINE [4], NIQE [38], QAC [11], SSEQ [39], Fang [40], Hautière [1]. The experimental results are
summarized in Tables 1, where the best results are marked in boldface.

It can be seen from Tables 1 and 2 that the proposed method achieves the best performances in
DEHID database in terms of both prediction accuracy and monotonicity. Furthermore, it significantly
outperforms the other compared metrics. These results are not surprising, because almost all the current
quality metrics are based on the measurement of structural distortions, which are not the dominated
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Table 1. Performances of FR IQA metrics in DEHID database.

Metric Type PLCC SRCC RMSE

SSIM FR 0.1831 0.1046 1.9041

MS-SSIM FR 0.2409 0.1506 1.8799

PSNR FR 0.1948 0.1590 1.8997

FSIM FR 0.2224 0.2008 1.8883

FSIMc FR 0.2271 0.2042 1.8862

VIF FR 0.2636 0.2370 1.8683

GSM FR 0.1902 0.1556 1.9014

GMSD FR 0.2034 0.1531 1.8963

SFF FR 0.2213 0.1840 1.8888

PCQI FR 0.2594 0.2429 1.8705

RIQMC FR 0.2555 0.2553 1.8725

Proposed metric NR 0.5635 0.5502 1.5832

Table 2. Performances of NR IQA metrics in DEHID database.

Metric Type PLCC SRCC RMSE

BIQI NR 0.1415 0.1223 1.9176

BLIINDS2 NR 0.3144 0.2737 1.8386

BRISQUE NR 0.3301 0.3014 1.8282

CORNIA NR 0.1543 0.1432 1.9136

DESIQUE NR 0.3291 0.3200 1.8289

DIIVINE NR 0.1685 0.1426 1.9208

NIQE NR 0.2096 0.1762 1.8937

QAC NR 0.1669 0.1023 1.9096

SSEQ NR 0.3174 0.3118 1.8372

Fang NR 0.2711 0.2722 1.8642

Hautière NR 0.1385 0.1047 1.9197

Proposed metric NR 0.5635 0.5502 1.5832

distortions in image dehazing. In other words, non-structural distortions play a more important role in
the quality assessment of dehazed images.

4. Conclusions. In this paper, we have addressed the quality evaluation of digitally dehazed images,
an important yet much less investigated problem. We have built a dehazed image database based on
nine image dehazing algorithms and one image processing software. Subjective test has been conducted
to collect the ground truth of human scores. With the consideration that the current distortion-based
quality metrics are very limited in the quality evaluation of dehazed images, we have proposed a new
quality metric for dehazed images by simultaneously measuring information, contrast, and luminance.
We have evaluated the performance of the proposed method on the image dehazing databases. The
experimental results have confirmed the effectiveness and advantages of the proposed quality model. As
future work, we will use the proposed model for benchmarking and perceptual optimization of image
dehazing algorithms.
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