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Abstract— Channel shortening is often necessary for demodu-
lation of multicarrier signals and complexity reduction of max-
imum likelihood sequence estimation (MLSE). This paper has
two parts: (i) the proposal of complexity-reduction techniques for
channel shortening designs with polynomial weighting functions,
including the minimum inter-block interference (Min-IBI) and
minimum delay spread (MDS) designs, and (ii) the evaluation
of several standard channel shorteners, including Min-IBI and
MDS, in terms of bit error rate (BER) for an OFDM system.
Previous evaluation of channel shortening designs has focused on
the wireline case, for which the performance metric (bit rate for
fixed BER) is quite different.

I. INTRODUCTION

Multicarrier modulation has been implemented in an in-
creasing number of applications in recent years, including
digital video/audio broadcast (DVB/DAB), asymmetric digital
subscriber loops (ADSL), wireless LANs (IEEE 802.11a,
IEEE 802.11g, HIPERLAN/2), power line communications
(PLC), and satellite radio. The popularity of multicarrier
systems is largely due to the fact that if the channel is shorter
than the guard time between blocks and is static over each
block, then the frequency selective channel appears as a set of
flat sub-channels, which can each be equalized by a complex
scalar.

Three guidelines dominate the selection of the block size
and the length of the guard interval: (i) the block size must be
short enough to minimize the channel’s time variations within
each symbol, (ii) the guard interval must be long enough to
exceed the delay spread of the vast majority of channels that
will be encountered, and (iii) the throughput loss due to the use
of the guard interval must be kept as small as possible. These
requirements have generally been met by current standards in
the environments for which they have hitherto been deployed.
A notable exception is ADSL, for which the channel almost
always exceeds the length of the guard inverval. In this case, a
time-domain equalizer (TEQ), also called a channel shortening
equalizer (CSE) [1], can be employed to shorten the channel
to the length of the guard interval.

The main thrust of this paper is to reduce the complexity of
the Minimum Inter-Block Interference (Min-IBI) [2] and Min-
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imum Delay Spread (MDS) [3] TEQ designs, to make them
feasible for low-cost implementation in a wireless receiver.
This is important because for many wireless channels a TEQ
is not needed, so its presence should not be obtrusive.

As current multicarrier standards are deployed in more
challenging environments, and as new standards are proposed,
it is expected that the guard interval will often be inadequate in
wireless multicarrier systems as well. The performance metric
for a broadcast wireless system is the bit error rate (BER),
yet the performance metric for ADSL is the throughput for a
fixed BER. Thus, previous TEQ performance analysis, which
has largely been performed for DSL, will not clearly indicate
the BER performance in a wireless system. For this reason, a
second aspect of this paper is a BER comparison of common
TEQ designs, including the Min-IBI and MDS designs.

Section II describes the system model and notation. Sec-
tions III and IV propose low-complexity implementations
of designs of the Min-IBI and MDS designs, respectively,
and Section V generalizes designs with arbitrary polynomial
weighting functions. Section VI provides a BER comparison
of popular TEQ designs, and Section VII concludes the paper.

II. SYSTEM MODEL

The multicarrier system model is shown in Fig. 1, and the
notation is summarized in Table I. The input stream is divided
into blocks of N bins, and each bin is viewed as a QAM
signal that will be modulated by a different carrier. An efficient
means of implementing the multicarrier modulation in discrete
time is to use an inverse fast Fourier transform (IFFT), which
mimics a bank of synchronized oscillators. The IFFT converts
each bin (which acts as one of the frequency components) into
a time-domain signal. After transmission through a frequency-
selective channel h, the receiver can use an FFT to recover
the data.

If the received data is a circular convolution of the channel
and transmitted data, then the received frequency-domain out-
put is a pointwise multiplication of the transmitted frequency-
domain data with the discrete Fourier transform (DFT) of the
channel. Since the convolution is actually linear rather than
circular, it is made to appear circular by adding a cyclic prefix
(CP, also called a guard interval) to the start of each data block.
The CP is obtained by prepending the last ν samples of each
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Fig. 1. Multicarrier system model. (I)FFT: (inverse) fast Fourier transform, P/S: parallel to serial, S/P: serial to parallel, CP: add cyclic prefix, and xCP:
remove cyclic prefix.

TABLE I

CHANNEL SHORTENING NOTATION

Notation Meaning
N FFT size
ν length of CP
∆ desired delay of effective channel
η desired centroid of effective channel
γ maximum allowed Min-IBI weight
h = [h0, · · · , hLh

] channel impulse response
w = [w0, · · · , wLw ] TEQ impulse response
c = [c0, · · · , cLc ] effective channel (c = h ? w)

L̃h = Lh + 1 channel length
L̃w = Lw + 1 TEQ length
L̃c = Lc + 1 length of the effective channel
H L̃c × L̃w channel convolution matrix
Rn L̃w × L̃w noise covariance matrix
0n×m n × m matrix of all zeros
1n×m n × m matrix of all ones
In n × n identity matrix
A

∗, A
T , A

H conjugate, transpose, and Hermitian

block to the beginning of the block. If the CP plus one is at
least as long as the channel, then the convolution appears to
be circular and the output of each subchannel (i.e. frequency
bin) is equal to the input times a scalar complex gain factor.
The signals in the bins can then be equalized by a bank of
complex gains, referred to as a frequency domain equalizer
(FEQ).

The above discussion assumes that CP length + 1 is greater
than or equal to the channel length, i.e. ν + 1 ≥ Lc + 1.
However, transmitting the cyclic prefix wastes time that could
be used to transmit data. Thus, the CP is usually set to a
reasonably small value, and a TEQ w is employed to shorten
the channel to this length if necessary. Typically, the CP length
is 1

4 to 1
16 of the block length. TEQ design methods for

wireline, point-to-point systems have been well explored [2],
[3], [4], [5], [6], [7] [8].

The TEQs that will be discussed in this paper can be
considered as special cases of the general form proposed in
[7]. Consider minimization of the cost function [7]

J = αJshort + (1 − α)Jnoise (1)

=
α

∑Lc

n=0 f(n − ∆) |c(n)|
2

+ (1 − α)
σ2

q

σ2
x∑Lc

n=0 |c(n)|
2

(2)

where σ2
q = wHRnw is the power of the filtered noise. The

function in the numerator is chosen to penalize channel taps
in undesired locations, which are then minimized with respect
to the entire channel energy (via the denominator). The α and
1 − α weights allow for variable suppression of the noise as
well. Assuming unit signal power, σ2

x = 1, eq. (2) can be
rewritten as a generalized Rayleigh quotient, leading to

wopt = arg min
w

wHAw

wHBw
, (3)

where

A = αHHQH + (1 − α)Rn, (4)

B = HHH, (5)

and where Q(∆) is a diagonal matrix with nth diagonal
element equal to f(n−∆). Designs that fit into this framework
include the maximum shortening SNR (MSSNR) design [4],
the minimum MSE (MMSE) design with a white input [5],
the Min-IBI design [2], and the MDS design [3]. Complexity
reduction of [4] and [5] was addressed in [9]; this paper ad-
dresses complexity reduction of the more complicated designs
in [2] and [3].

III. MIN-IBI IMPLEMENTATION

The Min-IBI design [2], [10] minimizes the IBI power
subject to the constraint that the desired signal energy is held
constant. We breifly review the design, then demonstrate how
to simplify its computation. As in [4], we define the Toeplitz
channel “window” matrix

Hwin(∆) =


h(∆) h(∆ − 1) · · · h(∆ − Lw)
...

. . .
...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − Lw)




(6)

and the block Toeplitz channel “wall” matrix

Hwall(∆) =
[
HT

1 ,HT
2

]T
, (7)

where the channel “head” is contained in

H1(∆) =




h(0) 0 · · · 0
...

. . .
h(∆ − 1) h(∆ − 2) · · · h(∆ − Lw − 1)


 ,

(8)



and the channel “tail” is contained in

H2(∆) =


h(∆ + ν + 1) h(∆ + ν) · · · h(∆ + ν − Lw + 1)
...

. . .
0 0 · · · h(Lh)


 .

(9)

Together, Hwin and Hwall partition the (Lc + 1)× (Lw + 1)
Toeplitz channel convolution matrix H. Thus, cwin = Hwinw

yields a length ν + 1 window of the effective channel, and
cwall = Hwallw yields the remainder of the effective channel.
Define the IBI weighting matrices as [2]

Qibi(∆) = diag[∆, · · · , 2, 1, 0, · · · , 0︸ ︷︷ ︸
ν+1

, 1, 2, · · · , Lc − ν − ∆],

Q̃ibi(∆) = diag [∆, · · · , 2, 1, 1, 2, · · · , Lc − ν − ∆] (10)

where “diag [·]” is a diagonal matrix with the elements of the
argument along the main diagonal. The Min-IBI design uses
Q to suppress the taps of the effective channel outside of the
desired window, with linearly increasing weights at further
distances from the edge of the window. Thus,

A = αHHQibiH + (1 − α)Rn (11)

= αHH
wallQ̃ibiHwall + (1 − α)Rn.

The optimization problem is then given by1 (3), (5), and
(11). The solution is the generalized eigenvector of (A,B)
corresponding to the smallest generalized eigenvalue [11].

The only differences between the MSSNR design [4] and
the Min-IBI design are that the MSSNR design sets Q̃ = I,
the identity matrix, and the MSSNR design assumes α = 1.
The MSSNR design places equal weight on all taps in the
channel tails, even though the more distant taps contribute
more to the IBI. However, with Q̃ = I, the A matrix for delay
∆ + 1 can be obtained almost entirely from the A matrix
for delay ∆ [9], which is important because computing A

is computationally expensive, i.e. O
(
L2

w(Lh − ν)
)

per delay.
The method of performing this feat for the Min-IBI matrix is
not so apparent, and this is the focus of the remainder of this
section.

Define the error matrices

Ê(∆) = diag
[
11×∆,01×ν ,−11×(Lc+1−ν−∆)

]
(12)

E(∆) = HH Ê(∆) H (13)

= HH
wall,ν(∆) H̃wall,ν(∆)

where H̃wall,ν =
[
HT

1 ,−HT
2

]T
, and the subscript ν denotes

the fact that these particular matrices only eliminate ν rows
from H rather than ν + 1. With this definition of the error
matrix E, we have

Qibi(∆ + 1) = Qibi(∆) + Ê(∆ + 1), (14)

A(∆ + 1) = A(∆) + E(∆ + 1). (15)

1Celebi’s Min-IBI design [2] uses α = 1 and B = H
H
winHwin rather

than B = H
H

H, but we prefer Tkacenko’s formulation [7].

where (15) follows from (14) by left- and right-multipliying
(14) by HH and H, respectively. The intuition behind (15)
is that A(∆) linearly weights the channel tails outside of a
length-(ν + 1) window, and A(∆) does the same thing for a
window that is shifted over by one sample. Thus, the effect of
incrementing the delay is to increment all of the weights on
the channel “head” (up to tap ∆+1) by one and to decrement
the weights on the channel “tail” (starting at tap ∆ + ν) by
one.

The objective is to form an efficient update rule for E(∆),
then use (15) to update A. Since E(∆) is very similar to
HH

wallHwall, we can use techniques similar to those used for
the MSSNR design [9], [12]. For i ≥ j, element (i, j) of E(∆)
is given by

[E(∆)](i,j) =

∆−1−i∑

l=0

h∗

l h(l+i−j) −

Lh∑

l=∆+ν−j

h∗

(l+j−i)hl. (16)

Throughout, matrix and vector indexing starts at zero, rather
than at one. By incrementing ∆,

[E(∆ + 1)](i,j) =

∆−1−(i−1)∑

l=0

h∗

l h(l+(i−1)−(j−1))

−

Lh∑

l=∆+ν−(j−1)

h∗

(l+(j−1)−(i−1))hl

= [E(∆)](i−1,j−1) . (17)

In block form,

[E(∆ + 1)](1:Lw,1:Lw) = [E(∆)](0:Lw−1,0:Lw−1) (18)

By keeping ∆ fixed and incrementing i and j instead,

[E(∆)](i+1,j+1) =
∆−1−i−1∑

l=0

h∗

l h(l+i−j) −

Lh∑

l=∆+ν−j−1

h∗

(l+j−i)hl

= [E(∆)](i,j) − h∗

(∆−1−i)h(∆−1−j)

− h∗

(∆+ν−1−i)h(∆+ν−1−j) (19)

Or, equivalently,

[E(∆)](i,j) = [E(∆)](i+1,j+1) + h∗

(∆−1−i) h(∆−1−j)

+ h∗

(∆+ν−1−i) h(∆+ν−1−j)

(20)

By using (18) we can obtain all of E(∆ + 1) except the first
row and column from E(∆). The first column of E(∆ + 1)
can be efficiently obtained via (20), and its first row can be
obtained by symmetry. Finally, E(∆min) must be computed
explicitly, but this can also be done efficiently using (20). An
outline of an efficient Min-IBI algorithm is given in Fig. 2.

Note that Qibi may assign very large weights to the extreme
edges of the effective channel impulse response. If the channel
estimate is imperfect, these large weights will amplify the
errors. The solution proposed in [2] is to limit the maximum



1) For ∆min, compute A, B (using the efficient methods of
[12]), and E (using (20)).

2) Solve Aw = λBw for the generalized eigenvector corre-
sponding to the smallest eigenvalue, as in [4].

3) For ∆ = ∆min + 1 : ∆max, do the following:
a) [E](1:Lw,1:Lw) = [E](0:Lw−1,0:Lw−1)

b) [E](0:Lw−1,0) = [E](1:Lw,1)

+ h(∆ − 1) · h(∆ − 1 − [0 : Lw − 1])∗

+ h(∆ + ν − 1) · h(∆ + ν − 1 − [0 : Lw − 1])∗

c) Compute [E](Lw,0) from (13)

d) [E](0,1:Lw) = [E]H(1:Lw,0)

e) A = A + E

f) Solve Aw = λBw for the generalized eigenvector
corresponding to the smallest eigenvalue.

g) If this delay produces a smaller λ [equal to the ratio
in (3)] than the previous delay, save w.

Fig. 2. Fast Min-IBI TEQ design algorithm.

weight value by redefinining the weighting matrix as

Qibi(∆) = min {Qibi(∆), γ}

= diag[

∆−γ+1︷ ︸︸ ︷
γ, γ, · · · , γ, γ − 1, · · · , 2, 1,

ν︷ ︸︸ ︷
0, · · · , 0,

1, 2, · · · , γ − 1, γ, γ, · · · , γ︸ ︷︷ ︸
Lc−ν−∆−γ+1

]

(21)

Then the error weighting matrix of (12) becomes

Ê(∆) =

diag
[
01×(∆−γ),11×γ ,01×ν ,−11×γ ,01×(Lc−ν−∆−γ+1)

]
.

(22)

In this case, (15) and (18) still hold, but (20) requires four
update terms rather than two.

IV. MDS IMPLEMENTATION

The MDS design [3] is similar to the Min-IBI design in that
is also uses a diagonal weighting matrix. However, the main
diagonal is quadratic rather than piecewise linear. The result
is that the delay spread of the effective channel is minimized,
though the size of the cyclic prefix is not explicitly taken into
account.

To formally describe the MDS design, first define the
weighting matrix Qmds as

Qmds(η) =
[
η2, (η − 1)2, · · · , 4, 1, 0, 1, 4, · · · , (Lc − η)2

]
.

(23)
Then the MDS design is given by (3), (4), (5), and (23). The
parameter η is the desired centroid of the effective channel. It
replaces the delay parameter ∆ as the parameter to be searched
over.

Since B is not a function of η, it only has to be computed
once. Moreover, it is Hermitian and Toeplitz, and thus is easily
computed. On the other hand, A(η) must be computed once
per value of η if a full search is made. We now propose an
efficient recursive method for computing A(η+1) from A(η).

1) For ηmin, compute A, B (exploiting the Hermitian
Toeplitz structure), and E1.

2) Solve Aw = λBw for the generalized eigenvector corre-
sponding to the smallest eigenvalue, as in [4].

3) For η = ηmin + 1 : ηmax, do the following:
a) E1 = E1 + 2B (where multiplication by 2 is

performed by a shift in binary representation)
b) A = A + E1

c) Solve Aw = λBw for the generalized eigenvector
corresponding to the smallest eigenvalue.

d) If this delay produces a smaller λ [equal to the ratio
in (3)] than the previous delay, save w.

Fig. 3. Fast MDS TEQ design algorithm.

Define the first-order error matrices

Ê1(η) = diag[(2η − 1), (2η − 3), · · · , 3, 1, (24)

− 1,−3, · · · , (−2(Lc − η) − 1)],

E1(η) = HH Ê1(η) H. (25)

The difference of two monic quadratic polynomials is a linear
polynomial, so we have

Q(η + 1) = Q(η) + Ê1(η + 1), (26)

A(η + 1) = A(η) + E1(η + 1), (27)

where (27) follows from (26) by left- and right-multiplying
by HH and H, respectively. As with the Min-IBI design, we
would like to effciently update E1 and use it to update A.
However, E1 is now linear rather than peicewise constant. The
procedure can be iterated by implicitly defining the second-
order error matrices Ê2 and E2 such that we will have

Ê1(η + 1) = Ê1(η) + Ê2(η + 1), (28)

E1(η + 1) = E1(η) + E2(η + 1). (29)

Inspection of (24) reveals that Ê2 = 2ILc+1 for all η, and thus

E2 = HH (2ILc+1)H = 2B. (30)

Note that B has already been computed, and multiplication
by two is simply a shift in binary representation. In summary,
(29) is used to update E1, then (27) is used to update A. This
procedure only requires (Lw+1)2 extra memory locations and
(Lw + 1)2 extra additions, with the savings of not having to
recompute A at all. For comparison, computing A normally
takes O

(
L2

w(Lh − ν)
)

multiply-adds for each of the Lc +
1 possible values of η. An outline of an efficient Min-IBI
algorithm is given in Fig. 3.

The MDS penalty function leading to (23) is f(n) = n2.
Tkacenko and Vaidyanathan [13] also considered a linear MDS
penalty function, f(n) = |n|. This leads to the Min-IBI design
of Section III with ν = 0. In Section VI we will refer to
the original MDS design with a quadratic penalty function as
MDS-Q, and the alternate MDS design with a linear penalty
function as MDS-L.



V. ARBITRARY POLYNOMIALS

To generalize to arbitrary polynomial weighting functions,
let the diagonal elements of Q be defined by an M th order
polynomial. The coefficients may be defined peice-wise over
the regions [0,∆−1], [∆,∆+ν], and [∆+ν+1, Lc], or a single
polynomial may be used. For example, the MSSNR TEQ uses
three zeroth order (constant) polynomials, the Min-IBI TEQ
uses three first order (linear) polynomials, and the MDS design
uses a single second order (quadratic) polynomial.

To generalize (15), (27), and (29), up to M error matrices
Em, 1 ≤ m ≤ M , may be needed for efficient updating of the
A matrix. Each error matrix will be of size (Lw+1)×(Lw+1),
but it may turn out that some error matrices are independent
of the delay and/or already computed, as with E2 in the MDS
technique described in Section IV. Even when an error matrix
has not already been computed, it may be obtained almost
entirely from the error matrix for the previous delay, as in
(18). Moreover, since A is Hermitian, so is each Em, and only
half of the coefficients must be stored. Thus, the additional
memory requirements are at most M

2 (Lw +1)(Lw +2) storage
words. The computational savings of not recomputing A are
O

(
L2

w(Lh − ν)
)

multiplications saved per delay for up to
Lc+1 delays, which more than balances out the extra memory
use for reasonably small values of M .

VI. SIMULATIONS

This section applies various channel shortening designs
to Rayleigh fading channels, and evaluates the resulting bit
error rates for a multicarrier system. The designs that will be
compared are the Min-IBI design [2], the MDS design with
quadratic [3] and linear [13] weights, the MSSNR design [4],
and the MMSE design [5]. The MDS and Min-IBI designs
use α = 1

2 in (2), thus penalizing undesired channel taps and
noise gain equally.

The parameters were chosen similar to the IEEE 802.11a
wireless LAN standard [14]: an FFT size of N = 64, a CP
of length ν = 16, and QPSK modulation on each tone. The
channel shorteners will each have 48 taps, full knowledge is
assumed regarding the channel and noise statistics, and all
TEQs will be designed using a full search over the delay ∆
or the centroid η.

The channel model consists of three parts [15]: hlocal,1,
scatterers near the transmitter; hmid, remote scatterers; and
hlocal,2, scatterers near the receiver. The channel is then

h = hlocal,1 ? hmid ? hlocal,2, (31)

where ? denotes convolution. For a wireless LAN system,
hlocal,1 and hlocal,2 can be thought of as the “room response”
at the transmitter and the reciever, and hmid can be thought
of as multipath between the two rooms. hmid consists of 32
uncorrelated Rayleigh fading taps with an exponential delay
profile, and hlocal,1 and hlocal,2 each consist of 6 uncorrelated
Rayleigh fading taps with a uniform delay profile. An example
of such a channel is depicted in Fig. 4.

Fig. 5 shows BER curves for systems employing the five
TEQ designs as well as a system without a TEQ. The data
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Fig. 4. An example of a random channel as in (31). The filled stems indicate
the window of ν + 1 consecutive taps with the largest energy. Taps outside
this window lead to inter-symbol and inter-carrier interference.
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Fig. 5. BER versus SNR for a wireless channel model.

point for each SNR value was obtained by averaging over all
carriers for 100 blocks, and then repeating for a total of 100
channel realizations. Surprisingly, none of the TEQ designs
improves the BER for SNR values below 25 dB. The MDS-
Q design actually degrades the BER values and the MDS-L
design hardly changes it. This is not unexpected, since neither
MDS design takes the length of the CP into account. The Min-
IBI design performs well, but not quite as well as the MMSE
and MSSNR designs. This is unexpected, since the Min-IBI
design maximizes the total time-domain SINR. This suggests
that the frequency-domain BER values are not directly related
to the total time-domain SINR.

In contrast, in an ADSL system, for which the throughput
(bit rate) is maximized for a fixed BER, the MDS design
frequently out-performs the MMSE and MSSNR designs [16].
Similarly, the Min-IBI design has been shown to perform well
in an ADSL system [2]. We wish to test whether it is the
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Fig. 6. BER versus SNR for wireline channel models.

channel models (models of telephone lines vs. Rayleigh fading
channels) or the performance metric (bit rate vs. BER) that
causes the MDS design to perform better in an ADSL system.
Fig. 6 shows BER curves for the 8 synthetic carrier serving
area (CSA) channels commonly used in ADSL simulations
[6], which have a small number of zeros and one or two
poles. That is, the performance metric (BER) was retained
but the channel models are now wireline rather than wireless.
The CSA channels were downsampled by 4 to yield channels
about 50 taps long, the CP length was reduced from the
downstream ADSL value of 32 to 8, and the TEQ length
was 8 taps. The FFT size was 64. The data was averaged
over 350,000 blocks per channel and then averaged over the
8 channels. For these parameters and channels, the MDS-L
design is competitive with the other designs, and the MDS-Q
design is still poor but not so astoundingly poor. These results
suggest that the discrepancy between the wireline results and
the wireless results are in part due to the channel model and
in part due to the performance metric.

VII. CONCLUSIONS

Channel shortening designs with polynomial weighting
functions (e.g. the Min-IBI and MDS designs) require
expensive matrix computations. This paper developed
efficient recursive techniques for computing these matrices.
This greatly reduced the complexity at the cost of at most
O

(
M
2 L2

w

)
extra memory words, where M is the polynomial

order and Lw is the order of the channel shortening filter.
The analysis was performed for the specific cases of Min-IBI
and MDS designs, then generalized.

The Min-IBI and MDS designs were compared in terms
of bit error rate to other channel shortening designs, in the
context of a wireless multicarrier system. The results suggest
that the MDS design is not well-suited to channel shortening
for wireless systems, although it has been shown to perform
well in an ADSL system. The Matlab code for producing the
figures in this paper is available at [17].
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