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Abstract. Several methods of construction of Ls-type Latin square de-
signs by various authors are scattered over literature, see Clatworthy [2]
and elsewhere. We have constructed Lso-type Latin square designs from
combinatorial matrices including Hadamard matrices, Generalized Bhaskar
Rao designs, circulant matrices, mutually orthogonal Latin squares and oth-
ers. These constructions yield solutions of all Lo-type Latin square designs
listed in Clatworthy [2] except one.

1 Introduction

Several methods of constructions of Ls-type Latin square design may be
found in Dey [3,4], Raghavarao [7] and Raghavarao and Padgett [8]. By
using matrix approaches, solutions of all the Lo-type Latin square designs
listed in Clatworthy [2] are obtained except one. Some of the series ob-
tained here may be new as these are not found in Dey [3,4], Raghavarao [7]
and Raghavarao and Padgett [8]. This paper is in sequel to the paper by
Saurabh and Singh [10]. We recall some relevant definitions in the context
of the paper.

A balanced incomplete block design (BIBD) or a 2-(v,k,\) design is an
arrangement of v treatments in b blocks, each of size k (< v) such that
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every treatment occurs in exactly r blocks and any two distinct treatments
occur together in A blocks. v, b, 7, k, A are called parameters of the BIBD.
A BIBD is symmetric if v = b and is self-complementary if v = 2k.

An nxn matrix H = [H;;| with entries H;; as £1 is called a Hadamard
matriz if HH' = H'H = nl,, where H' is the transpose of H and I, is the
identity matrix of order n. A Hadamard matrix is in normalized form if its
first row and first column contain only +1s.

A generalized Bhaskar Rao design GBRD (v, b, 7, k, X; G) over a group G is
a vxb array with entries from G U {0} such that:

1. Every row has exactly r group element entries;

2. Every column has exactly k group element entries;

3. For every pair of distinct rows (x1,%2,...,2p) and (y1,y2,---,Ys),
the multi-set {;viyi_l ci=1,2,...,b;2;,y; # 0} contains each group
element exactly A\/|G| times.

When |G| = 2, such a design is a Bhaskar Rao design. A generalized
Bhaskar Rao design GBRD(v,b,r,k,A\;G) with v = b and r = k is also
known as a balanced generalized weighing matric BGW (v, k, \; G). A gen-
eralized Hadamard matriz GH(\, g) over a group G of order g is a balanced
generalized weighing matrix with v = b = k = r = A. For details we refer
to Tonin and Kharghani [6], Abel et al. [1]) and Tonchev [11].

A Latin square of order n is an nxn array on n symbols such that each of
the n symbols occurs exactly once in each row and each column. The join
of two Latin squares A = [aij]lgi,jgn and B = [bij]lgz‘,jgn is the nxn
array whose (7, j)-th entry is the ordered pair (a;j;,b;;). Two Latin squares
are orthogonal if the join of A and B contains every ordered pair exactly
once. A set of Latin squares are mutually orthogonal Latin squares (MOLS)

if they are pairwise orthogonal.

Let v = n? treatments be arranged in an n x n array. An Lo-type Latin
square design is an arrangement of the v = n? treatments in b blocks each
of size k such that:

1. Every treatment occurs at most once in a block;

2. Every treatment occurs in r blocks;

3. Every pair of treatments, which are in the same row or in the same
column of the nxn array, occur together in A\; blocks; while every
other pair of treatments occur together in Ao blocks.
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The parameters of the Lo-type Latin square design are v = n2, b, r, k, A1
and Ay and they satisfy the relations: bk = vr; 2(n — 1)\ + (n — 1)%X\y =
r(k—1). Let N be the incidence matrix of an Lo-type Latin square design
with v = n? treatments then the structure of NN’ is:

(r=A)In+A1dn) (M= A2)n +A2Jn) -+ (A1 — X2)In + A2 Jn)
M =X)L+ Xodn) (r=A)In+Xidn) - (A1 — Xo)n + Aady)
NN' = . . ) .
(A1 = A) Do 4+ Aadn) (M1 = A2) Lo + Aadn) -+ (1= Ao+ Ardy)
Notations: I, is the identity matrix of order n, J,xp is the vxb matrix all
of whose entries are 1, Jyx, = Jy,, [A|B] is the juxtaposition of two

matrices A and B; A ® B is the Kronecker product of two matrices
A and B and LSX numbers are from Clatworthy [2].

2 Matrix constructions

Method I: From I and J matrices.

The following Theorem is the same as the Theorem 4.4.18 of Dey [4, p.
110]. Here the proof is given using a matrix approach.

Theorem 2.1. There exists a symmetric Lo-type Latin square design with
parameters:

v=b=n},r=k=2n—1,\ =n, Ay =2. (1)
Proof. N =1,&J,+(J—1),®]I, is the incidence matrix of the symmetric
Lo-type Latin square design with parameters (1). O

Theorem 2.2. There exists a symmetric Lo-type Latin square design with
parameters:

v=b=n%r=k=2(n—1), \;1 = (n—2), \y = 2. (2)

Proof. N=1,® (J —1I), + (J = I), ® I, is the incidence matrix of the
symmetric Lo-type Latin square design with parameters (2) [
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Theorem 2.3. There exists an Lo-type Latin square design with parame-

ters:
v=n2, b=2n?, r=2(n-—1), ()
k:n—l, )\1:71—2, )\220.

Proof. N = [I, ® (J — I)n|(J = I),, ® I,,] is the incidence matrix of the
Lo-type Latin square design with parameters (3). O

Method II: From 2-(v, k,A) designs and Hadamard Matrices.

Theorem 2.4. The existence of a 2-(v,k, \) design implies the existence
of an Lo-type Latin square design with parameters:

vi=0? b =0, =12

E* =K%, M =Ar, X=\. (4)

Proof. Let N,y be the incidence matrix of a 2-(v,k, \) design. Since
the inner product of any two distinct rows of the 2-(v, k, \) design is A,
Nyxp @ Nyxp is the incidence matrix of Lo-type Latin square design with
parameters (4) O

The following Theorem is the same as the Theorem 4.4.17 of Dey [4, p.
109]. Here the proof is given using matrix approach.

Theorem 2.5. The existence of a 2-(v, k,\) design implies the existence
of an La-type Latin square design with parameters:

v =02, b*=2b, r*=2r,

=k A=)\ =0 (5)

Proof. Let be the incidence matrix of a 2-(v, k, A) design. Then
N = [Iv ® vab|Mv><b ® Iv]

is the incidence matrix of the Lo-type Latin square design with parame-
ters(5) O

The following Theorem is the same as the Theorem 4.4.16 of Dey [4, p.
109]. Here the proof is given using matrix approach.
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Theorem 2.6. The existence of a 2-(v,k, \) design implies the existence
of an Lo-type Latin square design with parameters:

v =%,  b* =2b, r* = 2r, (6)
E*=vk, M=r+X IA2=2\

Proof. Let M be the incidence matrix of a 2-(v,k, \) design. Let R; =
(...11...000...1...),i < i < v be the i'" row of M with 1 at i{" | ith | ii"
positions and 0 elsewhere. Then corresponding to each R; we form a vxb
matrix I'; whose it" | it | it" columns have entries ones and zero elsewhere.
Since each row sum of M is r and any pair of distinct rows have 1 at A

ro, =] . Then

- T
positions we have: I';I"; { Ny, it

M T,
M Tq

M T,
represents an Lo-type Latin square design with parameters (6) O

Example 1: Consider a 2-(4,2,1) design whose incidence matrix M is:

101 0 10
10 0 1 01
M_OllO()l
010110

Then using Theorem 2.6 the incidence matrix of LS98: v = 16, b = 12,
r=06, k=28, \1 =4, \y =2 is given as:
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[ 101 0 1 0 7

1 01 0 1 0

M 1 01 0 1 0
101010

1 0 01 0 1

1 0 01 0 1

M T4 M 1 0 01 0 1
No| M Te|_| 100101

Tl M Ty | 011 0 0 1

M Ty 011 0 01

M 01 1 0 01
011001

01 01 10

01 01 10

M 01 0 1 10
I 010110 |

Theorem 2.7. The existence of a Hadamard matriz of order 4t and a self-
complementary 2-(v, k, ) design satisfying (4t — 1)\ = (2t — 1)r and 4tv a
perfect square implies the existence of an Lo-type Latin square design with
parameters:

v =4dtv, b*=(4t—-1)b, r*=4t—1)r, ™)
K =dth, A= (4 — 1A, A =20 — A,

Proof. Let N be the incidence matrix of a self-complementary 2-(v, k, A)
design and H be a 4¢x (4t — 1) matrix obtained by deleting the first column
of a normalized Hadamard matrix of order 4¢. Then replacing 1 by N and
-1 by J — N in H, we obtain the incidence matrix of an Ls-type Latin
square design with parameters (7). O

Example 2: For t = 2 and a 2-(8,4, 3) design, Theorem 2.7 yields Lo-
type Latin square design with parameters: v =64, b =98, r = 49, k = 32,
A =21, Ay = 25.

Method III: From mutually orthogonal Latin squares.

Here we define Bf, 1 < i,j < q, as a ¢xq matrix whose j** row is
(+--011---1) with 0 at the (j,4)-th position, 1 elsewhere and the entries
of remaining rows are zero. Then
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(i) B!(BF) = (¢ —1) at (j, k)-th position irrespective of j and k;

(ii) Fori # j; BF (Bf)/ = (g—1) at (k, £)-th position irrespective of k and

L.
01 11 0 0 0O
0 0 00 0 1 1 1
. — 1 _ . R2
Example 3: For ¢ =4, B] = 000 0 ; BY = 00 0 0
0 0 0O 0 0 0O
Theorem 2.8. There exists an Lo-type Latin square design with parame-
ters: ) ) )
v=4q, bz(](q_l)7 T:(q_l)ﬁ (8)
k:q_17 )‘1207 )‘2:q_27

where q s a prime or prime power.

Proof. Consider a set of ¢x ¢ matrices S = {Bf :1<4,5 <q}. Let GF(q) =
{1,2,3,...,q} be a finite field of order ¢ after renaming the elements. It is
known, see Furino et al. [5, p. 10] that there exist ¢ — 1 MOLS of order gq.

Let

be one of the g — 1 MOLS. Corresponding to each L; we form a gxq matrix
N; as:

B B? ... B

-1
N; = Bg B% Bg.
2 p3 ' 1

B B} --- B

Then N = [N1|Na|---|N4_1] represents an Lo-type Latin square design
with parameters (8). O

Example 4: Consider a set of MOLS of order 4:

1 2 3 4 1 2 3 4 1 2 3 4
M= 4 3 2 1 3 4 1 2 2 1 4 3
2 1 4 3 4 3 2 1 3 4 1 2
3 4 1 2 2 1 4 3 4 3 21
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Then

By BY B B{|Bi BY B{ B{|Bi B? B} Bj
By B} Bi By | B By By B3| Bf By, B; B}
Bi B; By Bj|B; Bi Bi B;y|Bj By By Bj
Bf By By Bi|Bi Bi By Bi|B; B B{ B;

represents LS20: v=16,0=48,r=9, k=3, \; =0, Ay = 2.

Method IV: From E;, 1 <1 < n, and I matrices.

On page 229 of [12] van Lint and Wilson used F;-matrices, 1 < i < 3, in
the construction of a 2-(9,3,1) design where E; denotes a 3 by 3 matrix
with ones in column i and zero elsewhere. Here we have used such types of
matrices in the construction of Lo-type Latin square designs.

Theorem 2.9. There exists an Lo-type Latin square design with parame-

ters: )
v=n", b=2n, r=2
k=n, M=1 A =0 (9)

Proof. Let E;, 1 <1 < n, denote an nxn matrix whose ith column contains
only +1s and 0 elsewhere. Then

B I,
By I,
N=| .
E’!L ITL

represents the incidence matrix of the Lo-type Latin square design with
parameters (9). O

Method V: From generalized Bhaskar Rao designs over EA(g).

As GH(g, A) is a special case of GBRD(v, b, r, k, A\; G), the following Theo-
rem follows from the method in Section 2 of Sarvate and Seberry [9] with
slight modification.
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Theorem 2.10. There exists an Lo-type Latin square design with param-
eters:

vi=gh b =gilg-+2 =g+
k*=g, A =s, Ay =t,
where g 1S a prime or prime power.

Proof. Let M be a gx(g — 1) matrix obtained by deleting the first column
of a normalized Generalized Hadamard Matrix, GH(g, g) over elementary
abelian group, EA(g). Then replacing the elements of an EA(g) by the
corresponding right regular gx g permutation matrices and 0 entry by gxg
null matrix in M we obtain an Lo-type Latin square design with parameters:

* 2 * *
vi=g% b =g(g-1), rr=g-1,
K =g, A =0, o = 1. (11)

Let N7 be the matrix obtained by taking ¢ copies of the incidence matrix of
an Lo- type Latin square design with parameters (11). Let No = s copies
of the block matrix

I
I

and N3 = s copies of the block matrix . arranged column-wise where
I

E;, 1 < i < g, denote a gxg matrix whose i** column contains only +1s

and 0 elsewhere. Then N = [N7|N2| N3] represents an La-type Latin square
design with generalized parameters (10). O

3 Tables of designs

This section contains Tables 1 and 2 of Lo-type Latin square designs listed in
Clatworthy [2] constructed using the present Theorems. Designs obtained
by taking m copies or the complement of a design are not included in the
Tables.
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Table 1: Symmetric Lo-type Latin square designs

No. | LS:(v, k, A1, A2) Source

1 | LS26: (9,4,1,2) | Th.22;m =3

2 | LS83: (16,7,4,2) | Th.2.1;n =4

3 | LS101:(25,8,3,2) | Th.2.2:n =5

4 | LS117:(25,9,5,2) | Th.2.1n=5

5 | LS118:(49,9,3,1) | Th. 2.4:2-(7,3,1) design
6 | LS136:(36,10,4,2) | Th. 2.2;n =6

4 Conclusion

In this paper we have constructed some series of Lo-type Latin square
designs using matrix approaches. These series yield patterned constructions
of all the Lo-type Latin square designs listed in Clatworthy [2] except one.
The series (10)) for a prime g may be found in Saurabh and Singh [10]. The
series (11)) may be found in Dey [4, p. 109]. Here the proof is given using
matrix approach. The series (2)), (3)), (4)), (7)), (8)) and (9)) obtained
above may be new as these are not found in Dey [3,4], Raghavarao [7] and
Raghavarao and Padgett [8].
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