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INTRODUCTION

The Community Seismic Network (CSN) is currently a 500-
element strong-motion network located in the Los Angeles
area of California (see Fig. 1). The sensors in the network are
low-cost microelectromechanical (MEM) accelerometers that
are capable of recording on scale up to accelerations of �2g.
The primary product of the network is a set of measurements
of ground shaking in the seconds following a major earthquake.
An example of this is shown in Figure 2. The shaking infor-
mation will be contributed to U.S. Geological Survey products
such as ShakeMap (Wald et al., 1999) and ShakeCast (Wald
et al., 2006), with the goal of providing first responders a proxy
for damage that can guide efforts immediately following the
event. The basic premise is the strong ground-motion shaking
varies on a subkilometer scale, which will require a dense
network to meaningfully measure the shaking. Evidence for
this comes from earthquakes recorded by dense oil company
surveys in the Los Angeles area (Clayton et al., 2011).

The CSN is presently concentrated in the northern Los
Angeles region, but the plan is to expand the network over
the entire populated regions of the Los Angeles basin, at which
point it will become a network of thousands of sensors. To
handle this size of network, we have developed a cloud-based
processing system that dynamically expands in processing
power during an earthquake to handle the increased load. We
also use a distributed system in which single-board computers
(SBCs) attached to the sensor carry out the basic detection and
feature extraction, and the results are sent immediately to the
cloud. This eliminates delays due to transport of the waveform
data, and increases the likelihood that the event detection
information will be sent to the region before the potential
collapse of the communication infrastructure. The use of
the cloud is also important for robustness of the system in that
the central processing system is outside the reporting area and
is distributed across multiple locations.

To expand the system across the entire Los Angeles basin,
we have developed a plan to deploy sensors in schools. As a first
step, we have started to instrument the 1200 campuses of the
Los Angeles Unified School District (LAUSD) (see Fig. 3). We
have already deployed sensors at 100 of these campuses as a test
of the plan, and these sensors have been running successfully
for several months. The next step will be to instrument the
campuses of the other school districts in the Los Angeles basin,

which, when complete, will provide an excellent backbone for
the network. Private volunteers will then deploy sensors in the
network, resulting in increased density, as has already been
achieved in Pasadena.

CSN started five years ago and is now developed into a
functioning seismic network. The original system was de-
scribed in Clayton et al. (2011), and here we describe the
evolution of that system. The plan is to integrate the operation
of the CSN with the Southern California Seismic Network
(SCSN), which is the authoritative network for reporting earth-
quakes in southern California. The SCSNmaintains an array of
high-quality broadband and strong-motion sensors in southern
California, with an average station spacing of 10 km in the Los
Angeles area. The CSN event detection and attribute software
is being modified to conform to the method used by SCSN, so
that the pick and amplitude information can be fed directly
into that system. The CSN is also instrumenting buildings with
the goal of providing detailed measurements of the structure
before, during, and after an earthquake, so as to monitor the
state of health of the structure.

LOW-COST SENSORS SYSTEMS

The use of low-cost sensors as shown in Figure 4 is key to
allowing the dense network to be built. CSN is currently using
the Phidget 1041, which is a 3-axis MEM accelerometer that
has been modified by the manufacturer to have an on-scale
range of�2g . It has a sensitivity of approximately 70 μg, which
means it can detect a magnitude 3 event anywhere in the Los
Angeles basin. The sensitivity is not as good as a standard seis-
mometer but does provide reasonable waveforms and picks for
close events as low as magnitude 2–3, and excellent recordings
for larger events.

The performance of this sensor and other Class-C devices
was recently compared in a study by Evans et al. (2014), and
the Phidget sensor was found to be tied for top of this class. In
Figure 5, a side-by-side comparison of the Phidget and a Class-
A accelerometer (an EpiSensor) is shown for the La Habra
earthquake (29 March 2014 Mw 5.1) recorded in the PASC
vault, which is at a distance of 30 km from the epicenter. The
two sets of recordings compare very well, both in terms of
amplitude and waveform.

The sensor connects to the host computer via a USB port.
In the original design of our sensor package, the sensor was
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connected directly to a general-purpose host computer (such as
aWindows or Mac desktop), which ran the data handling and
communication software. However, the change in computing
paradigm away from 24/7 desk-side computers toward laptops
and tablets has made this model less useful. Instead, we now use
a small-dedicated SBC for each sensor. We use a SheevaPlug
SBC, which has an ARM-9 1-GHz processor and 512 Mbytes
of memory. We have found that this device is reliable and has
sufficient processing power to analyze the sensor data in real
time. The entire system is housed in a plastic box (see Fig. 5),

which also contains a small battery backup, which allows the
system to continue recording a major event should power be
lost. The data are written to nonvolatile memory and the sys-
tem is able to store approximately 4 days of data. Some of the
sensors also have SD cards that provide much longer data
backup.

The Phidget accelerometer samples data at 250 samples
per second and our software decimates the data to 50 samples
per second and stores it. The sensor client software periodically
polls a network time protocol (NTP) server to maintain time

▴ Figure 1. Map of networks in the Pasadena area. Red dots are Community Seismic Network (CSN) stations, dark blue are Netquakes
stations, light blue are strong-motion stations, and green are Southern California Seismic Network (SCSN) stations. The large red dots with
numbers denote buildings with multiple CSN sensors. The average nearest neighbor spacing of the CSN sensors is 0.8 km. The spacing of
all other strong-motion networks in this area is 4 km. The box denotes the region covered in Figure 2.
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synchronization that is accurate to within a few milliseconds.
This clock is used to insert timestamps into the data stream
and to correct slight irregularities in the digitization rate.
Although NTP time is not as accurate as Global Positioning
System time, it is universally available, even in buildings and
other closed spaces where the bulk of our sensors are deployed.

The client has two different modes for sending data. In the
first mode, event-driven data such as pick times and amplitudes
are sent as soon as sufficient signal has been received to make
the measurements. Currently, sufficient signal is set at 1 s, with
updates following until the signal has diminished. The length
of the window will trade off with the expected uptime of the
Internet during a major earthquake. This mode avoids wave-
form transport latency that can occur if the picks are made at a
central site. In the second mode, the waveform data for small
chunks of time (10 min) is sent as soon as it has been accu-
mulated. To reduce bandwidth, this step can be omitted or
limited to only windows in which unusually large accelerations
have been detected, but so far bandwidth has not been an issue
and consequently all stations currently send all of the wave-
form data.

In addition to data communication, the client sends regu-
lar state-of-health messages and checks with the cloud for soft-
ware and parameter updates. Updates consist of either simple
parameter changes or new versions of the client code itself. In
the latter case, the client downloads the new version of the
code, and after checking that the new code has a valid crypto-
graphic signature, installs the new version and restarts. For
security, all communications between the sensor client and
the cloud are initiated by the client itself. We have also found
it useful to have the client open an Secure Shell connection to a
fixed computer for maintenance purposes.

The current client software was originally written in C for
efficiency on home computers. Now that most of the sensors
(and all future) are stand-alone, the software is being changed
to Python to make changes easier and facilitate the develop-
ment of more sophisticated algorithms.

CLOUD AND DISTRIBUTED COMPUTING

The computational model that is used by CSN is one of dis-
tributed parameter estimation followed by an analysis in the
cloud. The measurement of parameters such as pick times,
maximum amplitude, apparent frequency, and signal-to-noise
levels are made by the sensor systems themselves in near-real
time. This information and updates to it are sent directly to the
CSN system that is implemented in the Google App Engine
cloud. This means that this critical data are sent out of the
region before the seismic events have propagated over the
Los Angeles basin. This is more robust than sending the data
to a site within the reporting region. This aspect of using the
cloud will become increasingly important as traditional com-
munication modes (microwave, cellular network, radio) move
to the Internet for at least part of their path. The waveform
data are sent regularly in small chunks (currently 10 min in
length) to the cloud or to a traditional archiving facility.

The detection and ground-motion parameter extraction
by the sensor system has a couple of advantages. First, the
latency caused by network transport of waveform data is
avoided—that is, the parameters are sent as soon as they are
determined. Second, the calculations can use the full resolution
of the data (the MEM devices are often sampled at higher rates
than the waveforms are recorded at). With the sensor currently
used in the CSN system the MEM device is sampled at

▴ Figure 2. Peak ground acceleration: The peak ground acceleration for the La Habra earthquake (left panel) and the Castaic earthquake
(right panel). The La Habra earthquake (29 March 2014) was magnitude 5.1 at a distance of 30 km from the center of the plot. The Castaic
event (4 January 2015) was magnitude 4.1 at a distance of 70 km.
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250 samples per second, but the waveforms are only sent at
50 samples per second. The sensors can also be operated in a
couple of different modes to reduce the transmitted waveform
data volume—they can be configured to only send waveform
data when they are triggered, or they can send data only when
requested. This flexibility also allows us to get limited windows
of high-sample-rate data if needed. The send-on-request mode

is the procedure we use with cell-phone sensors (described in a
later section of this article).

The Cloud software (using Google’s App Engine) repre-
sents several person years of design and programming effort.
The system is highly scalable and robust, and has been shown
to cope with very high message rates from hundreds of sensors.
The current version running in production uses the Python

▴ Figure 3. Expansion plans: Over the next 3 years, we plan to expand the network into Los Angeles by placing sensors at the 1200
campuses of the Los Angeles Unified School District (LAUSD), shown by the red dots. The circles show the 100 campuses we have already
done. The yellow triangles show the SCSN network. The green dots are the current extent of the CSN.
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▴ Figure 4. Sensor package: The box contains a Phidget Class-C microelectromechanical accelerometer, and a single-board ARM
computer with 512 Mbytes of memory, and a battery backup. The package connects to the Internet by wire and is powered by line power.
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PASC-Z 

PASC-N 

PASC-E 

▴ Figure 5. Comparison of Phidget (Class-C) accelerometer with an EpiSensor (Class-A) accelerometer. The recordings of theMw 5.1 La
Habra earthquake are made on the pier of the Pasadena station PASC. The comparison shows the recordings are very similar in both
amplitude and waveform.
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binding to App Engine; a previous version used the Java bind-
ing. Experience with the former prompted a complete rewrite
of the code in Python to solve several technical issues that were
experienced. Most notable among these was significant latency
in creating new Java Virtual Machines to handle the increasing
bursty loads that occurred during a significant seismic event.
Under normal, quiet conditions, the App Engine processes
around 20 client requests per second using around eight virtual
machine instances (two of which are resident, i.e., always avail-
able). During significant events, the request rate from clients
has been seen to climb to several thousand per second, for
which tens of instances are automatically provisioned to serve
the load. With the Python binding, typical request latency is
subsecond. An example of the dynamic performance of the
cloud-computing environment is shown in Figure 6. The Py-
thon binding also facilitates implementing the client on other
SBCs such as the Raspberry PI.

The CSN Cloud architecture supports clients that initially
connect over the Internet, and Register, a process that catalogs
details about the client, such as its location and types of at-
tached sensors, and creates a secure token that is subsequently
exchanged between the client and the Cloud to validate mes-
sages. All Cloud–client communication is effected by the use of
standard hypertext transfer protocol exchanges on port 80, and

all communication is initiated by the client as already described
(there is no push from the Cloud to the clients). The HTTP
protocol avoids problems with firewalls, and the no-push adds
some security to the system (an important issue for all systems
that use open networks such as the Internet). The primary con-
cern here is not data theft, but rather deliberate interventions
that spoof an earthquake or disable the system. Once registered,
clients send periodic heartbeat messages that indicate to the
cloud system that they are alive and operating correctly. These
messages may also contain offers of waveform data from the
client, to which the Cloud may respond with a URL for the
client to upload that data. In the case where the client makes
a detection, it sends a pick message to the Cloud containing
information such as the pick’s time and acceleration amplitudes.
These messages are aggregated by the Cloud software, which em-
ploys geospatial algorithms to associate the picks, and determine
whether an event is occurring, its location, and decide if an alert
should be generated (Liu, 2013). A more complete description
of the communication and the use of the Cloud is given in Ol-
son (2014).

The Cloud software provides a collection of web-based and
remote access tools that allow users and administrators to
inspect and change parts of the system. For examples, there is
a client editor that the owner of a client can use to edit details

▴ Figure 6. Dynamic computational resources of the cloud. The blue curve shows the processing load as measured by the number of
picks per second for a large teleseismic event (Sea of Okhotsk, 14 August 2012). The red curve shows the number of processors used in
analyzing the event, which varies from 5 at the onset to 45 at the peak. The processor curve lags the load curve by 7 s due to the latency of
starting processes. The duration of the enhanced load due to the event is over in about 1 min.
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of the client, there is an administrator map that shows a global
view of the entire system, and there are access points that allow
administrators to download from the Cloud, and archive, sensor
data readings from all clients. In addition, the software supports
namespaces, which makes deploying new networks easy. For ex-
ample, it supports both the southern California-based CSN sen-
sors in one namespace, as well as a set of sensors in Gandhinagar,
India, in another namespace, as well as other hazard networks.

It should be emphasized that the Cloud architecture was
designed as a general-purpose system, and not specific to any
particular type of sensor or client. It could be used equally well
for many other types of geospatial event detection, taking data
from many other types of sensors, such as environmental de-
tectors (temperature, pressure, various gases and particulate
matter, and radiation).

To test whether the cloud system can handle a much larger
number of sensors, we included all of the SCSN sensors (an
increase of 400 stations) by placing a computer on the wave-
bus of SCSN and porting the CSN client code to it. The CSN

was able to handle this increased traffic easily during earth-
quakes that shook the entire Los Angeles area in 2014. The
test was also useful to demonstrate a possible migration path
for traditional networks to the cloud.

The Advanced National Seismic Network ShakeCast sys-
tem has recently been ported to the cloud (Lin et al., 2014) for
some of the same reasons described above. This means that it
may be possible for the networks and the product delivery sys-
tem to communicate directly in the cloud without a traditional
computer system involved.

INTEGRATED FREE-FIELD AND BUILDING
MEASUREMENTS

We have placed a number of sensor packages in several build-
ings in order to make detailed observations of the building
motions during an earthquake. We instrumented a 15-story
building in downtown Los Angeles with 30 sensors, a 52-story
building with 50 sensors, and several other buildings with 2–10

▴ Figure 7. Earthquake and ambient noise correlations in a 52-story building. (a) The S wave from a M 4.1 earthquake, 70 km from the
building. (b) The results for correlating ambient noise using the lowest floor station as a reference. Both show the shear-wave travel at
approximately 200 m=s, with reflections from the top and bottom of the building. Panel (a) also shows additional reflections and a high-
speed wave that is likely traveling in the steel frame elements of the building.
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sensors. We are in the process of installing an additional 50
sensors in the 52-story building to measure torsional deforma-
tion. The density of this instrumentation will be an important
source of data for evaluating whether earthquake damage can
be detected in structures using sensors. Our standalone sensor
packages (orange boxes) are eminently suitable for this purpose
because companies are generally reluctant to install third-party
software on their own computers.

An example of recordings made using the CSN array in a
building is shown in Figure 7. Traveling waves from a 4.1
earthquake some 70 km away can be seen propagating up and
down the structure. In addition, waves generated by correlating
ambient noise are also shown propagating in the structure
(Prieto et al., 2010). This example demonstrates that our
NTP-based timing mechanism is sufficiently accurate. Figure 8
shows the spectra recorded from a 4.1 earthquake at a distance
of 70 km, and demonstrates that the sensors are able to resolve
several vibrational modes of the building.

The dense measurements that we make in buildings are
unusual in this field. Although there are some buildings that
have reasonably dense sensor arrays (Factor Building at Uni-
versity of California Los Angeles [Kohler et al., 2007]; Atwood
Building in Anchorage [Celebi, 2006]), the three-component
sensors are not located on every floor. We believe that the sen-
sor density we have deployed will be useful in determining the
state of health of a building immediately following an earth-
quake, and for making an assessment of the overall damage to
the building stock of Los Angeles following an earthquake
(Kohler et al., 2013, 2014). We also believe that there is merit
in having a seamless integration of building and free-field sites.
This will be the case in CSN as the building and free-field

sensors are part of the same network and are recorded and
archived in the same fashion.

MACHINE LEARNING

One of the goals of CSN was to employ some of the ideas and
techniques of machine learning to the maintenance and oper-
ation of the network. One idea is to weight the quality of a
particular sensor measurement by the history of measurements
the sensor has produced. At the moment, we are only using
simple versions of this technique to detect when sensors are
reporting an exceptional number of picks. This is usually
caused by the poor placement of the sensor, or a faulty con-
nection between the sensor and computer. In such cases, the
sensor is down weighted and marked for repair. An example of
one of the monitoring displays is shown in Figure 9. Our plan
is to further develop this to allow the sensors to be tuned to the
environment in which they are placed, for example, by using
sensor-specific thresholds. Other factors such as recent earth-
quake history and event location could eventually play a role in
the machine learning. The hope is that machine-learning tech-
niques will allow the network to automatically take account of
underperforming sensors and changing earthquake activity.

INCLUDING OTHER SENSORS AND NETWORKS

As already noted, the interface between the sensor package and
cloud is sufficiently general to allow other devices to be con-
nected into the system. The accelerometers in cell phones are
such an example and are discussed in the section below. Other
types of seismic sensors can also be included in the system. If
they are capable of handling the communications protocol we
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▴ Figure 8. Spectra from a 52-story building from the Castaic
earthquake. Shown are the floor-by-floor amplitude spectra of
the east component of acceleration due to the 4.1 Castaic earth-
quake (see Fig. 7a for the time-domain plot). Twelve eigenmodes
of the building are evident.

▴ Figure 9. Display of pick counts for all stations for a 24-hr
period. The display shows the level and activity on the network,
with darker shading indicating a high number of picks per minute.
The horizontal lines indicate malfunctioning sensor systems (usu-
ally an intermittent USB connection). The wind event is a 15-min
burst of wind that affected the high-rise buildings in downtown
Los Angeles. The plot shows the entire network (> 500 stations)
and the 24 hr beginning at midnight 25 April 2015.
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have defined then they can be included directly, and if not, our
system could likely be easily adapted to accommodate them.

We have also tested multisensor packages that in addition
to an accelerometer contain environmental sensors for temper-
ature, pressure, various gases, and radiation. The same commu-
nication protocol works and nonseismic data can be simply
sent to the same or a different cloud. It is thought that sensors
packaged in this fashion would be appealing to private house-
holds. Postearthquake measurements of gas concentrations and
temperature carried out by a single sensor platform can help
detect multiple hazards (Mou, 2013).

CELL PHONES

From the outset of the CSN project there has been the in-
triguing idea that the accelerometers in a cell phone could also
be used to provide a dense map of acceleration. They present
challenges in that the sensors in even the most sophisticated
cell phones is at least four times less sensitive that the stationary
sensors used in CSN, and they are routinely subject to
anthropological motions (e.g., being dropped) that are stronger
than the signal we wish them to measure. They are also con-
stantly moving around, which makes static station databases of
little use. Nevertheless, they remain an attractive potential re-
source because there are millions of these phones in constant
use in Los Angeles. We have investigated the use of cell phones
(Faulkner, 2014; Faulkner et al., 2014) and have designed the
CSN system to accommodate them. We have produced an app
for Android phones (CSN-Droid) that separates anthropologic
motion from earthquake motion and sends the extracted in-
formation to the CSN cloud. At the moment we are not using
the data in the analysis, but the potential remains a possibility.

MICROZONATION MAPS

The density of stations is particularly well suited to producing
microzonation maps from smaller events in similar fashion as
shown in Figure 2. With a dense array this can be done on a
spatial scale that can capture the subkilometer variations that
are evident in Long Beach (Clayton et al., 2011). The simplest
way to create a microzonation map would be to average the
peak acceleration maps that are produced for a number of local
events, after they have been corrected for geometric spreading
and source mechanism (where possible).

LOCAL EARLY WARNING

We have also been investigating the use of CSN in providing
local earthquake early warning (EEW). Local warning differs
from network warning, which is the methodology being
adopted for the major EEW effort in the western United States,
in that it is for users who are within the unable-to-warn zone of
network warning. This zone usually extends 5–10 km away
from the epicenter and exists primarily due to the delay
imposed by the propagation of P waves to a minimum set of
stations. With local warning, a notice is given if the acceler-

ation exceeds a trigger level at three nearby stations. Only a
maximum of a few seconds’ warning is possible with this
method, and hence its application will be restricted to auto-
matic systems that can react that quickly. The advantage CSN
has in this possible product is the density of stations means
there are very likely to be three stations in close proximity for
the warning to be issued in a timely fashion.

FOREIGN DEPLOYMENTS

There has also been interest in the CSN technology for net-
works in foreign countries, particularly ones that cannot afford
a conventional seismic network. The low-cost sensors along
with the cloud-based central processing make this system eco-
nomical and simple to set up. As far as the cloud component of
the system is concerned, a new network simply becomes a new
namespace in the existing system. We are running such a
system in conjunction with IIT Gandinagar in India. The con-
cept could move to another level with an array of clouds to
integrate several arrays such as separate regional networks or
separate building deployments, but we have not tried this.

ARRAY OF ARRAYS

One methodology that has emerged in the past few years is the
use of small very dense arrays to image phenomena such as
microseismicity, tremor, and the dynamics of earthquake rup-
ture. The dense arrays allow the use of advanced beam-forming
methods to focus on particular directions, frequencies, and
velocities, and an array of such arrays allows the images to be
mapped on rupture surfaces. It has been used successfully to
map tremor in subduction systems, and is proposed as a
method to study rupture physics on strike-slip faults. The CSN
sensors are a good candidate for building such arrays because of
their low cost and ease of deployment. We have almost com-
pleted such an array on the Jet Propulsion Laboratory (JPL)
campus (near Caltech) in which 50 sensors will be placed in
the free-field locations and 50 in buildings, all in an area that is
½ km square. We are looking for two more similar sites that
will allow the arrays to focus on targets such as the San Andreas
and other faults. In the case of the JPL array, it is instrumented
at a density that we hope will be equaled in the entire
Los Angeles basin in the future, and hence can be used to judge
the benefits of this miniature city.
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