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Abstract

The management of invasive mechanical venti-
lation, and the regulation of sedation and anal-
gesia during ventilation, constitutes a major part
of the care of patients admitted to intensive care
units. Both prolonged dependence on mechan-
ical ventilation and premature extubation are as-
sociated with increased risk of complications and
higher hospital costs, but clinical opinion on the
best protocol for weaning patients off of a ven-
tilator varies. This work aims to develop a de-
cision support tool that uses available patient in-
formation to predict time-to-extubation readiness
and to recommend a personalized regime of seda-
tion dosage and ventilator support. To this end,
we use off-policy reinforcement learning algo-
rithms to determine the best action at a given pa-
tient state from sub-optimal historical ICU data.
We compare treatment policies from fitted Q-
iteration with extremely randomized trees and
with feedforward neural networks, and demon-
strate that the policies learnt show promise in
recommending weaning protocols with improved
outcomes, in terms of minimizing rates of reintu-
bation and regulating physiological stability.

1 INTRODUCTION

Mechanical ventilation is one of the most widely used in-
terventions in admissions to the intensive care unit (ICU):
around 40% of patients in the ICU are supported on in-
vasive mechanical ventilation at any given hour, account-
ing for 12% of total hospital costs in the United States
(Ambrosino and Gabbrielli [2010], Wunsch et al. [2013]).
These are typically patients with acute respiratory failure
or compromised lung function caused by some underlying
condition such as pneumonia, sepsis, or heart disease, or
cases in which breathing support is necessitated by neu-
rological disorders, impaired consciousness, or weakness

following major surgery. As advances in healthcare enable
more patients to survive critical illness or surgery, the need
for mechanical ventilation during recovery has risen.

Closely coupled with ventilation in the care of these pa-
tients is sedation and analgesia, which are crucial to main-
taining physiological stability and controlling pain levels of
patients while intubated. The underlying condition of the
patient, as well as factors such as obesity or genetic varia-
tions, can have a significant effect on the pharmacology of
drugs, and cause high inter-patient variability in response
to a given sedative (Patel and Kress [2012]), lending moti-
vation to a personalized approach to sedation strategies.

Weaning refers to the process of liberating patients from
mechanical ventilation. The primary diagnostic tests for
determining whether a patient is ready to be extubated
involve screening for resolution of the underlying dis-
ease, haemodynamic stability, assessment of current ven-
tilator settings and level of consciousness, and finally
a series of spontaneous breathing trials (SBTs). Pro-
longed ventilation—and corresponding over-sedation—is
associated with post-extubation delirium, drug depen-
dence, ventilator-induced pneumonia, and higher patient
mortality rates (Hughes et al. [2012]), in addition to in-
flating costs and straining hospital resources. Physicians
are often conservative in recognizing patient suitability for
extubation, however, as failed breathing trials or prema-
ture extubations that necessitate reintubation within 48-72
hours can cause severe patient discomfort and result in even
longer ICU stays (Krinsley et al. [2012]). Efficient weaning
of sedation and ventilation is therefore a priority both for
improving patient outcomes and reducing costs, but a lack
of comprehensive evidence and the variability in outcomes
between individuals and subpopulations means there is lit-
tle agreement in clinical literature on the best weaning pro-
tocol (Conti et al. [2014], Goldstone [2002]).

In this work, we aim to develop a decision support tool
that leverages available patient information in the data-rich
ICU setting to alert clinicians when a patient is ready for
initiation of weaning, and to recommend a personalized
treatment protocol. We explore the use of off-policy re-



inforcement learning algorithms, namely fitted Q-iteration
(FQI) with different regressors, to determine the optimal
treatment at each patient state from sub-optimal historical
patient treatment profiles. The setting fits naturally into the
framework of reinforcement learning as it is fundamentally
a sequential decision making problem rather than purely a
prediction task: we wish to choose the best possible action
at each time—in terms of sedation drug and dosage, venti-
lator settings, initiation of a spontaneous breathing trial, or
extubation—while capturing the stochasticity of the under-
lying process, the delayed effects of actions, and the uncer-
tainty in state transitions and outcomes.

The problem poses a number of key challenges: there are
a multitude of factors that can potentially influence patient
readiness for extubation, including some not directly ob-
served in ICU chart data, such as a patient’s inability to
protect their airway due to muscle weakness. The data that
is recorded is often sparse and noisy. In addition, there is
potentially an extremely large space of possible sedatives
and ventilator settings that can be leveraged during wean-
ing. We are also posed with the problem of interval cen-
soring, as in other intervention data: given past treatment
and vitals trajectories, observing a successful extubation at
time t provides us only with an upper bound on the true
time to extubation readiness, te ≤ t; on the other hand, if
a breathing trial was unsuccessful, there is uncertainty how
premature the intervention was. This presents difficulties
both when learning the policy and in evaluating policies.

The rest of the paper is organized as follows: Section 2 ex-
plores recent efforts in the use of reinforcement learning
in clinical settings. In Section 3, we describe the data and
methods used here, and Section 4 presents the results. Fi-
nally, conclusions and possible directions for further work
are discussed in Section 5.

2 RELATED WORK

The widespread adoption of electronic health records
(EHRs) paved the way for a data-driven approach to health-
care, and recent years have seen a number of efforts to-
wards personalized, dynamic treatment regimes. Rein-
forcement learning in particular has been explored in vari-
ous settings, from determining the sequence of drugs to be
administered in HIV therapy or cancer treatment, to man-
agement of anaemia in haemodialysis patients, and insulin
regulation in diabetics. These efforts are typically based
on estimating the value, in terms of clinical outcomes, of
different treatment decisions given the state of the patient.

For example, Ernst et al. [2006] applied fitted Q-iteration
with a tree-based ensemble method to learn the optimal
HIV treatment in the form of structured treatment interrup-
tion strategies, in which patients are cycled on and off drug
therapy. The observed reward here is defined in terms of
the equilibrium point between healthy and unhealthy blood

cells in the patient. Zhao et al. [2011] used Q-learning to
learn optimal individualized treatment regimens for non-
small cell lung cancer. The objective is to choose the opti-
mal first and second lines of therapy and the optimal initi-
ation time for the second line treatment such that the over-
all survival time is maximized. The Q-function with time-
indexed parameters is approximated using a modification
of support vector regression (SVR) that explicitly handles
right-censored data. In this setting, right-censoring arises
in measuring the time of death from start of therapy: given
that a patient is still alive at the time of the last follow-up,
we have only a lower bound on the exact survival time.

Escandell-Montero et al. [2014] compared the performance
of both Q-learning and fitted Q-iteration with current clin-
ical protocol for informing the delivery of erythropoeisis-
stimulating agents (ESAs) for treating anaemia. The drug
administration strategy is modeled as a Markov decision
process (MDP), with the state space expressed by current
values and change in haemoglobin levels, the most recent
ESA dosage, and the patient subpopulation. The action
space is a set of four discretized ESA levels, and the re-
ward function is designed to maintain haemoglobin levels
within a healthy range while avoiding abrupt changes.

On the problem of administering anaesthesia in an ICU
setting, Moore et al. [2004] applied Q-learning with eligi-
bility traces to the administration of intravenous propofol,
modeling patient dynamics according to an established
pharmacokinetic model, with the aim of maintaining
some level of sedation or consciousness. Padmanabhan
et al. [2014] also used Q-learning, for the regulation of
both sedation level and arterial pressure as an indicator
of physiological stability, using propofol infusion rate.
All of the aforementioned work rely on model-based
approaches to reinforcement learning, and develop treat-
ment policies on simulated patient data. More recently
however, Nemati et al. [2016] consider the problem of
heparin dosing to maintain blood coagulation levels within
some well-defined therapeutic range, modeling the task
as a partially observable MDP, using a dynamic Bayesian
network trained on real ICU data, and learning a dosing
policy with neural fitted Q-iteration (NFQ).

There exists some literature on machine learning meth-
ods for the problem of ventilator weaning: Mueller et al.
[2013] and Kuo et al. [2015] look at prediction of weaning
outcomes using supervised learning methods, and suggest
that classifiers based on neural networks, logistic regres-
sion, or naive Bayes, trained on patient ventilator and blood
gas data, show promise in predicting successful extubation.
Gao et al. [2017] develops association rule networks for
naive Bayes classifiers, to analyze the discriminative power
of different feature categories toward each decision out-
come class, in order to help inform clinical decision mak-
ing. Our paper is novel in its use of reinforcement learn-
ing methods to directly tackle policy recommendation for



ventilation weaning. Specifically, we incorporate a larger
number of possible predictors of weaning readiness, in a
32-dimensional patient state representation, compared with
previous works which typically limit features for classifica-
tion to at most a couple of key vital signs. Moreover, we
make use of current clinical protocols to inform the design
and tuning of a reward function.

3 METHODS

3.1 CRITICAL CARE DATA

We use the Multi-parameter Intelligent Monitoring in In-
tensive Care (MIMIC III) database (Johnson et al. [2016]),
a freely available source of de-identified critical care data
for 53,423 adult admissions and 7,870 neonates. This
data includes patient demographics, time-stamped mea-
surements from bedside monitoring of vitals, administra-
tion of fluids and medications, results of laboratory tests,
observations and notes charted by care providers, as well
as diagnoses, procedures and prescriptions for billing.

We extract from this database a set of 8,860 admissions
from 8,182 unique adult patients undergoing invasive ven-
tilation. In order to train and test our weaning policy, we
filter further to include only those admissions in which the
patient was kept under ventilator support for more than 24
hours. This allows us to exclude the majority of episodes of
routine ventilation following surgery, which are at minimal
risk of adverse extubation outcomes. We also filter out ad-
missions in which the patient in not successfully discharged
from the hospital by the end of the admission, as in cases
where the patient expires in the ICU, failure to discharge is
largely due to factors beyond the scope of ventilator wean-
ing, and again, a more informed weaning policy is unlikely
to have a significant influence on outcomes. Failure in
our problem setting is instead defined as prolonged venti-
lation, administration of unsuccessful spontaneous breath-
ing trials, or reintubation within the same admission—all of
which are associated with adverse outcomes for the patient.
A typical patient timeline is illustrated in Figure 1.

Preliminary guidelines for the weaning protocol, in terms
of the desired ranges of physiological parameters (heart
rate, respiratory rate, and arterial pH) as well as criteria
at time of extubation for the inspired O2 fraction (FiO2),
oxygenation pulse oxymetry (SpO2), and positive end-
expiratory pressure (PEEP) set, were obtained from clin-
icians at the Hospital of University of Pennsylvania, HUP
(Table 1). These are used in shaping rewards in our MDP
to facilitate learning of the optimal policy.

3.1.1 Preprocessing using Gaussian Processes

Measurements of vitals and lab results in the ICU data can
be irregular, sparse, and error-prone. Non-invasive mea-
surements such as heart rate or respiratory rate are taken

Physiological Stability Oxygenation Criteria

Respiratory Rate ≤ 30 PEEP (cm H2O) ≤ 8

Heart Rate ≤ 130 SpO2 (%) ≥ 88

Arterial pH ≥ 7.3 Inspired O2 (%) ≤ 50

Table 1: Current extubation guidelines at HUP.

several times an hour, while tests for arterial pH or oxygen
pressure, which involve more distress to the patient, may
only be administered every few hours as needed. This wide
discrepancy in measurement frequency is typically han-
dled by resampling with means in hourly intervals (when
we have multiple measurements within an hour), and us-
ing sample-and-hold interpolation to impute subsequent
missing values. However, patient state—and therefore the
need to update management of sedation or ventilation—can
change within the space of an hour, and naive methods for
interpolation are unlikely to provide the necessary accuracy
at higher temporal resolutions. We therefore explore meth-
ods for the imputation of patient state that can enable more
precise policy estimation.

One commonly used approach to resolve missing and irreg-
ularly sampled time series data is Gaussian processes (GPs,
[Stegle et al., 2008, Dürichen et al., 2015, Ghassemi et al.,
2015]). Denoting the observations of the vital signs by v
and the measurement time t, we model

v = f(t) + ε,

where ε vector represents i.i.d Gaussian noise, and f(t) is
the latent noise-free function we would like to estimate. We
put a GP prior on the latent function f(t):

f(t) ∼ GP(m(t), κ(t, t′)),

where m(t) is the mean function and κ(t, t′) is the covari-
ance function or kernel, which shapes the temporal prop-
erties of f(t). In this work, we use a multi-output GP
to account for temporal correlations between physiologi-
cal signals during interpolation. We adapt the framework
in Cheng et al. [2017] to impute the physiological signals
jointly by estimating covariance structures between them,
excluding the sparse prior settings. We set m(t) = 0 with-
out loss of generality (Rasmussen and Williams [2006]),
and κ(t, t′) as the kernel in the linear model of coregion-
alization using the spectral kernel as the basis kernel, al-
lowing us to model both smooth correlations in time and
periodic variations of these vital signs and lab results. The
full joint kernel for each patient i is defined as:

κi(ti, t
′
i) =

Q∑
q=1

Bq ⊗ κq(ti,∗, t′i,∗),

where ti,∗ represents the time vector of each vital sign.
Note that this is a simplified representation based on the



Figure 1: Example ventilated ICU patient. Vitals are measured at a range of sampling intervals. Ventilation times are
marked, and multiple administered sedatives (both as continuous IV drips and discrete boli) are shown.

assumption that we have the same input time vector for
each signal, which does not hold in our irregularly sam-
pled data. In practice we have to compute each sub-block
κq(ti,d, t

′
i,d′) given any pair of input time ti,d and t′i,d′

from two signals, indexing by d and d′. We useQ to denote
the number of mixture kernels, and Bq to encode the scale
covariance between any pair of signals, written as

Bq =


bq,(1,1) bq,(1,2) · · · bq,(1,D)

bq,(1,1)
...

. . .
...

...
...

. . .
...

bq,(D,1) bq,(D,2) · · · bq,(D,D)

 ∈ RD×D.

The basis kernel is parameterized as

κq(t, t
′) = exp (−2π2τ2vq) cos (2πτµq),

τ = |t− t′|.

We set Q = 2 and R = 5 for modeling 12 selected phys-
iological signals (D = 12) jointly. For each patient, one
structured GP kernel is estimated using the implementa-
tion in Cheng et al. [2017]. We then impute the time se-
ries with the estimated posterior mean given all the obser-
vations across all chosen physiological signals for that pa-
tient. In choosing the 12 signals, we exclude vitals that take
discrete values, such as ventilator mode or the RASS seda-
tion scale; for these, we simply resample with means and

apply sample-and-hold interpolation. After preprocessing,
we obtain complete data for each patient, at a temporal res-
olution of 10 minutes, from admission time to discharge
time (Figure 2).

3.2 MDP FORMULATION

A Markov decision process is defined by

(i) A finite state space S such that at each time t, the
environment (here, the patient) is in state st ∈ S.

(ii) An action space A: at each time t, the agent takes
action at ∈ A, which influences the next state, st+1.

(iii) A transition function P (st+1|st, at), the probability
of the next state given the current state and action,
which defines the (unknown) dynamics of the system.

(iv) A reward function r(st, at, st+1) ∈ R, the observed
feedback following a transition at each time step t.

The goal of the reinforcement learning agent is to learn a
policy, i.e. a mapping π(s) : S → A from states to actions,
that maximizes the expected accumulated reward

Rπ(st) = lim
T→∞

Est+1|st,π(st)

T∑
t=0

γtr(st, π(st), st+1)

over time horizon T . The discount factor, γ, determines the
relative weight of immediate and long-term rewards.



Figure 2: Example trajectories of six vital signs for a single admission, following imputation using Gaussian processes.
Twelve vital signs are jointly modeled by the GP.

Patient response to sedation and readiness for extubation
can depend on a number of different factors, from demo-
graphic characteristics, pre-existing conditions, and comor-
bidities to specific time-varying vital signs, and there is
considerable variability in clinical opinion on the extent of
the influence of different factors. Here, in defining each
patient state within an MDP, we look to incorporate as
many reliable and frequently monitored features as possi-
ble, and allow the algorithm to determine the relevant fea-
tures. The state at each time t is a 32-dimensional feature
vector that includes fixed demographic information (patient
age, weight, gender, admit type, ethnicity), as well as rele-
vant physiological measurements, ventilator settings, level
of consciousness (given by the Richmond Agitation Seda-
tion Scale, or RASS), current dosages of different seda-
tives, time into ventilation, and the number of intubations
so far in the admission. For simplicity, categorical variables
admit type and ethnicity are binarized as emergency/non-
emergency and white/non-white, respectively.

In designing the action space, we develop an approximate
mapping of six commonly used sedatives into a single
dosage scale, and choose to discretize this scale to four dif-
ferent levels of sedation. The action at ∈ A at each time
step is chosen from a finite two-dimensional set of eight ac-
tions, where at[0] ∈ {0, 1} indicates having the patient off
or on the ventilator, respectively, and at[1] ∈ {0, 1, 2, 3}
corresponds to the level of sedation to be administered over
the next 10-minute interval:

A =

{[
0
0

]
,

[
0
1

]
,

[
0
2

]
,

[
0
3

]
,

[
1
0

]
,

[
1
1

]
,

[
1
2

]
,

[
1
3

]}
Finally, we associate a reward signal rt+1 with each state
transition—defined by the tuple 〈st, at, st+1〉—to encom-

pass (i) time into ventilation, (ii) physiological stability, i.e.
whether vitals are steady and within expected ranges, (iii)
failed SBTs or reintubation. The reward at each timestep is
defined by a combination of sigmoid, piecewise-linear, and
threshold functions that reward closely regulated vitals and
successful extubation while penalizing adverse events:
rt+1 = rvitals

t+1 + rvent off
t+1 + rvent on

t+1 , where

rvitals
t+1 = C1

∑
v

[
1

1 + e−(vt−vmin)
− 1

1 + e−(vt−vmax)
+

1

2

]
− C2

[
max

(
0,
|vt+1 − vt|

vt
− 0.2

)]
,

rvent off
t+1 = 1[st+1(vent on)=0]

[
C3 · 1[st(vent on)=1]

+C4 · 1[st(vent on)=0] − C5

∑
vext

1[vext
t >vext

max || vext
t <vext

min]

]
,

rvent on
t+1 = 1[st+1(vent on)=1]

[
C6 · 1[st(vent on)=1]

−C7 · 1[st(vent on)=0]

]
.

Here, values vt are the measurements of those vitals v (in-
cluded in the state representation st) believed to be indica-
tive of physiological stability at time t, with desired ranges
[vmin, vmax]. The penalty for exceeding these ranges at each
time step is given by a truncated sigmoid function (Figure
3a). The system also receives negative feedback when con-
secutive measurements see a sharp change (Figure 3b).

Vital signs vext
t comprise the subset of parameters directly

associated with readiness for extubation (FiO2, SpO2,
and PEEP set) with weaning criteria defined by the ranges
[vext

min, v
ext
max]. A fixed penalty is applied when these criteria

are not met during extubation. The system also accumu-
lates negative rewards for each additional hour spent on the
ventilator, and a large positive reward at the time of suc-



cessful extubation. Constants C1 to C7 determine the rela-
tive importance of these reward signals.

(a) Exceeding threshold values (b) High fluctuation in values

Figure 3: Shape of reward from vitals, rvitals
t (vt)

3.3 LEARNING THE OPTIMAL POLICY

The majority of reinforcement learning algorithms are
based on estimation of the Q-function, that is, the expected
value of state-action pairs Qπ(s, a) : S × A → R, to de-
termine the optimal policy π. Of these, the most widely
used is Q-learning, an off-policy reinforcement learning al-
gorithm in which we start with an initial state and arbitrary
approximation of the Q-function, and update this estimate
using the reward from the next transition using the Bellman
recursion for Q-values:

Q̂(st, at) = Q̂(st, at)+α(rt+1+γmax
a∈A

Q̂(st+1, a)−Q̂(st, at))

where the learning rate α gives the relative weight of the
current and previous estimate, and γ is the discount factor.

Fitted Q-iteration (FQI) is a form of off-policy batch-mode
reinforcement learning that uses a set of one-step transition
tuples:

F = {(〈snt , ant , snt+1〉, rnt+1), n = 1, ..., |F|}

to learn a sequence of function approximators Q̂1, Q̂2...Q̂K
of the value of state-action pairs, by iteratively solving
supervised learning problems. Both FQI and Q-learning
belong to the class of model-free reinforcement learning
methods, which assumes no knowledge of the dynamics
of the system. In the case of FQI, there are also no as-
sumptions made on the ordering of tuples; these could cor-
respond to a sequence of transitions from a single admis-
sion, or randomly ordered transitions from multiple histo-
ries. FQI is therefore more data-efficient, with the full set
of samples used by the algorithm at every iteration, and
hence typically converges much faster than Q-learning.

The training set at the kth supervised learning problem is
given by T S = {(〈snt , ant 〉 , Q̂k(snt , a

n
t )), n = 1, ..., |F|}.

As before, the Q-function is updated at each iteration ac-
cording to the Bellman equation:

Q̂k(st, at)← rt+1 + γmax
a∈A

Q̂k−1(st+1, a)

where Q̂1(st, at) = rt+1. The approximation of the opti-
mal policy after K iterations is then given by:

π̂∗(s) = arg max
a∈A

Q̂K(s, a)

FQI guarantees convergence for many commonly used re-
gressors, including kernel-based methods (Ormoneit and
Sen [2002]) and decision trees. In particular, extremely
randomized trees (Extra-Trees: Geurts et al. [2006], Ernst
et al. [2005]), a tree-based ensemble method that extends
on random forests by introducing randomness in the thresh-
olds chosen at each split, has been applied in the past to
learning large or continuous Q-functions in clinical settings
(Ernst et al. [2006], Escandell-Montero et al. [2014]).

Neural Fitted-Q (NFQ, Riedmiller [2005]) on the other
hand, looks to leverage the representational power of neural
networks as regressors to fitted Q-iteration. Nemati et al.
[2016] use NFQ to learn optimal heparin dosages, mapping
the patient hidden state to expected return. Neural networks
hold an advantage over tree-based methods in iterative set-
tings in that it is possible to simply update network weights
at each iteration, rather than rebuilding the trees entirely.

Algorithm 1 Fitted Q-iteration with sampling
Input:
One-step transitions F = {〈snt , ant , snt+1〉, rnt+1}n=1:|F|;
Regression parameters θ;
Action space A; subset size N
Initialize Q0(st, at) = 0 ∀st ∈ F , at ∈ A
for iteration k = 1→ K do

subsetN ∼ F
S ← []
for i ∈ subsetN do

Qk(si, ai)← ri+1+γ max
a′∈A

(predict(〈si+1, a
′〉, θ))

S ← append(S, 〈(si, ai), Q(si, ai)〉)
end
θ ← regress(S)

end
Result: θ
π ← classify(〈snt , ant 〉)

4 EXPERIMENTAL RESULTS

After extracting relevant ventilation episodes from ICU
admissions in the MIMIC III database (Section 3.1),
and splitting these into training and test data, we obtain
a total of 1,800 distinct admissions in our training set
and 664 admissions in our test set. We interpolate time-
varying vitals measurements using Gaussian processes
or sample-and-hold interpolation, sampling at 10-minute
intervals. This yields of the order of 1.5 million one-step
transitions in the training set and 0.5 million in the test
set respectively, where each transition is a 32-dimensional
representation of patient state.



As a baseline, we applied Q-learning to the training data to
learn the mapping of continuous states to Q-values, with
function approximation using a three-layer feedforward
neural network. The network is trained using Adam, an
efficient stochastic gradient-based optimizer (Kingma and
Ba [2014]), and l2 regularization of weights. Each patient
admission k is treated as a distinct episode, with on the or-
der of thousands of state transitions in each; the network
weights are incrementally updated following each transi-
tion. Studying the change between successive episodes in
the predicted Q-values for all state-action pairs in the train-
ing set (Figure 4), it is unclear whether the algorithm suc-
ceeds in converging within the 1,800 training episodes.

Figure 4: Convergence of Q̂(s, a) using Q-learning, over
all transitions for patients in training set.

We then explored the use of FQI to learn our Q-function,
first running with an Extra-Trees for function approxima-
tion. In our implementation, each iteration of FQI is per-
formed on a random subset of 10% of all transitions in the
training set, as described in Algorithm 1, such that on aver-
age, each sample is seen in a tenth of all iterations. Though
sampling increases the total number of iterations required
for convergence, it yields significant speed-ups in building
trees at each iteration, and hence in total training time. The
ensemble regressor learns 50 trees, with regularization in
the form of a minimum leaf node size of 20 samples. We
present here results with FQI performed for a fixed number
of 100 iterations, though it is possible to use a convergence
criterion of the form ∆(Qk, Qk−1) ≤ ε for early stopping,
to speed up training further.

For comparison, we used he same methods to run FQI with
neural networks (NFQ) in place of tree-based regression:
we train a feedforward network with architecture and tech-
niques identical to those applied in our function approxi-
mation for Q-learning. Convergence of the estimated Q-
function for both regressors is measured by the Bellman
residual (Ernst et al. [2005]), i.e. the mean squared change
in Q̂ between consecutive updates (Figure 5), which shows
that the algorithm takes roughly 60 iterations to converge in
both cases. However, NFQ yields a roughly four-fold gain

in runtime speed, as expected, since with neural networks
we can simply update network weights at each iteration.

Figure 5: Convergence of estimated Q using FQI, given by
the mean change in Q̂(s, a) over successive iterations.

The estimated Q-functions from FQI with Extra-Trees
(FQIT) and from NFQ are then used to evaluate the op-
timal action, i.e. that which maximizes the value of the
state-action pair, for each state in the training set. We can
then train policy functions π(s) mapping a given patient
state to the corresponding optimal action a ∈ A. To al-
low for clinical interpretation of the final policy, we choose
to train an Extra-Trees classifier with an ensemble of 100
trees to represent the policy function.

The relative importance assigned to the top 24 features in
the state space for the policy trees learnt, when training on
optimal actions from both FQIT and NFQ, show that the
five vitals ranking highest in importance across the two
policies are arterial O2 pressure, arterial pH, FiO2, O2

flow and PEEP set (Figure 6). These are as expected—
Arterial pH, FiO2, and PEEP all feature in our preliminary
HUP guidelines for extubation criteria, and there is con-
siderable literature suggesting blood gases are an impor-
tant indicator of readiness for weaning (Hoo [2012]). On
the other hand, oxygen saturation pulse oxymetry (SpO2)
which is also included in HUP’s current extubation crite-
ria, is fairly low in ranking. This may be because these
measurements are highly correlated with other factors in
the state space, such as arterial O2 pressure (Collins et al.
[2015]), that account for its influence on weaning more di-
rectly. The limited importance assigned to heart rate and
respiratory rate, which can serve as indicators of blood
pressure and blood gases, are also likely to be explained
by this dependence between vitals.

In terms of demographics, weight and age play a signifi-
cant role in the weaning policy learnt: weight is likely to
influence our sedation policy specifically, as dosages are
typically adjusted for patient weight, while age is strongly
correlated with a patient’s speed of recovery, and hence the
time necessary on ventilator support.



Figure 6: Feature importances (from Gini importance scoring) for policies trained on optimal actions from FQIT & NFQ.
The relatively high weighting of indicators Arterial pH, FiO2 and PEEP set found is in agreement with typical protocol.

As a preliminary evaluation of the policies learnt, we com-
pare the algorithm’s recommendations against the policy
implemented by the hospital. Considering ventilation and
sedation separately, the policies learnt with FQIT and NFQ
achieve similar accuracies in recommending ventilation
(both matching the hospital policy in roughly 85% of tran-
sitions), while FQIT far outperforms NFQ in the case of
sedation policy (achieving 58% accuracy compared with
just 28%, barely above random assignment of one of four
dosage levels), perhaps due to overfitting of the neural net-
work on this task. More data may be necessary to develop a
meaningful sedation policy with NFQ. However, ultimately
the goal of the policies learnt is not to simply match the
decision-making of clinicians (often biased by timing of
shifts or treatment costs, for example) but to maximize a
reward function determined solely by clinical outcomes.

We concentrate further analysis of policy recommendations
to those produced by FQIT. We divide the 664 test admis-
sions into six groups according to the fraction of FQI policy
actions that differ from the hospital’s policy: ∆0 comprises
admissions in which the true and recommended policies
agree perfectly, while those in ∆5 show the greatest devi-
ation. Plotting the distribution of number of reintubations
and of mean accumulated reward over patient admissions
for all patients in each set (Figures 7a and 7b respectively),
we see that admissions in ∆0 undergo no reintubation, and
in general the average number of reintubations increases
with deviation from the FQIT policy, with up to seven dis-
tinct intubations observed in admissions in ∆5. This trend
is reinforced by that in mean rewards across the six admis-

sion groups, which serve primarily as an indicator of the
regulation of vitals within desired ranges and whether cer-
tain criteria were met at extubation: mean reward over a set
is highest (and the range lowest) for admissions in which
the policies match exactly; mean reward decreases with in-
creasing divergence of the two policies. A less distinct but
comparable pattern is seen when grouping admissions in-
stead by similarity of the sedation policy to the true dosage
levels administered by the hospital (Figures 7c and 7d).

5 CONCLUSION

In this work, we propose a data-driven approach to the
optimization of weaning from mechanical ventilation
of patients in the ICU. We model patient admissions as
Markov decision processes, developing novel represen-
tations of the problem state, action space, and reward
function in this framework. Reinforcement learning with
fitted Q-iteration using different regressors is then used to
learn a simple ventilator weaning policy from examples
in historical ICU data. We demonstrate that the algorithm
is capable of extracting meaningful indicators for patient
readiness and shows promise in recommending extubation
time and sedation levels, on average outperforming clinical
practice in terms of regulation of vitals and reintubations.

There are a number of challenges that must be overcome
before these methods can be meaningfully implemented in
a clinical setting, however: first, in order to generate ro-
bust treatment recommendations, it is important to ensure
policy invariance to reward shaping: the current methods



(a) Ventilation Policy: Reintubations (b) Ventilation Policy: Accumulated Reward

(c) Sedation Policy: Reintubations (d) Sedation Policy: Accumulated Reward

Figure 7: Evaluating policy in terms of reward and number of reintubations suggests admissions where actions match our
policy more closely are generally associated with better patient outcomes, both in terms of number of reintubations and

accumulated reward, which reflects in part the regulation of vitals.

display considerable sensitivity to the relative weighting
of various components of the feedback received after each
transition. A more principled approach to the design of the
reward function, for example by applying techniques in in-
verse reinforcement learning (Ng et al. [2000]), can help
tackle this sensitivity. In addition, addressing the question
of censoring in sub-optimal historical data and explicitly
correcting for the bias that arises from the timing of inter-
ventions is crucial to fair evaluation of learnt policies, par-
ticularly where they deviate from the actions taken by the
clinician. Finally, effective communication of the best ac-
tion, expected reward, and the associated uncertainty, calls
for a probabilistic approach to estimation of the Q-function,
which can perhaps be addressed by pairing regressors such
as Gaussian processes with Fitted Q-iteration.

Possible directions for future work also include increasing
the sophistication of the state space, for example by han-
dling long term effects more explicitly using second-order
statistics of vitals, applying techniques in inverse reinforce-
ment learning to feature engineering (as in Levine et al.
[2010]), or modeling the system as a partially observable
MDP, in which observations map to some underlying state
space. Extending the action space to include continuous
dosages of specific drug types and settings such as ven-
tilator modes and FiO2 will also facilitate directly action-
able policy recommendations. With further efforts to tackle
these challenges, the reinforcement learning methods ex-

plored here will play a crucial role in helping to inform
patient-specific decisions in critical care.
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