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Abstract
Temporal events in the real world often exhibit
reinforcing dynamics, where earlier events
trigger follow-up activity in the near future.
A canonical example of modeling such dy-
namics is the Hawkes process (HP). However,
previous HP models do not capture the rich
dynamics of real-world activity—which can
be driven by multiple latent triggering factors
shared by past and future events, with the la-
tent features themselves exhibiting temporal
dependency structures. For instance, rather
than view a new document just as a response to
other documents in the recent past, it is impor-
tant to account for the factor-structure under-
lying all previous documents. This structure
itself is not fixed, with the influence of earlier
documents decaying with time. To this end,
we propose a novel Bayesian nonparametric
stochastic point process model, the Indian Buf-
fet Hawkes Processes (IBHP), to learn multiple
latent triggering factors underlying streaming
document/message data. The IBP facilitates
the inclusion of multiple triggering factors in
the HP, and the HP allows for modeling latent
factor evolution in the IBP. We develop a learn-
ing algorithm for the IBHP based on Sequen-
tial Monte Carlo and demonstrate the effective-
ness of the model. In both synthetic and real
data experiments, our model achieves equiv-
alent or higher likelihood and provides inter-
pretable topics and shows their dynamics.

1 INTRODUCTION
Temporal activity in real applications exhibit rich dy-
namics, with past events influencing the future through
multiple structured latent factors. For example, the ideas
in a research paper may be derived from multiple exist-
ing works in the literature, each of which contributes one

or more factors, with only their combination serving to
trigger the event. Similarly, a conversation among indi-
viduals may heat up or cool down due to the topics being
discussed (e.g., politics vs. weather). Communications
via email or on social media platforms like Facebook or
Twitter may exhibit analogous dynamics. In addition,
individual checkin data on platforms like Foursquare or
Yelp may depend on combinations of characteristics and
activities from previous visited locations. Finally in bi-
ological data, pathways are often only activated when a
set of genes is expressed together.

Latent feature models (both parametric and nonparamet-
ric) have found wide application in settings where ex-
changeability holds. A canonical model from Bayesian
nonparametrics is the Indian Buffet process (IBP). While
there has been some work towards relaxing exchange-
ability assumptions to allow for temporal dynamics,
modeling the full richness of interactions remains an
open challenge. Our main contribution in this work is a
framework that facilitates the modeling of temporal dy-
namics through a combination of ideas from the IBP with
those of Hawkes processes (HP).

In recent years, Hawkes processes [11, 10, 12, 15, 22]
have become a popular modeling choice to capture such
temporal dynamics [4, 18, 14, 19, 13, 7, 17, 8, 16, 21].
As we outline later, the standard Hawkes process has
a number of limitations centering around the fact that
each event is triggered by a single observation instead
of possibly multiple events and/or factors. To this end,
we propose a novel Bayesian nonparametric stochastic
point process model, the Indian Buffet Hawkes Processes
(IBHP), that synergizes ideas between the IBP and the
HP. The contributions of our work include:

1. The use of the IBP to add multiple triggering factors
to the HP, which helps to better model dynamics and
improves interpretation.

2. Embedding the temporal information from the HP
into the IBP to drive the latent factor estimation,



which expands its capability to model factor evo-
lution over time.

3. Developing an efficient and scalable learning al-
gorithm for the IBHP model, based on Sequential
Monte Carlo (SMC).

4. Demonstrating the effectiveness of the IBHP on
both synthetic and four real-world datasets, where
we also show how our framework enables the con-
struction of more flexible (e.g., multi-event) trigger-
ing rules.

2 PRELIMINARIES
Formally, we are given a sequence of N observations
yn = {tn, Tn}, n = 1, . . . , N . For the nth event, tn
is the time of occurrence, and Tn represents observed
attributes attached to it. Since our focus is mostly on
settings where events are messages, we will refer to at-
tributes as text. We will model the event times tn and
event text Tn as realizations of a process whose states
depend on a hidden state variable zn, summarizing the
past observations y1:(n−1). Before outlining our model,
we first review existing work related to our problem.

2.1 HAWKES PROCESSES (HP)
Hawkes processes (HP) [11, 10, 12, 15, 22] are self-
exciting point processes [5] where earlier events have a
time-decaying influence on future events. Parametrized
by a base rate γ and a non-negative triggering kernel κ(·)
(the latter models the contribution of each past observa-
tion), the rate function at time t can be written as:

λ(t) = γ +

ˆ t

0

κ(t− s) dN(s) (1)

where N(s) is the number of observations within [0, s).
Given the rate function λ(t) and observation history
H(0,T ] = (t1, · · · , tn), the likelihood function of a
Hawkes process is:

L(H) = exp {−Λ(0, T )}
n∏
i=1

λ(ti) (2)

where Λ(0, T ) =
´ T
0
λ(t) d t is the cumulative rate. The

events in a standard HP are triggered by a single event at
a time (see Figure 1).

2.2 INDIAN BUFFET PROCESSES (IBP)
The Indian Buffet Process (IBP) [9] is a Bayesian non-
parametric prior over an infinite dimensional binary ma-
trix whose columns represent exchangeable factors un-
derlying observations. Suppose there are N customers
(observations) arriving sequentially in a restaurant with
infinite number of dishes (factors). Each customer is as-
signed dishes as follows:

• The first customer comes in and helps herself to
Poisson(α) dishes.
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(a) A Hawkes process with single triggers.
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(b) A Hawkes process with multiple triggers.

Figure 1: HP with single and multiple triggers. In (a), #3
is triggered by a single event #1, while in (b) it is trig-
gered by #1 and #2. The triggering kernels can be quite
different depending on how the triggering has happened.
HP with single triggers would fail to model influences
from both #1 and #2 at the same time, as shown in (b).

• When the nth customer arrives, they independently
choose each existing dish with probability mk/n,
where mk is the number of customers that have al-
ready sampled dish k (the popularity of the dish).
• In addition, they sample Poisson(α/n) new dishes.

The IBP has several distinctive features: 1) Each ob-
servation can have multiple factors; 2) The number of
factors grows non-parametrically depending on the size
of the dataset; 3) The probability of adding new fac-
tors decreases – since the number of new factors follows
Poisson(α/n) which decreases as n increases; 4) The
rows are exchangeable, with the row sums distributed
Poisson(α).

We write the binary feature matrix as C. The conditional
probability that element cik = 1 is given by

P (cik = 1|c−i,k) =
m−ik
N

(3)

where c−ik is the kth column without considering the ith

observation, and m−ik is the sum of c−ik. We need only
condition on c−ik rather than including other columns
because the columns of the matrix are generated inde-
pendently under this prior. In a Bayesian framework with
observations X, the posterior can be written as:

P (cik = 1|C−ik,X) ∝ P (X|C)P (cik = 1|c−ik) (4)

where P (X|C) is the data likelihood.



3 MODEL

Our proposed model, the IBHP, can be viewed as a non-
parametric latent state space model, where past events
yn = {tn, Tn} influence future observations through
latent state variables zn = {Kn,Vn} (described be-
low). The zn’s summarize information about the past,
and themselves evolve following dynamics based on the
IBP. Algorithmically, the generative process (see Algo-
rithm 1 for the pseudocode and Figure 2 for an illustrative
example) can be described in the following three steps.

3.1 INITIALIZATION (M,Π,Θ)

To setup the model, we first specify a triplet M =
{S, D, L}, with S representing the vocabulary of all
possible words in the observations, D representing the
length of each document (for simplicity we assume all
are equal), and L representing the number of basis ker-
nels. We also require a pair of hyper parameters Π =
{w0,v0} for the priors of the kernel and word distribu-
tion weights.

Each latent factor influences the content of future events
through a set of dictionary weights, which are used to
generate text. We write vk for the vector of weights
over the words in the vocabulary for the kth factor – a
length |S| vector which sums to one. The weights vk are
sampled from a Dirichlet prior (with hyper parameter v0)
whenever a new factor is created (see later). Each latent
factor also influences the timing of future events through
a triggering kernel, and we assume each kernel is a linear
combination of a set of L bases. Throughout, we assume
L exponential basis kernels:

γl(δ) = βle
− δ
τl , l = 1, . . . , L. (5)

This requires a set of parameters {(βl, τl)}, each of
which captures a distinct type of excitation pattern. A
binary matrix C indicates which factors are associated
with each observation. The kth factor kernel for the ith

observation κik is a weighted sum of the L basis kernels:

κik(δ|wk, cik) =

{∑L
l=1 wkl · γl(δ), if cik = 1

0, if cik = 0
(6)

The weights wkl, loadings of the basis kernels for the
factors, are sampled from a Dirichlet prior (with hyper
parameter w0) whenever a new factor is created (see
later). Thus, immediately after an event (when δ = 0),
there is a jump in the event rate with amplitude equal to
κik = wᵀ

kβ. Observations with the same factor share
the factor kernel. We write the model parameters as
Θ = {λ0, {βl}, {τl}}, where λ0 is a base-rate at which
events happen spontaneously.

3.2 THE FIRST EVENT (M,Θ→ z1 → y1)
To generate the observation y1 = {t1, T1}, we first sam-
ple the auxiliary variables c1 and w1:K . The factor la-
bel variable c1 is a binary vector of length K, where
K ∼ Poisson(λ0) is the number of existing factors.
cnk = 1 implies that the nth observation has a label
of factor k. Set c1k = 1 for k = 1, . . . ,K. The ker-
nel weights wk is a vector of weights for the kth fac-
tor to load the basis kernels. Each wk is of length L
(the number of basis kernels), and sums to one. Sample
wk ∼ Dir(w|w0) for k = 1, . . . ,K.

Given the values of c1 and w1:K , we can sample the
associated latent variables z1 = {K1,V1}. Define the
1×K IBHP matrix K1, whose rows are κ1, with values
wᵀ
kβ (see Equation 6) – since δ = 0. For n = 1, sam-

ple vk ∼ Dir(v|v0) for k = 1, . . . ,K, and define the
|S|×K matrix V1, whose columns are vk. Conditioned
on these state variables z1, we sample the first observa-
tion y1 = {t1, T1}: The time stamp t1 is sampled from a
Poisson process with rate λ0; and the text T1 is sampled
from Multi(D,

∑K
k=1 vk/K), where the weight parame-

ter is the averaged factor weight of the first observation.

3.3 FOLLOW-UP EVENTS (zn−1 → zn → yn)
For a new event, we first decide its associated factors, and
sample its time stamp afterwards. Conditioning on zn−1,
suppose there are K existing factors, each of which can
be represented by an independent Hawkes process. At
time tn−1, the factor rate for the kth factor is:

λk(tn−1) =

n−1∑
i=1

κik(tn−1 − ti)
‖κi‖0

(7)

As with the generation of the initial event, follow-up
events (n > 1) are also generated by two steps. First,
we sample the auxiliary variables cn and set w and v
for any newly generated factors. The firstK components
of the factor label variable cn is sampled independently
from a Bernoulli distribution with probability parameter

pk =
λk(tn−1)

λ0/K + λk(tn−1)
(8)

Meanwhile, K+ new factors are created by setting
cnk′ = 1, for k′ = K + {1, . . . ,K+}, where

K+ ∼ Poisson

(
λ0

λ0 +
∑K
k=1 λk(tn−1)

)
(9)

If κ are binary, which is the case in IBP, and λ0 = 1,
then the mean of K+ becomes 1/n and pk = (n− 1)/n,
which reduces to the case of IBP with parameter 1:

K∑
k=1

n−1∑
i=1

κik(tn−1 − ti)
‖κi‖0

=

n−1∑
i=1

‖κi‖0
‖κi‖0

= n− 1 (10)



For each new factor k′, we draw from the corresponding
priors for wk′ ∼ Dir(w|w0) and vk′ ∼ Dir(v|v0).

Next, we decide the hidden state variables zn =
{Kn,Vn}. Vn is constructed by simply adding columns
for the vk′ for newly sampled factors to Vn−1. Kn is
constructed by first updating Kn−1 with respect to the
new lag time δ = tn− ti. This step is done symbolically,
since we do not know tn yet. Then we add the rows κik′
for the newly sampled event based on Equation 6 with
δ = 0. We emphasize that Kn(tn) : R+ → Rn×(K+K′)

at this moment is a symbolic function of tn.

Conditioned on these state variables zn, we sample the
nth observation yn = {tn, Tn}: The time stamp tn, de-
pending on its related factors, is sampled from a Poisson
process with rate

λ(tn) =
∑
κnk 6=0

λk(tn) =
∑
κnk 6=0

n∑
i=1

κik(tn − ti)
‖κi‖0

(11)

The overall rate of IBHP, however, includes the base rate
and other factors too:

λ̄(tn) = λ0 + λ(tn) +
∑
κnk=0

λk(tn) (12)

Now, at this point, since tn is known, we can proceed to
compute the actual values of Kn. Finally, we sample the
dictionary text Tn from Multi(D,

∑
κnk 6=0 vk/‖κn‖0),

where the weight parameter is the averaged of all ‖κn‖0
factor weights associated with the nth observation.

4 POSTERIOR INFERENCE
4.1 SMC FOR IBHP
Sequential Monte Carlo [6] (SMC) methods are powerful
and flexible tools for posterior inference in time-series
models such as ours. Here, we adapt particle filtering
methods to our set up, allowing us to scale our model to
large-data regimes. The idea here is to represent the state
of the system at any time (from 1 to N ) with a set of F
particles. We build on ideas from [20], extending them
to our more structured setting.

The idea at a high level is to propagate each particle for-
ward by one time step according to the prior, and then
reweight each particle by how “compatible” it is with
the observation at that time. If the effective number of
particles is small (according to their weights), then the
algorithm resamples the particles with replacement. Our
algorithm to learn the IBHP factors and model parame-
ters can be described as follows (see Algorithm 2 for the
pseudocode):

A. Initialize Particle Weights. The particle weights are
initialized uniformly: uf1 = 1

F , for f = 1, . . . , F . Then
for each time step i = [1 . . . N ], we do the following:

1. Initialization:
- Model specifications:M = {L,D,S};
- Model hyper parameters: Π = {w0,v0};
- Model parameters: Θ = {λ0, {βl, τl}};

2. Generate the First Event:
- Set c1,1:K = 1, where K ∼ Poisson(α0);
- Sample wk ∼ Dir(w|w0) and set κ1;
- Sample vk ∼ Dir(v|v0);
- Sample t1 ∼ PP(λ0);
- Sample T1 ∼ Multi

(
D,
∑
κ1k 6=0 vk/‖κ1‖0

)
3. Generate Follow-up Events:
for n = 2, . . . , N do

- Sample cn according to Equations 8 and 9.
- Sample wk′ ∼ Dir(w|w0) and set κn;
- Sample vk′ ∼ Dir(v|v0);
- Sample tn ∼ PP(λ(tn)) by Equation 11.
- Sample
Tn ∼ Multi

(
D,
∑
κnk 6=0 vk/‖κn‖0

)
.

end

Algorithm 1: Generative process of IBHP.

B. Sample Particles. According to [20], our particles
z̃fi = {K̃f

i , Ṽ
f
i } are sampled based on the conditional

distributions p(zi|zi−1) described in Section 3.3.

C. Sample Model Parameters. Since the posterior of the
model parameter Θ = {λ0, {βl}, {τl}} is proportional
to the product of its prior and the data likelihood de-
scribed in Equation 2 and Section 3, we can first sam-
ple from its prior, and then use the product of the prior
and the HP data likelihood as weights of the samples to
approximate the posterior [8]. We update the triggering
kernels using the new parameters.

D. Update Particle Weights. The importance weight is
the ratio between the true posterior and the proposal dis-
tribution. Since we use the prior as the proposal, we up-
date the particle weights by ufi = ufi−1p(yi|z̃

f
i ,Θ) and

then normalize them to ufj = ufj /(
∑F
f=1 u

f
j ).

E. Resample Particles. If the effective number of parti-
cles is too small, we resample with replacement F parti-
cles from the existing ones with the normalized weights.

4.2 COMPLEXITY AND SCALABILITY
The SMC algorithm for the IBHP is easy to implement
and scalable. Due to the sequential updating strategy, the
time complexity of this algorithm isO(NF ), whereN is
the number of observations and F is the number of par-
ticles. We will demonstrate and discuss the effectiveness
of the algorithm in the experiment section in more detail.
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Figure 2: An example of IBHP. In this IBHP realization, the first 8 observations created 6 factors. Each factor has a
distinctive color, and color intensities represent instantaneous factor popularities. An observation may be labeled with
multiple factors, and are colored in its decomposed factor view accordingly. The dependency tree describes the related
events for each observation, where the directed arrows indicate dependency relations. The rate for any observation is
the aggregation of all its related factor rates (see Equation 11), whereas the overall rate at any time is the sum of all
factor rates – so the overall rate can be excited by one observation multiple times through different factors. The overall
rate is represented by its height relative to the reference time line. See Section 6.1 for more details.

Initialize the F uniform particle weights.

for each observation yi = {ti, Ti}, i = 1, . . . , n
do

for each particle zfi = {Ki,Vi} of
observation yi, f ∈ {1, . . . , F} do

- Sample the auxiliary variables wi, ci and
latent factor particles zfi = {Ki,Vi}.

- Sample the model parameters
Θ = {λ0, {βl}, {τl}}.

- Update the triggering kernels.
- Update the particle weights ufi .

end

Normalize the particle weights.
if ‖ui‖−22 < threshold, i.e., the effective
number of particles is too low then

Resample particles with replacement
based on the particle weights.

end
end

Algorithm 2: SMC inference algorithm for IBHP.

5 RELATED WORK
The idea of considering nonparametric Bayesian models
with temporal point processes in a unified framework has
been popular in recent years. For example, [4] proposed

a Bayesian nonparametric model that utilizes the Chinese
Restaurant Processes (CRP) as a prior for the clusters
among individuals, whose rates of communications are
modeled by HP. [18] used a similar idea but further ex-
tended the model by modeling the jump sizes of HP using
Gaussian Processes (GP). HP models with various gener-
alizations of a CRP, such as the distance dependent CRP
(ddCRP) [14], the nested CRP (nCRP) [19], and the Chi-
nese Restaurant Franchise Processes (CRFP) [13], have
also been explored.

Other attempts have been made by borrowing the ideas
from Deep Learning. For example, [7] proposed a model
to view the intensity function of a temporal point pro-
cess as a nonlinear function of the history, and use recur-
rent neural networks to automatically learn a representa-
tion of the influences from the event history. [17] mod-
eled streams of events by constructing a neurally self-
modulating multivariate point process where the intensi-
ties of multiple event types evolve based on a continuous-
time LSTM. Lastly, [21] considered the use of latent
factors in HP models to represent dependencies among
instances that influence reciprocity over time. But the
work focused on modeling static factors of homophily
and reciprocity in social networks and not the evolution
of factors over time.

Perhaps the closest works to our model are [8] and [16].
In [8], the authors proposed a Dirichlet Hawkes Pro-
cesses (DHP) model that combines the CRP with HP in a



unified framework, where the cluster assignment in CRP
is driven by the intensities of HP. [16] further developed
this in their Hierarchical Dirichlet Hawkes Processes
(HDHP) model by replacing the CRP with a CRFP that
is capable of modeling steaming data for multiple users.
However, there are several major distinctions compared
to our IBHP: 1) In both the DHP and HDHP models,
events are triggered by single factors, while in our IBHP,
multiple latent triggering factors are introduced; 2) the
form of the triggering kernels do not depend on history
events, and in contrast, our IBHP model is more flexible
to be able to adopt non-additive triggering rules to learn
different perspectives of the observed data. We will com-
pare our model to [8] and [16] next.

6 EXPERIMENTS
We compare IBHP with three methods from the previous
section: the vanilla Hawkes process (HP), the Dirich-
let Hawkes (DHP; [8]), and the Hierarchical Dirichlet
Hawkes (HDHP; [16]). We evaluate the models on both
synthetic and real-world data.

6.1 SYNTHETIC DATASETS
The purpose of our synthetic-data experiments is
twofold: 1) to understand the identifiability of our model
and the accuracy of our SMC algorithm when the true
data generation process satisfies the model assumptions,
and 2) to understand the effects of misspecification.

Our setup is as follows. The Hawkes process base rate
is λ0 = 2. For the basis kernels, we use: γ1(δ) =
e−δ/0.3, γ2(δ) = 2e−δ/0.2, γ3(δ) = 3e−δ/0.1. γ1 has
the smallest jump but also the largest time-scale; at the
other extreme, γ3 has the largest jump with a fast decay-
parameter. γ2 might be used to model ‘regular’ events,
while γ1 and γ3 are for non-urgent and urgent ones re-
spectively. We construct the dictionary S from the top
1000 words from the NIPS dataset [2], and the document
lengths are set to D = 20. The hyperparameters, which
are not to be estimated, are set as w0 = ( 1

3 ,
1
3 ,

1
3 ),v0 =

( 1
1000 , . . . ,

1
1000 ). We generate N = 1000 observations

with this setup, and use the first 80% of the dataset for
training, and the last 20% for testing. For each SMC iter-
ation, we use 10 particles, and report averages and error
bars based on 10 runs with different random seeds.

A. Parameter learning and prediction. Experiments A1
and A2 shown in Table 1 are the parameter estimates and
the log-likelihoods over training and test datasets. Our
model outperforms other models in terms of predictive
log-likelihood. This demonstrates two points. Firstly,
our SMC algorithm is able to accurately recover the un-
derlying model parameters. Furthermore, estimating pa-
rameters for the misspecified models on this dataset is
fair, since they have the same interpretation. Thus for

instance, our results tell us that fitting a Hawkes model
that does not include multiple triggering factors results in
a significant overestimation of the base rate λ0: a result
that one might have expected.

A1. Parameter Estimation
Parameter λ0 {βl} {τl}

Values 2 1,2,3 0.3,0.2,0.1
IBHP 1.8 0.92, 1.63, 2.71 0.33, 0.18, 0.09
HDHP 3.3 0.77, 4.56 6.11 3.75, 3.20, 2.94
DHP 2.9 0.83, 5.72, 5.83 1.21, 1.58, 1.28
HP 5.4 2.25, 4.38, 3.01 0.73, 2.54, 3.56

A2. Log-likelihoods
Training Test

IBHP 318.52 47.68
HDHP 192.74 12.23
DHP 201.96 11.78
HP 81.68 6.18
B. Learn Latent State Variables (K = 5, 10, 20)

Jaccard(K) 1 - Hellinger(V)
IBHP 0.83, 0.81, 0.77 0.79, 0.73, 0.68
HDHP 0.56, 0.40, 0.35 0.51, 0.44, 0.29
DHP 0.61, 0.42, 0.38 0.64, 0.41, 0.36

Table 1: Model comparison over the synthetic datasets.

B. Learn latent state variables. Table 1 part B focuses
on learning the latent state variables. Now, rather that
generating data from our nonparametric model, we fix
K = 5, 10, 20 in the data-generating process, and then
compare these with our nonparametric esimates using
two metrics: the Jaccard Index to compare the binary
matrices C and the Hellinger distance for V. A first com-
plication is that these matrices need not have the same
number of columns, and so for each comparison, we pad
the smaller matrix with zero-columns to facilitate com-
parison. A bigger challenge is a ‘label-switching’ issue
that arises since column permutations do not effect the
quality of the estimates. To overcome this, after match-
ing dimensions, we greedily match columns, and then
compute scores. We point out that padding with zeros
favors the alternative methods, since their solutions have
many zeros; nevertheless, our model still gives the best
Jaccard scores as well as Hellinger distances (we actually
report complementary Hellinger distances (viz. one mi-
nus the actual distance), so that large numbers imply bet-
ter performance for both statistics. As before, our results
demonstrate the insufficiency of the alternate models and
justifies the need for multiple factors.

C. The effects of base rate and basis kernels. The base
rate λ0, together with the evolving kernels, control the
dynamics of latent factors. In Table 2 part C, we see
that increasing λ0 increases the average number of fac-
tors per observation increases—more strongly violating
the single factor assumption of competing methods. This
observation is also accompanied by a widening perfor-
mance gap between our model and the alternatives.



C. Effects of Base Rate
λ0 Topics Jaccard Hellinger Test

IBHP
4 9.01 0.79 0.75 50.21
8 12.28 0.72 0.69 68.37
16 28.33 0.64 0.61 72.07

HDHP
4

1
0.32 0.40 43.78

8 0.28 0.38 51.06
16 0.31 0.26 50.79

DHP
4

1
0.29 0.37 41.67

8 0.33 0.31 49.18
16 0.27 0.28 52.33

Table 2: Effects of model specifications.

D. The effects of triggering rule. In Equation 11, the
event rate depends on the rates of the underlying factors
in an additive manner. We can allow more flexible trig-
gering rules by allowing richer interactions among factor
dynamics. For example, we define a “double-sharing”
triggering rule as follows: trigger a jump in the rate func-
tion only when two or more factors are shared with a
previous observation. Thus Equation 11 becomes:

λ(tn) =
∑
κnk 6=0

[
n−1∑
i=1

κik(tn, ti)

‖κi‖0
+φ

(
κik(tn, tn)

‖κn‖0

)]
(13)

where φ = 0 if the rule is not triggered—there is no
“jump”, otherwise φ = wᵀ

kβ/‖κn‖0—there is a “jump”.
We sketch this out in Figure 3.
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Figure 3: IBHP with “double-sharing” rule. Obs. 2 does
not trigger a “jump” because no previous observations
share more than two factors with it. However, obs. 4
triggers two jumps because it shares two factors with obs.
1 (factor 1 and 2), and two with obs. 2 (factor 1 and 3).

Incorporating such nonlinearities result in dynamics that
are significantly different from the additive setup: this is
evidenced in Table 3, where the simpler additive version
the IBHP now has a degraded score. There are numerous
variations to our simple “double-sharing” rule that are
relevant across a variety of situations.

D. Predictive Log-likelihoods on Double-sharing Data
Additive Model Double-sharing Model

IBHP 15.38 ±3.82 20.82 ±3.23

HDHP 8.97 ±4.07 12.36 ±3.18

DHP 8.26 ±3.19 10.17 ±3.20

HP 4.98 ±3.61 5.04 ±3.22

Table 3: Model comparison with “double-sharing” data.

6.2 REAL DATASETS
The purpose of our real data experiments is threefold:
1) to verify that the multiple triggering factors in IBHP
are indeed relevant to real applications, 2) to demonstrate
that our SMC inference algorithm is scalable for real-
world datasets, and 3) to use our IBHP model to present
meaningful findings, both quantitative and qualitative.
We consider four different datasets: Facebook Dataset.
This data contains Facebook message communications
among 20,603 individuals. We pick the top 10 most con-
nected individuals (based on the number of friends), and
add in their one-hop and two-hop friends. This results in
a total of 376 individuals. NIPS Dataset [2]. The Kaggle
NIPS dataset contains the title, authors, abstracts, and ex-
tracted text for all 7241 NIPS papers from the first 1987
conference to the current 2017 conference. This dataset
is different in that it contains rich message information;
however the number of time-points is just 30. Santa
Barbara Corpus Dataset [3]. This is a standard dataset
used for applications involving Hawkes processes. We
use conversation #33, a lively family discussion which
centers around a disagreement that an individual, Jen-
nifer, is having with her mother, Lisbeth. Enron Email
Dataset[1]. The Enron dataset contains about half a mil-
lion email messages communicated among about 150 se-
nior managers of the Enron corporation. We pick the
longest thread of emails.

For each experiment, we use the first 80% of the dataset
as training set, the next 10% as validation set, and the last
10% as test set. We train our model on training sets with
different hyperparameters, then pick the best one based
on their performances on the validation set, and use this
model to report performances on the test set. The re-
ported values are based on ten runs with different random
number seeds. The dictionary S is all the unique words
in the dataset; the document length Dn is counted from
each observed text Tn; and we use the three (L = 3)
exponential basis kernels defined in Equation 5.

A. Predictive log-likelihood. The log-likelihoods in Ta-
ble 4 show that for three of four datasets, our model out-
performs the alternatives. The performance gaps exhibit
a range of values. On the NIPS dataset, our model shows
a massive improvement over the competition, while there
is no significant improvement for the Enron dataset. The
numbers in parentheses, giving the average number of
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Figure 4: FB dataset. Topic dynamics.

topics associated with each message, provides a partial
explanation. For the Enron dataset, this number is just
two, suggesting that there is limited benefit from model-
ing multiple factors, and that the simpler HDHP model
may be more appropriate. For the NIPS dataset, this
number is about 10, explaining the gap in performance.

FB Dataset (average # factors = 4.19)
Training Validation Test

IBHP 1822 ±96 219 ±10 277 ±11

HDHP 1083 ±88 123 ±10 133 ±10

DHP 1058 ±90 144 ±9 200 ±14

HP 782 ±75 62 ±7 69 ±7

NIPS Dataset (average # factors = 10.21)
Training Validation Test

IBHP 8378 ±172 913 ±23 1012 ±28

HDHP 3229 ±169 216 ±12 191 ±11

DHP 2018 ±164 203 ±10 202 ±10

HP 390 ±48 49 ±8 40 ±7

SB Dataset (average # factors = 6.52)
IBHP 520 ±62 187 ±12 137 ±9

HDHP 132 ±9 32 ±6 34 ±6

DHP 169 ±10 51 ±7 78 ±9

HP 96 ±10 15 ±4 23 ±4

Enron Dataset (average # factors = 2.17)
IBHP 2602 ±101 313 ±12 381 ±12

HDHP 2322 ±117 203 ±10 392 ±11

DHP 2639 ±118 268 ±11 339 ±12

HP 729 ±92 28 ±5 19 ±5

Table 4: Model comparisons over the real datasets.

B. Latent structure vs. dynamics. The rich structure of
the NIPS dataset is balanced by its simple temporal struc-
ture just with 30 time points. This raises the question:
how much of our models performance is due to the latent
structure incorporated into our modeling framework, and
how much is due to temporal dynamics of this structure.
To study this more carefully, we shuffle the publication
years (documents published in the same year remain to-
gether, however), thus destroying temporal information.
Table 5 shows that this incurs a relatively small loss now,
suggesting that most of the performance gains observed
in Table 4 are due to the latent factors. However, remov-
ing temporal information still incurs enough of a hit in
performance to justify our methodology.

Test Log-likelihoods on the NIPS Dataset
Original Shuffled Relative Loss

IBHP 1012.08 914.76 -9.62%
HDHP 191.29 88.19 -53.90%
DHP 201.73 79.05 -60.81%
HP 40.17 18.22 -54.64%

Table 5: Model comparison on the shuffled NIPS dataset.

C. Discovering popular topics and words. One of the
immediate benefits of our IBHP is that it returns the fac-
tor rate matrix K and the word-distribution matrix V,
providing a rich summary of popular topics and words.
Figure 5 shows, in the NIPS dataset, the most popular
three topics at the end of the training dataset time span.
The lists of words suggest that the first topic is related
to kernel methods, the second to deep learning, and the
third to Bayesian methods. The intensity of the colors
indicates popularities. Our model suggests that topic 2,
which hypothetically is related to deep learning, has been
increasingly more popular in the NIPS community.

1

20172014 20162015

loss

kernel

min/max

convex

likelihood

graph

bayesian

variable

architecture

layer

deep

neurons

Topic 1 Topic 2 Topic 3

3

2

1

3

2

1

3

1

2

Topic Popular Words

Rate

Time
2

3

Figure 5: NIPS dataset. Popular topics and words.

D. Learning factor dynamics. Unlike the IBP, the IBHP
matrix not only carries binary “present/missing” infor-
mation, but also real-valued kernel weights κik, which
reveal the temporal dynamics of the factors. Figure 4
shows two most popular factors from the FB dataset. The
first relates to school life, and the second to off-class ac-
tivities. To confirm this, we plot the average of the esti-
mated rate functions across four similar one week peri-
ods in Figure 4. The patterns of the two factor rates are
quite different: The first factor is active after Monday,
and peaks in the middle of the week, before cooling down
near the weekend. The second factor, however, climbs
steadily and becomes more excited during the weekend.



E. Infering dependencies and causalities. According
to Equation 11, the rate after an event depends on ear-
lier events that share factors with it. Figure 6 provides a
detailed view of IBHP on the SB dataset under the usual
additive rule. We also apply the “double-sharing” rule to
the dataset. In Figure 7, we see several consequences: 1)
the rate functions are not triggered until the 6th obser-
vation under the double-sharing rule, 2) the IBHP ma-
trices are different, and 3) the inferred factors are differ-
ent. Further investigation shows the first red circle corre-
sponds to the observation with text “I am mean to you all
the time!” and the last red circle to “What time is it?”—
one to heat up the process and one to cool it down. This
suggests that adopting different triggering rules may al-
low us to capture different aspects of the data, which in
our SB double-sharing case, bookends an active family
discussion.

Observations Cooling HeatingBackground

Time

321 …

Stage A

Stage B

Stage C

Figure 6: SB Dataset. Additive rule. Every observation
creates a jump of the rate function. Topics can be inter-
preted as background, cooling, and heating activities.

Observations J LBackground

Time

321 …

Stage A

Stage B

Stage C

Figure 7: SB Dataset with double-sharing. White cir-
cles represent observations that do not trigger the rule.
Topics can be interpreted as background activities, and
those of Jennifer and Lisbeth.

F. Predict future event times. In Table 4, we report
the log-likelihoods on the test datasets for each a model.
To evaluate the predictive ability of our model in more
depth, we use it for a different predictive task: predict the
time of the next event in windows of increasing sizes, and
for each case, report the absolute different from the ob-
served data. Table 6 shows that, as the size of predictions
increases, the mean absolute error increases, as well as

the standard error: as the predictions becomes harder, the
predictions becomes inaccurate and unreliable. Nonethe-
less, our model outperforms competing models accord-
ing to this metric as well.

Prediction Window Size
pws = 1 pws = 5 pws = 10

IBHP 0.61 ±0.11 0.97 ±0.18 1.37 ±0.28

HDHP 0.82 ±0.13 1.24 ±0.20 2.18 ±0.33

DHP 0.87 ±0.10 1.19 ±0.16 2.21 ±0.29

HP 0.92 ±0.17 2.06 ±0.23 3.56 ±0.31

Table 6: FB Dataset. Predicting future event times.

G. Predicting future topics and words. Our last exper-
iment is concerned with the prediction of the latent state
variables. The dotted line in Figure 8 represents the end
of the training phase, where we have obtained the latent
factor rate matrix K and the latent factor word distribu-
tion matrix V. To the right of the dotted line, we show
the projected rate function, along with the first three pre-
dictions and their predicted top words. Our model sug-
gests that, for the NIPS dataset, topic 2 is taking over
topic 3 and may become dominant in the next few events.
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Figure 8: NIPS dataset. Predicted events.

7 CONCLUSION
In this paper, we proposed the Indian Buffet Hawkes Pro-
cess (IBHP)—a novel Bayesian nonparametric stochastic
point process model for learning multiple latent trigger-
ing factors of streaming document/message data. Our
approach establishes the synergy between Indian Buffet
Processes (IBP) and Hawkes processes (HP): on the one
hand, we use the IBP to add multiple triggering factors
to the HP, which helps to better model dynamics and im-
proves interpretation, and on the other hand, the tempo-
ral information from the HP is embedded into the IBP
to drive the latent factor estimation, which expands its
capability to model evolution of factors.
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