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Abstract We present the numbers of all non-isomorphic residuated lattices with up
to 12 elements and a link to a database of these lattices. In addition, we explore var-
ious characteristics of these lattices such as the width, length, and various properties
considered in the literature and provide the corresponding statistics. We also present
algorithms for computing finite residuated lattices including a fast heuristic test of
non-isomorphism.
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1 Introduction and Preliminaries

Ordered sets and lattices play a crucial role in several areas, e.g. in data visualization
and analysis, uncertainty modeling, many-valued and fuzzy logics, graph theory,
etc. Residuated lattices, in particular, were pioneered in the 1930s by Dilworth
and Ward [9, 33]. In the late 1960s, residuated lattices were introduced into many-
valued logics and, in particular, into fuzzy logics as structures of truth values (truth
degrees) [14, 15]. Residuated lattices and various special residuated lattices are now
used as the main structures of truth values in fuzzy logic and fuzzy set theory, see
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e.g. [4, 11, 16, 18, 21, 27, 31], and are subject to algebraic investigation, see e.g.
[5, 13, 23]. In addition to general motivations for enumerating finite structures, the
motivation for enumerating finite residuated lattices derives from their role as scales
of truth degrees. Namely, in many application areas, see e.g. [27], an expert defines a
fuzzy set by assigning truth degrees (elements of a residuated lattice) to the elements
of a particular universe. Now, according to Miller’s 7±2 phenomenon, well known
from psychology [30], humans are able to work consistently with a scale of degrees
containing up to 7±2 elements. With more than 7±2 elements, the assignments
become inconsistent. From this perspective, by computing all residuated lattices with
up to 12 elements, we cover all the residuated lattices which are practically useful in
such scenario.

A previous work on related problems includes [22] where the author provides
the numbers and descriptions of non-isomorphic residuated lattices with up to six
elements. Bartušek and Navara [2], De Baets [7] and De Baets and Mesiar [8] are also
studies related to our paper. Namely, the authors compute the numbers of all t-norms
[26] on finite chains but do not pay attention to general nonlinear residuated lattices.
With respect to the previous work, we improve the size up to which we compute all
the residuated lattices, from 6 (see [22]) to 12. Moreover, we systematically explore
various properties of the residuated lattices which have not been provided in the
previously published papers.

We use standard notions and notation and refer to [3, 17] (ordered sets and
lattices) and [4, 13, 16, 18, 21, 23] (residuated lattices) for details. In particular,
for a partially ordered set L = 〈L, ≤〉, we denote by L(A) and U(A) the lower
and upper cones of A ⊆ L, and by

∧
A and

∨
A the infimum and supremium

of A ⊆ L. Recall that a residuated lattice is an algebra L = 〈L, ∧,∨,⊗, →, 0, 1〉
where 〈L, ∧,∨, 0, 1〉 is a bounded lattice, 〈L, ⊗, 1〉 is a commutative monoid, and
⊗ and → satisfy a ⊗ b ≤ c iff a ≤ b → c for each a, b , c ∈ L (adjointness property).
Binary operations ⊗ (multiplication) and → (residuum) serve as truth functions
of connectives “fuzzy conjunction” and “fuzzy implication” [4, 11, 15, 16, 18, 21].
Various subclasses of residuated lattices have been investigated in many-valued
and fuzzy logics, e.g. MTL-algebras [11], BL-algebras [18] and its three important
subclasses, namely MV-algebras, Gödel algebras, and �-algebras.

We proceed as follows. First, as described in Section 2, we generate non-
isomorphic finite lattices. Second, we use these lattices and generate non-isomorphic
residuated lattices, as described in Section 3. Section 4 presents a summary re-
garding selected properties of the computed structures. The corresponding tables
are presented in the Appendix. A more detailed version of this paper, containing
particularly the pseudocodes of all the algorithms and proofs of their correctness is
available at http://lattice.inf.upol.cz/order/reslat12.pdf.

2 Generating Non-isomorphic Finite Lattices

As described above, we first need to compute non-isomorphic finite lattices. The
problem of counting and listing all non-isomorphic partial orders and, in particular,
lattices has been studied in several papers in the past, see e.g. [10, 19, 20, 24, 25, 28,
29], see also Chapter XI in [12]. In [20], the numbers of all finite lattices with up to
18 elements are presented along with the algorithm for listing the lattices. For our

http://lattice.inf.upol.cz/order/reslat12.pdf
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purposes, we could have used the algorithm from [20]. However, we briefly describe
another algorithm, which we used for computing finite lattices. The algorithm is
simple and is based on a new heuristic test of isomorphism. The test is based on a
general idea and we use it also in Section 3 to generate non-isomorphic residuated
lattices.

We represent a lattice L = 〈L, ≤〉 with |L| = n by the adjacency matrix of ≤.
Moreover, since ≤ can be extended to a linear order, we can safely assume that the
adjacency matrices are upper triangular (the linear order corresponds to the ordering
of matrix rows and columns), cf. Fig. 1. The essential information is contained in the
inner area of the upper triangle (grey area in Fig. 1) which we encode by a binary
vector (vector 001110, i.e. a concatenation of vectors 001, 11, and 0 encoding the
rows of the grey area in Fig. 1). Such a representation makes it possible to efficiently
compute transitive closures of general relations represented by triangular matrices,
and to compute infima and suprema of lattice orders, cf. [1].

To recognize non-isomorphic lattices, we employ the following heuristic
test. To every element a of a lattice L = 〈L, ≤〉, we assign a vector v(a) =
〈v1(a), v2(a), v3(a), v4(a)〉 defined as follows. v1(a) = |L({a})| and v2(a) = |U({a})|
(numbers of elements less/greater than or equal to a); v3(a) and v4(a) are the
numbers of two-element subsets {c, d} of L for which 0, 1 �∈ {c, d} and whose
infimum/supremum yields a. Roughly speaking, v1(a), . . . , v4(a) represent a “posi-
tion” of a in the lattice. We now lexicographically order and concatenate the vectors
v(a) of all a ∈ L and obtain a vector of non-negative integers which we call the
charateristic vector of L = 〈L, ≤〉.

Example 1 The values of vis for the lattice from Fig. 1 are shown in the following
table:

L 0 a b c d 1

v1 1 2 2 3 4 6
v2 6 3 4 2 2 1
v3 2 1 3 0 0 0
v4 0 0 0 1 3 2

That is, v(0) = 〈1, 6, 2, 0〉, etc. With respect to the lexicographic order �lex,

v(0) �lex v(a) �lex v(b) �lex v(c) �lex v(d) �lex v(1).

Fig. 1 Upper triangular
adjacency matrix (left) of a
finite lattice (right)



150 Order (2010) 27:147–161

Therefore, the characteristic vector of the lattice is

〈1, 6, 2, 0, 2, 3, 1, 0, 2, 4, 3, 0, 3, 2, 0, 1, 4, 2, 0, 3, 6, 1, 0, 2〉.

Determining the characteristic vector of a given n-element lattice can be solved
with an asymptotic complexity of O(n3). Indeed, traversing trough the binary vector
representing the adjacency matrix is done in O(n2) steps, each such a step requires
a computation of infima and suprema, which can be done in O(n) steps. Thus, we
need O(n3) steps to find the values of all v(a)s. Finally, an efficient sorting algorithm
like heap-sort can be used to sort v(a)s according to �lex in O(n log n) steps which
does not increase the asymptotic complexity. Thus, the overall time complexity of
determining the characteristic vector is O(n3).

A direct procedure to test whether two n-element lattices L1 and L2 are iso-
morphic requires, in the worst case, to test n! bijective maps between two n-
element lattices and to check the isomorphism condition for them. As we will see,
characteristic vectors allow us to disqualify quickly most pairs of non-isomorphic
lattices, i.e. to reach quickly the conclusion that two given lattices are not isomorphic.
The heuristic test of non-isomorphism of two lattices consists in computing their
characteristic vectors and checking whether the vectors are equal. Clearly, if the
vectors are not equal, L1 and L2 are not isomorphic. If the vectors are equal, one
cannot conclude that L1 and L2 are isomorphic because two non-isomorphic lattices
may have the same characteristic vectors. Therefore, the heuristic test may fail.
Hence, if the vectors are equal, we proceed by testing all isomorphism candidates
to check by brute force whether there is at least one which is indeed an isomorphism.
An isomorphism candidate between L1 and L2 is a bijection h : L1 → L2 which
satisfies vL1(a) = vL2

(
h(a)

)
for every a ∈ L1, i.e. the vector assigned to a in L1 equals

the vector assigned to a in L2. Clearly, the bijections which are not isomorphism
candidates cannot be isomorphisms and, therefore, need not be tested. We will see in
Remark 1 that testing only isomorphism candidates significantly reduces the number
of bijections to test.

Is a failure of the heuristic test rare? We have investigated this problem for lattices
with up to 12 elements. Suppose c is a characteristic vector of a finite lattice. By an
order of c, denoted ||c||, we mean the number of pairwise non-isomorphic lattices
whose characteristic vector is c. If ||c|| = 1, there is just one finite lattice (up to
isomorphism) with c in which case the heuristic test does not fail. Table 1 shows
the numbers of characteristic vectors of given orders. The columns of the table
correspond to sizes of lattices, the rows correspond to orders of characteristic vectors,
and the table entries show how many characteristic vectors (of orders given by rows
and sizes given by columns) there are. We can see that for n ≤ 7, the heuristic test
does not fail and that in the other cases, the heuristic test performs reasonably well.

We employ the heuristic test in an algorithm which incrementally generates finite
lattices. The following observation allows us to use an n-element lattice L′ to generate
an (n + 1)-element lattice L by adding a column and a row representing a new coatom
to an upper triangular matrix representing the n-element lattice.

Theorem 1 Let L = 〈L,≤〉 be a f inite lattice with |L| > 1, c ∈ L be a coatom in L.
Then L′ = L − {c} equipped with ≤′ which is a restriction of ≤ on L′ is a lattice which
is a ∧-sublattice of L.
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Table 1 Numbers of characteristic vectors of given orders

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 2 5 15 53 220 1,049 5,682 34,502 232,070
2 0 0 0 0 0 0 0 1 13 125 1,159 10,963
3 0 0 0 0 0 0 0 0 1 18 212 2,035
4 0 0 0 0 0 0 0 0 0 2 28 388
5 0 0 0 0 0 0 0 0 0 0 6 102
6 0 0 0 0 0 0 0 0 0 0 4 65
7 0 0 0 0 0 0 0 0 0 0 0 16
8 0 0 0 0 0 0 0 0 0 0 0 6
10 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 2
16 0 0 0 0 0 0 0 0 0 0 0 1

We iteratively add all possible rows and columns to obtain all lattices which can
be obtained from L′. For every new row and column, we need to check whether the
new matrix represents a lattice order. If not, we change entries in the new column
and row and use transitive closure to compute another candidate lattice order. When
a new lattice is obtained, we use the heuristic test of isomorphism to check whether
an isomorphic lattice has already been generated.

Remark 1 Interestingly, the average number of isomorphism candidates that are
used during each isomorphism test is low. The following table shows the numbers
of isomorphism tests performed when computing all lattices of a given size and the
average number of isomorphism candidates per one test.

Size of L 1 2 3 4 5 6 7 8 9 10 11 12
Tests of 0 0 0 0 3 22 148 1,055 8,661 80,921 859,881 10,277,785

isomorphism
Generated 0 0 0 0 3 22 155 1,158 10,054 97,113 1,058,787 12,765,905

candidates
Ratio – – – – 1.00 1.00 1.05 1.10 1.16 1.20 1.23 1.24

(candidates/test)

Hence, roughly speaking, if two lattices are isomorphic, the map proving the iso-
morphism is usually the first candidate considered. The isomorphism test using
characteristic vectors and isomorphism candidates is thus efficient for lattices with
|L| ≤ 12.

3 Generating Finite Residuated Lattices

In this section we describe a way to generate residuated lattices of a given size.
We describe an algorithm which, for a given finite lattice L = 〈L,∧, ∨, 0, 1〉, gen-
erates all pairs 〈⊗, →〉 of adjoint operations on L. The algorithm from Section 2
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and this algorithm provide us with an algorithm for generating residuated lat-
tices up to a given size. Let L = 〈L,∧, ∨, 0, 1〉 be a finite lattice with L = {0 =
a0, a1, a2, . . . , an−2, an−1 = 1}.

We use the following assertion which follows from well-known properties of
residuated lattices [16, 21] taking into account the finiteness of L.

Theorem 2 Let L = 〈L,∧, ∨, 0, 1〉 be a f inite lattice, 〈L, ⊗, 1〉 be a commutative
monoid such that ⊗ is monotone w.r.t. ≤. Then the following are equivalent:

(1) there exists (unique) → satisfying adjointness w.r.t. ⊗;
(2) for each a, b , c ∈ L: a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c);
(3) → given by a → b = ∨{c ∈ L | a ⊗ c ≤ b} satisf ies adjointness w.r.t. ⊗.

Due to Theorem 2, in order to generate all adjoint pairs 〈⊗, →〉 on L, it suffices
to generate all monotone, commutative, and associative operations ⊗ for which
(1) (greatest element of L) is a neutral element and which satisfy condition (2) of
Theorem 2. Then, we can use (3) to compute the corresponding residuum →.

We generate the multiplications ⊗ by filling the table of ⊗ (entry given by row i
and column j stores the value ai ⊗ a j) using a recursive backtracking procedure and
make use of the below-mentioned properties of ⊗. For this purpose, we assume that
ai ≤ a j implies i ≤ j for all ai, a j ∈ L (indexing of lattice elements extends the lattice
order). Due to commutativity of ⊗, a ⊗ 0 = 0, and a ⊗ 1 = a, we only need to fill in
the inner part of the upper triangle of the table of ⊗. The following theorem provides
us with bounds on the values in the inner part (the first part is well known, the second
follows from the monotony of ⊗).

Theorem 3 Let L be a residuated lattice. Then, for each a, b ∈ L,

(1) a ⊗ b ≤ a ∧ b;
(2)

∨{c ⊗ d | c, d ∈ L such that c ≤ a and d ≤ b} ≤ a ⊗ b.

As a result, when filling the entry at row i and column j, i.e. a candidate value
ai ⊗ a j, we can restrict to the values from

Bounds(i, j) = [
b , ai ∧ a j

]

with

b = ∨{amin(k,l) ⊗ amax(k,l) | (k = i and al ≺ a j) or (ak ≺ ai and l = j)}
where am ≺ an denotes that am is covered by an, i.e. am ≤ an and am ≤ c ≤ an implies
am = c or an = c. We consider every element from Bounds(i, j) a candidate for ai ⊗
a j. To check that a candidate value may indeed be used, we check for each a, b , c ∈ L
the following conditions:

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, (1)

a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c), (2)

a ≤ b implies a ⊗ c ≤ b ⊗ c, (3)
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provided that the expressions in (1)–(3) are defined. The table entries are tra-
versed in the following order: a1 ⊗ a1, a1 ⊗ a2, . . . , a1 ⊗ an−3, a1 ⊗ an−2, a2 ⊗ a2,
a2 ⊗ a3, . . . , an−2 ⊗ an−2, to ensure that the bounds for Bounds(i, j) are available
when needed. It is easy to see that such a procedure is sound and generates
all multiplications ⊗ which appear in adjoint couples 〈⊗, →〉 on a given finite
lattice L.

In order to generate all non-isomorphic residuated lattices with the lattice part
L = 〈L,∧,∨, 0, 1〉, we exclude the isomorphic copies, which may arise when com-
puting the multiplications ⊗ as described above, by selecting one representative.
The representative is selected using the following lexicographic order. For two
multiplications ⊗1 and ⊗2, we put ⊗1 <� ⊗2 iff there exist ai, a j ∈ L such that the
following two conditions are both satisfied:

(1) k < l for ak = ai ⊗1 a j and al = ai ⊗2 a j,
(2) ak ⊗1 al = ak ⊗2 al for all ak, al ∈ L such that k < i or (k = i and l < j).

Obviously, <� defines a strict total order on all possible multiplications (binary
operations, in general) on L = 〈L, ∧,∨, 0, 1〉. Denote by �� the reflexive closure
of <�.

Consider now two distinct adjoint pairs 〈⊗1, →1〉 and 〈⊗2,→2〉 computed by
the above backtracking algorithm and the corresponding residuated lattices L1 =
〈L,∧, ∨,⊗1,→1, 0, 1〉 and L2 = 〈L,∧, ∨,⊗2,→2, 0, 1〉. It is easily seen that L1 and
L2 are isomorphic iff there is a lattice automorphism h : L → L such that a ⊗2 b =
h(h−1(a) ⊗1 h−1(b)). Thus, we proceed as follows. After ⊗ is generated, we compute
the set of all automorphic images {⊗i | i ∈ I} of ⊗ and store ⊗ iff ⊗ is lexicographically
least among all {⊗i | i ∈ I}, i.e., iff ⊗ �� ⊗i for all i ∈ I. Each automorphic image ⊗i

of ⊗ is defined by a ⊗i b = h(h−1(a) ⊗ h−1(b)) where h is a lattice automorphism of
L = 〈L,∧,∨, 0, 1〉. Therefore, in order to apply the procedure, we have to generate
all automorphisms of a given finite lattice L. This can be done in a straightforward
manner using characteristic vectors and automorphism candidates introduced in
Section 2.

4 Selected Properties of Generated Structures

In this section we present basic characteristics of finite residuated lattices generated
by our algorithms. We used the algorithms to generate all non-isomorphic residuated
lattices with up to 12 elements. Prior to that, we generated all non-isomorphic
lattices up to 12 elements. The tables summarizing the observations from this section
can be found in the Appendix. A database of generated lattices is available at:
http://lattice.inf.upol.cz/order/.

Numbers of Finite (Residuated) Lattices Table 2 (see Appendix) contains a basic
summary. The table columns correspond to sizes of lattices (numbers of their
elements). The first row contains the numbers of non-isomorphic lattices. These
numbers agree with observations concerning the numbers of lattices from [20]. The
second row contains the numbers of non-isomorphic residuated lattices. The third
row contains the numbers of non-isomorphic linearly ordered residuated lattices (i.e.,

http://lattice.inf.upol.cz/order/
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lattices with every pair of elements comparable). We can see from the table that small
residuated lattices tend to be linear: for |L| = 5, 22 residuated lattices out of 26 are
linear. With growing sizes of |L|, the portion of linear residuated lattices decreases:
for |L| = 11, one fifth of all the residuated lattices are linear; for |L| = 12 only
one seventh of all the residuated lattices are linear. Another observation concerns
the relationship between (numbers of) residuated lattices and (numbers of) their
distinct lattice reducts. Recall that if L = 〈L,∧,∨, ⊗,→, 0, 1〉 is a residuated lattice,
its reduct 〈L, ∧,∨, 0, 1〉 is a lattice. Thus, we may ask how many n-element lattices
are reducts of n-element residuated lattices. This is shown in the last row of Table 2
which contains the numbers of pairwise distinct non-isomorphic lattice reducts of all
non-isomorphic residuated lattices. For instance, the values in column corresponding
to |L| = 12 mean: there are 262776 non-isomorphic lattices but only 38165 of them
can be equipped with ⊗ and → to form a residuated lattice. Notice that even if the
number of residuated lattices rapidly grows with growing |L|, the number of their
lattice reducts compared to the number of all lattices (of that size) decreases. This
means that with growing |L|, the average number of residuated lattices with the same
lattice part increases. For instance, for |L| = 8 the average number of residuated
lattices sharing the same lattice part is approximately 77 while for |L| = 12 it is 803.

Heights and Widths of Finite (Residuated) Lattices The values in Table 2 may
suggest that most residuated lattices can be found on n-element chains. This is so for
smaller residuated lattices but it is no longer true for larger lattices. Namely, consider
the heights and widths of the lattices. A height/width of a lattice is the length of the
longest maximal chain/antichain contained in that lattice. For instance, for |L| = 12,
we can depict the numbers of lattices according to their width and height as in Table 3
(see Appendix). The rows and columns in Table 3 represent heights and widths of
lattices, respectively. The table entries represent the numbers of non-isomorphic
lattices with the dimensions given by the corresponding rows and columns. In a
similar way, we can depict the numbers of distinct residuated lattices according to
their width and height as in Table 4. Table 4 shows that the lattice parts of most
residuated lattices are “tall and thin” and that in case of |L| = 12, the most frequent
residuated lattices are those with width 2 (second column of Table 4). Let us mention
that the distribution of all lattices and all lattice reducts according to their dimensions
is quite different from that of residuated lattices. Indeed, the distributions of lattices
in Tables 3 and 5 are similar but quite different from that in Table 4. Analogous
observations can be made for all generated finite residuated lattices and their lattice
reducts with |L| < 12.

Numbers of Finite (Residuated) Lattices Satisfying Additional Conditions Table 6
provides a summary of the numbers of non-isomorphic lattices which are modular,
distributive, have complements, are Boolean, have relative complements, pseudo-
complements, and relative pseudo-complements [17]. Note that the lines for all,
modular, and distributive lattices are known [32], and that it is also know that the
numbers in line 3 and line 8 coincide [6]. In addition to that, we consider the following
properties of residuated lattices (see [4, 11, 17, 18]):

(MOD) a ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ c (modularity)
(DIS) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity)
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(MTL) (a → b) ∨ (b → a) = 1 (prelinearity)
(�1) (c → 0) → 0 ≤ ((a ⊗ c) → (b ⊗ c)) → (a → b) (�1-property)
(�2) a ∧ (a → 0) = 0 (�2-property)
(STR) (a ⊗ b) → 0 = (a → 0) ∨ (b → 0) (strictness)
(WNM) ((a ⊗ b) → 0) ∨ ((a ∧ b) → (a ⊗ b)) = 1 (weak nilpotent minimum)
(DIV) a ∧ b = a ⊗ (a → b) (divisibility)
(INV) a = (a → 0) → 0 (involution)
(IDM) a = a ⊗ a (idempotency)

These properties are of interest, e.g., when lattices are considered as structures
of truth values in many-valued logics and fuzzy logics [4, 18]. Table 7 contains
the numbers of residuated lattices satisfying these conditions. Table 8 summarizes
the numbers of algebras (particular residuated lattices) which are defined by a
combination of the above-mentioned properties. The tables show that BL-algebras
are very rare among residuated lattices up to 12 elements. The situation for MTL-
algebras is better but still, only 15 % of all 12-element residuated lattices are MTL-
algebras. An observation which may be surprising is that (�1) is far more frequent a
property than prelinearity (for |L| ≤ 12).

Relationship Between Properties of Finite (Residuated) Lattices Table 6 shows
the numbers of lattices having each property but does not show, e.g., how many
modular lattices are pseudo-complemented; similarly for Tables 7 and 8. To reveal
dependencies among properties of lattices and residuated lattices, we constructed
Tables 9, 10, and 11. These tables show all combinations of lattice and residuated
lattice properties which appear in the generated databases. In case of Table 9, the
columns denote the same properties of lattices considered in Table 6. The left-
most column contains numbers of non-isomorphic lattices with given combinations
of properties. Each row of the tables represents one combination of properties
(properties which are present are marked by “×”). From Table 9 we can see that
some combinations of properties are rare. In addition to that, some combinations of
properties do not appear in “small” lattices (up to certain number of elements). For
instance, the least lattice which is only relatively complemented and (in consequence)
complemented has 9 elements and it is depicted in Fig. 2 (left). The least lattice which
does not satisfy any of the properties MOD–RPC (see Table 9) has seven elements
and is depicted in Fig. 2 (middle). The lattice in Fig. 2 (right) is the least lattice which
is only modular, complemented, and relatively complemented. Tables 10 and 11

Fig. 2 Least lattices that have a specific group of properties
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depict dependencies among properties of the generated residuated lattices. Again,
some combinations of properties are rare and some of them appear only in larger
structures. For illustration, the least residuated lattice which satisfies only (MOD)
and (�2) has nine elements.

Acknowledgements Supported by research plan MSM 6198959214. Partly supported by grant
P202/10/0262 of the Czech Science Foundation. The paper is an extended version of a contribution
presented at IFSA 2007 Congress.

Appendix

Table 2 Numbers of non-isomorphic finite lattices and residuated lattices up to 12 elements

1 2 3 4 5 6 7 8 9 10 11 12

Lattices 1 1 1 2 5 15 53 222 1,078 5,994 37,622 262,776
Residuated lattices 1 1 2 7 26 129 723 4,712 34,698 290,565 2,779,183 30,653,419
Linear res. lattices 1 1 2 6 22 94 451 2,386 13,775 86,417 590,489 4,446,029
Residuated lattice 1 1 1 2 3 7 18 61 239 1,125 6,138 38,165

reducts

Table 3 Numbers of 12 -element lattices with given heights and widths

1 2 3 4 5 6 7 8 9 10

3 1
4 99 395 288 98 17
5 3,847 14,418 9,536 2,115 176
6 3,531 37,813 43,394 12,050 952
7 87 15,501 48,261 23,595 2,507
8 666 14,735 17,380 3,117
9 849 4,704 1,792
10 350 456
11 45
12 1
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Table 4 Numbers of 12-element residuated lattices with given heights and widths

1 2 3 4 5 6 7 8 9

4 1
5 3 127 165 88 48
6 240 9,383 22,627 9,638 1,335
7 236 99,088 332,299 161,275 18,546
8 121,970 1,363,290 1,009,364 142,551
9 1,732,870 3,563,657 733,266
10 6,007,716 2,709,365
11 8,168,242
12 4,446,029

Table 5 Numbers of
12-element lattice reducts with
given heights and widths

1 2 3 4 5 6 7 8 9

4 1
5 2 123 159 72 15
6 92 2,215 3,295 1,139 126
7 11 2,362 8,498 4,397 518
8 241 4,549 5,377 973
9 455 2,183 805
10 239 280
11 37
12 1

Table 6 Numbers of non-isomorphic lattices with selected properties

1 2 3 4 5 6 7 8 9 10 11 12

All lattices 1 1 1 2 5 15 53 222 1,078 5,994 37,622 262,776
Modular 1 1 1 2 4 8 16 34 72 157 343 766
Distributive 1 1 1 2 3 5 8 15 26 47 82 151
Complemented 1 1 0 1 2 6 18 71 307 1,594 9,446 63,461
Boolean 1 1 0 1 0 0 0 1 0 0 0 0
Relatively complemented 1 1 0 1 1 1 1 2 2 4 6 13
Pseudo-complemented 1 1 1 2 4 10 29 99 391 1,775 9,214 54,151
relatively 1 1 1 2 3 5 8 15 26 47 82 151

pseudo-complemented
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Table 7 Numbers of residuated lattices with selected properties

1 2 3 4 5 6 7 8 9 10 11 12

All res. lattices 1 1 2 7 26 129 723 4,712 34,698 290,565 2,779,183 30,653,419
Modular 1 1 2 7 26 125 660 3,923 25,445 180,113 1,389,782 11,798,582
Distributive 1 1 2 7 26 124 645 3,792 24,268 169,553 1,290,956 10,823,436
(�1) identity 1 1 1 4 9 46 240 1,610 12,679 118,052 1,280,764 16,074,272
Prelinear 1 1 2 7 23 99 464 2,453 14,087 88,188 601,205 4,516,962
(�2) identity 1 1 1 3 8 30 143 794 5,090 37,036 306,456 2,897,889
Strict 1 1 1 3 7 27 129 726 4,713 34,705 290,565 2,779,212
(WNM) identity 1 1 2 5 11 30 78 238 771 2,908 12,812 67,467
Divisible 1 1 2 5 10 23 49 111 244 545 1,203 2,697
Involutive 1 1 1 3 3 12 15 70 112 493 980 4,325
Idempotent 1 1 1 2 3 5 8 15 26 47 82 151

Table 8 Numbers of selected algebras (particular residuated lattices)

1 2 3 4 5 6 7 8 9 10 11 12

All res. lattices 1 1 2 7 26 129 723 4,712 34,698 290,565 2,779,183 30,653,419
MTL-algebras 1 1 2 7 23 99 464 2,453 14,087 88,188 601,205 4,516,962
SMTL-algebras 1 1 1 3 7 24 99 467 2,454 14,094 88,188 601,231
WNM-algebras 1 1 2 5 9 21 40 90 180 378 757 1,584
BL-algebras 1 1 2 5 9 20 38 81 160 326 643 1,314
SBL-algebras 1 1 1 3 5 10 20 41 82 165 326 655
IMTL-algebras 1 1 1 3 3 8 12 35 61 167 333 971
Heyting algebras 1 1 1 2 3 5 8 15 26 47 82 151
G-algebras 1 1 1 2 2 3 3 5 6 8 8 12
NM-algebras 1 1 1 2 1 2 1 4 3 3 2 6
MV-algebras 1 1 1 2 1 2 1 3 2 2 1 4
�-algebras 1 1 0 1 0 0 0 1 0 0 0 0
�MTL-algebras 1 1 0 1 0 0 0 1 0 0 0 0

Table 9 Numbers of lattices
sharing selected properties

MOD modular,
DIS distributive,
COM complemented,
BOO boolean,
REL relatively complemented,
PCO pseudo-complemented,
RPC relatively
pseudo-complemented

MOD DIS COM BOO REL PCO RPC

168,660
72,930 ×
62,811 ×
1,945 × ×
580 × ×
473 ×
338 × × × ×
19 × ×
10 × × ×
4 × × × × × × ×
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Table 11 Numbers of residuated lattices sharing selected properties (detail)

MOD DIS MTL �1 �2 STR WEA DIV INV IDE

12,275,528 ×
6,404,789
3,252,773 × ×
3,025,931 × × ×
3,009,686 × × ×
1,509,962 × ×
1,485,172 × × × ×
781,939 × × × ×
705,260 × × × × ×
653,138 × ×
317,172 ×
110,710 × × ×
101,016 ×
55,732 × ×
34,162 × × ×
15,501 ×
5,761 × × ×
2,713 × × × ×
2,271 × ×
1,720 × × × ×
1,719 × ×
1,556 × × × × ×
1,509 × ×
1,258 × × × × × ×
1,234 × × × ×
1,189 × × ×
977 × × × ×
757 × × × × ×
630 × × ×
537 × × × ×
419 × × ×
241 × × × × ×
152 × × × × × × ×
138 × × × × × ×
77 × × × ×
48 × × × × × × × ×
39 × × × × ×
19 × × × × × ×
13 × × × × × ×
10 × × × × ×
4 × × × × × × ×
4 × × × × × × × × × ×
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