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Abstract

Probabilistic relational languages lift the syntax of
relational logic for the specification of large-scale
probabilistic graphical models, often admitting con-
cise descriptions for interacting random variables
over classes, hierarchies and constraints. The emer-
gence of weighted model counting as an effective
and general approach to probabilistic inference has
further allowed practitioners to reason about hetero-
geneous representations, such as Markov logic net-
works and ProbLog programs, by encoding them as
a logical theory. However, much of this work has
been limited to an essentially propositional setting:
the logical model is understood in terms of ground
formulas over a fixed and finite domain; no infinite
domains, and certainly no function symbols (other
than constants). On the one hand, this is not sur-
prising, because such features are very problematic
from a decidability viewpoint, but on the other, they
turn out to be very attractive from the point of view
of machine learning applications when there is un-
certainty about the existence and identity of objects.
In this paper, we reconsider the problem of proba-
bilistic reasoning in a logical language with function
symbols, and establish some key results that permit
effective algorithms.

1 INTRODUCTION

Unifying logic and probability is the one of the long-
standing goals of AI [Russell, 2015]. Early efforts at-
tempted the design of general-purpose representation
languages [Bacchus, 1990], but were found to be too
expressive as they fell off the computational cliff. As
a consequence, more modest proposals, such as proba-
bilistic relational languages, were developed that lift the
syntax of finite-domain relational logic for the specifica-
tion of large-scale probabilistic graphical models. These
often admit concise descriptions for interacting ran-
dom variables over classes, hierarchies and constraints

* The author is grateful to Gerhard Lakemeyer for discus-
sions on the compactness property.

[Getoor and Taskar, 2007, Wu et al., 2012]. The emer-
gence of weighted model counting (WMC) as an effective
and general approach to probabilistic inference has fur-
ther allowed practitioners to reason about heterogeneous
representations, such as Markov logic networks and
ProbLog programs [Richardson and Domingos, 2006,
Fierens et al., 2011], by encoding them as a logical
theory. Indeed, the decision versions of both model
counting and Bayesian inference are #P-complete, and
there are polynomial-time reductions from each prob-
lem to the other [Bacchus et al., 2009]. The last decade
has seen significant progress in exact and approxi-
mate WMC technology [Chavira and Darwiche, 2008,
Gogate and Domingos, 2011, Ermon et al., 2013], which
enable deterministic reasoning and exploit context-
specific independencies.

In so much as the representation language determines
the expressiveness of the probabilistic framework, how-
ever, much of this work has been limited to an essen-
tially propositional setting. (Notable exceptions will
be discussed in the final section.) That is, the logi-
cal model is understood in terms of ground formulas
over a fixed and finite domain for a relational vocabu-
lary; no infinite domains, and certainly no function sym-
bols (other than constants). But these latter features turn
out to be very attractive from the point of view of sta-
tistical experiments and machine learning pipelines, es-
pecially when there is uncertainty about the existence
and identity of objects. Consider, for example, a tar-
get tracking application where we observe a 171 cm tall
female individual believed to be James Bond’s fiancee
[Srivastava et al., 2014]. This can be expressed as:

dx (scanned(x) A height(x) = 171 A
isFemale(x) A fiancee(james) = x)

)

which uses an existential for the unknown individual, and
functions and relations to express her properties. Per-
haps more significantly, functions can be used to ex-
press classes and hierarchies exactly as relations would



allow, but can additionally enable equational reasoning
over complex terms. For example, suppose we are in-
terested in knowledge base completion over incomplete
data [Nickel et al., 2016]. Consider the sentence:

advisor(advisor(mary)) # john A
fiancee(advisor(mary)) = beth A 2)
advisor(mary) = adam V advisor(mary) = dave

Although we do not know who mary’s advisor is, learn-
ing about beth’s betrothed, or otherwise evaluating who
among {adam,dave} are not john’s academic descen-
dants may allow us to infer just that.

Unfortunately, functions are very problematic from a de-
cidability viewpoint [Boerger et al., 1997], with many el-
ementary cases involving function symbols leading to
undecidable properties. The hope then is to identify
reasonable fragments that suffice for practical purposes.
Most of the well-studied fragments [Boerger et al., 1997]
seem to have little relevance to the encodings consid-
ered for graphical models. To that end, there have
been some attempts that allow function symbols in
probabilistic programming languages. Distribution se-
mantics [Sato, 1995] underlies languages like ProbLog
[Fierens et al., 2011], which in principle support proofs
(chains of inference) of infinite length. For example, the
following instantiates the set of natural numbers:

nat(0) A Yx(nat(x) D nat(next(x)))

where next(x) returns the successor of x understood
as x + 1. How such programs can be well-defined in
a probabilistic context has received considerable atten-
tion [Poole, 1997], leading to definitive results such as
[Riguzzi, 2015]. However, the concern here is that for
queries which require infinite support and which ad-
mit infinite explanations, probabilities are computed over
worlds that instantiate infinitely many terms. Moreover,
logic programs were never designed for equational rea-
soning over complex terms like in (2), where to find a
model, possibly infinitely many values need to be at-
tempted for advisor(advisor(mary)).

The language BLOG [Milch et al., 2005a] also recog-
nizes the importance of function symbols, but avoids in-
stantiating infinitely many terms by sampling values for
function symbols. When it comes to termination, how-
ever, a number of structural conditions need to hold, in-
cluding one that the quantifiers over formulas can only
range over finite sets. It is also unclear how the method-
ology should cope in the presence of negated atoms in-
volving functions, like in (2), where infinitely many sub-
stitutions and deterministic reasoning are needed to ar-
rive at the right answer.

In this paper, we reconsider the problem of proba-
bilistic reasoning in a logical language with function

symbols. Akin to WMC for propositional logic, our
goal is to investigate a general framework that sup-
ports an expressive fragment of a logical language,
while avoiding issues like instantiations of infinitely
many terms. In that regard, we obtain very en-
couraging results: we show that for first-order CNF
formulas — as is standard in probabilistic relational
languages [Van den Broeck et al., 2014] — mentioning
functions in an arbitrary way, logical reasoning (valid-
ity, satisfiability) is not only computable, but obtainable
by means of grounding the formulas wrt a small set of
constants. The essential idea is to exploit symmetries
over unmentioned constants. In fact, we allow existential
quantifiers, nested function terms, and quantifiers over
infinite sets. With regards to probabilistic reasoning, we
show that the above construction yields a simple WMC-
style definition for conditional probabilities; this defini-
tion is shown to enjoy a number of attractive properties
tied to logical equivalence and additivity. Throughout
the paper, we demonstrate how the methodology can be
encoded as a propositional theory, making it straightfor-
ward to use existing exact or approximate WMC tech-
nology.

2 LANGUAGE WITH RELATIONS

To prepare for the logical language with function sym-
bols, we begin with the well-understood relational coun-
terpart, and discuss the definition of weighted model
counting.

2.1 Syntax and Semantics

We let L' be a be a first-order language with equality,
relational symbols {P(x),..., Q(x,y),...,R(x,y,2),...},
variables {x,y,z,...}, connectives V, A, =,V and a finite
set of constants D, serving as the domain of discourse for
quantification. Usual abbreviations hold for connectives:
we write @ D S (material implication) to mean —a V 3,
a =  (equivalence) to mean (¢ O §) A (8 D @) and Jxa
(existential quantification) to mean —~Vx-a.

The set of (ground) atoms is obtained as:'

ATOMS = {P(ay,...,a) | Pis a predicate, a; € D}.

A L3'-model M is a {0,1} assignment to the elements
of ATOMS. Using k= to denote satisfaction, the seman-
tics for ¢ € L' is defined as usual inductively, but with
equality as identity: M = (a = b) iff a and b are the same
constants, and quantification is understood substitution-
ally over all elements of D: M | Vx¢(x) ifft M | ¢(a) for

'Because equality is treated separately, atoms do not in-
clude equalities.



all a € D. We say ¢ is satisfiable iff there is a L3'-model
M such that M = ¢. We say that ¢ is valid, written = ¢,
iff for every L'-model M, M [ ¢.

It is not hard to see that L} is essentially propositional.
That is, let L™ be a propositional language over propo-
sitions {p, g, ...} and connectives {—, V, A}. Understand-
ing a £7P-model to mean {0, 1} assignments to L7™P-
formulas, we have:

Proposition 1 Suppose * is a bijection from ATOMS to
the propositions in L7, For any a € L}, let a* be
a with every atom p replaced by the proposition p*. A
quantifier and equality-free formula ¢ € L' is satisfi-

able iff p* € L7 is satisfiable.

2.2 Weighted Model Counting

In a nutshell, WMC extends #SAT in summing the
weights of the models of a propositional formula ¢:

WMC(¢, w) = Z w(M)
ME¢
where M is an L}y'-model, and w is a weight function.
The weight function is usually factorized. For exam-
ple [Van den Broeck et al., 2014], suppose v, v map pred-
icate symbols from ¢ to R*, p € M are those atoms that
are true at M, and p ¢ M are those that are false. Then:2

w(M) = ]_[ W(PRED(p)) X ﬂ %(PRED(p))
PEM pEM
where PRED maps an atom to its predicate.

WMC has emerged as a basic computational framework
for encoding many formalisms, such as Markov logic
networks [Van den Broeck et al., 2014] and ProbLog
programs [Fierens et al., 2011].

Finally, given a query Q and evidence E, both of which
are propositional formulas, we define the probability of
Q given E wrt (¢, w) as:

Pr(QIE)= WMC(@ A QA E,w)/WMC($ A E,w).

3 LANGUAGE WITH FUNCTIONS

We now define the logical language in a general way.

3.1 Syntax and Semantics

Let L7 be a first-order language with function symbols
{f(x),....8(x,y),...,h(x,y,2),...}, variables, equality,

2Alternatively, a weight function could map atoms them-
selves to positive reals [Chavira and Darwiche, 2008]. The na-
ture of the weight function is irrelevant for most of the technical
development in this paper.

logical connectives {V,—, A,V} and a countably infinite
set of constants (say) N. For presentation purposes, we
often use identifiers such as Latin alphabets (a, b, . . .) and
proper names (john, jane, ...) to implicitly mean ele-
ments of N. We understand {D, =, 3} as usual.

The terms of the language form the least set containing
the variables, constants, and function symbols applied to
terms (e.g., f(g(x),x,a,b).) A primitive term is a func-
tion symbol applied to constants only. A primitive atom
is of the form # = a, where ¢ is a primitive term and a € N.
In other words, the set of primitive atoms is obtained as:

ATOMS = {f(ai,...,ar) = ag | f is a function, a@; € N}.
In general, atoms may be positive or negative, that is,
they are of the form ¢ = ¢ or =(¢ = t'), and formulas are
built from atoms and connectives as usual. We write ¢ #
¥ to mean —(t = t'). A clause is a disjunction of atoms.
Ground formulas and terms are those not mentioning any
variables.

A Li7N-model M maps primitive terms to N. We extend
the notion of co-referring constants to arbitrary ground
terms as follows. For any ground term 7 and M, we define
|t|as as:

o ifreN, |ty =t

o |f(n,....t)lm = M[f(ay,...,ax)] where a; = [ti|m.
The semantics for ¢ € LN is defined as usual induc-
tively, but with equality as identity over co-reference:
M E (¢t = °) iff |t|y and |¢'|y are the same constants,
and quantification is understood substitutionally over all
constants: M | Vx¢(x) ifft M | ¢(a) for all a € N. Satis-

faction and validity is defined as usual.

3.2 A Propositional Fragment

Our intuitions from L' and L7 do not carry over
to LIV in an obvious way as it is defined over in-
finitely many terms and an infinite domain. In fact,
even disallowing nesting of function symbols does not
make it any easier. To see this, call a formula flat
iff the argument to a function is either a constant or
a variable. A ground flat clause is then of the form
flai,...,ar) =agV...vVg(bi,...,br) # by. So, consider
the formula f(1) # 1. Clearly, this has infinitely many
models: {f(1) =c|ceN-{1}}, and moreover, WMC
would also be ill-defined in general.

However, if we define the fragment LN < LN as the
set of ground flat formulas over a finite set of constants
D C N, then we note that ATOMS is finite, and every
formula of £ has finitely many models.



We can also intuit a definition for WMC. Given a ground
flat formula ¢, a domain D, and a weight functions v, v
that map function symbols to positive reals, we have:

WMC(¢, D, w) = Z ]_[ V(FUN(p)) X ]_[ H(FUN(p))

MF¢  peM peM

where FUN maps a primitive atom to its function sym-
bol, and as usual p € M are those primitive atoms that
are true at M, and p ¢ M are those that are false.’

Example 2 Consider f(a) # a over domain {a, b}. We
have primitive atoms {f(a) = b,f(b) = b, f(a) =
a, f(b) = a}, and models M; = {f(a)=0b, f(b) = a}
and M, = {f(a)=0b,f(b) =>b}. Then the atoms in
{f(a) = b, f(b) = a, f(a) # a, f(b) # b} are satisfied at
M, and those in {f(a) = b, f(b) = b, f(a) # a, f(b) # a}
at M,. Suppose v maps f to 2 and v maps it to 1. Then,
w(M) =w(M) =2x2x1x1=4.SoWMCiis 8.

3.3 More Expressiveness

We are caught between two extremes. The language
LN is undecidable, but on the other hand, L™ is
clearly too limited as we have gained nothing over £
We will now attempt to motivate a fragment with first-
order features in between these extremes. Consider that
the fragment will determine the expressiveness of our
knowledge bases.

Perhaps the simplest way to go beyond L™ is to limit
our attention to ground flat formulas from L3N, As men-
tioned earlier, this fragment has infinitely many atoms,
and formulas such as f(1) # 1 has infinitely many mod-
els. Thus, it already represents a non-trivial and chal-
lenging extension to L™,

What the fragment does not yet allow is existential quan-
tifiers. One of our primary motivations was to allow for
identity uncertainty in an unrestricted manner: that is,
admitting sentences such as dxf(x) # 1 in our KBs.
Of course, we can use Skolemization: introduce a new
nullary function g and concern ourselves instead with
the sentence f(g) # 1. Moreover, this formula can be
brought to a flat form: Vz(g = z O f(z) # 1). The very
same recipe can also be applied to nesting of function
symbols: consider VYx(next(x) # x D next(next(x)) # Xx),
which says that if the successor of x is not x, then neither

30ur definition of WMC is reasonable when consider-
ing the simulation of a predicate P(xi,...,x;) by a function
f(x1,...,x) as follows: P(xy,...,x) = f(xy,...,x) =1 with
the additional constraint: f(x;,...,x) =1V f(xy,...,x) =0.
It is then not hard to see that our definition of WMC for func-
tions coincides with the relational version. While variant for-
mulations are conceivable, much of the technical contributions
in this paper do not hinge on the definition.

is the successor of the successor of x. This is equivalent
to Vx, z(next(x) # x D (next(x) = z D next(z) # x)).

These reformulations notwithstanding, it should be clear
that since quantifiers range over N, a formula such as
Vz(g = z D f(z) # 1) is logically equivalent to in-
finitely many clauses: (g = 1 > f(1) # 1),(g = 2 D
f(2) # 1), and so on. We will identify a way to effec-
tively reason over such knowledge bases. Concretely,
let a basic clause be a disjunction of atoms of the form
f(x1,...,xr) 0 x9, where o € {=, #} and x; are either con-
stants or variables. (So, a ground basic clause is a dis-
junction of positive or negative primitive atoms.) Then:

An acceptable knowledge base is a satisfiable, compact
and finite set of universally quantified basic clauses.

This is a very expressive fragment that handles existen-
tial quantifiers, nested functions, and infinite domains.
(We need to assume that knowledge bases are compact, a
property we formally define in a short while.) To handle
acceptable KBs, however, we will first need to solve the
problem of reasoning about ground flat formulas from
LFNUN'

4 SATISFIABILITY AND VALIDITY

Before we discuss model counting, we will need to con-
sider the problem of logical reasoning for which we first
turn to ground flat formulas from L™ before consider-
ing quantified formulas.

4.1 Ground Flat Formulas

Since formulas such as f(1) # 1 has infinitely many
models over infinitely many literals, we cannot readily
apply existing propositional techniques. Our key result
here is to show that logical reasoning is possible by con-
sidering finitely many values for terms.

To achieve the result, a crucial observation is this: when
considering assignments to primitive terms in a ground
flat clause, constants that are outside the KB behave iden-
tically, at least as far as satisfiability is concerned. For
example, consider f # 1. Then, (f = 2) A(f # 1) is
satisfiable, but sois (f = 3) A (f # 1).

More precisely, given a ground flat formula ¢ in CNF
(that is, conjunctions of clauses), define:

e TERMS(¢) as the set of primitive terms in ¢;
o CONS(¢) is the set of constants in ¢;
e XOR(#,C) =\ 4ec(t = a), for any C C N;

o XOR($) = ¢ A Aerrrusiey XOR(, D), where D =



CONS(¢) U {b} and b is any constant not mentioned
in CONS(¢).

So, XOR(?, D) is a disjunction over possible assignments
to ¢, which includes every constant in ¢ plus an arbi-
trary new one, and XOR(¢) conjoins this constraint for
all terms to ¢.

Example 3 Let¢ = (f # 1V g(l) =2)Ag(l) # 1. Then
fort € {f,g(1)}, XOR(t,D) = (t=1Vvi=2Vt=3),
where D = {1,2, 3} and 3 is some arbitrary new constant.
So XOR(¢) = ¢ A XOR(f, D) A XOR(g(1), D).

It is worth remarking that repeated applications of XOR
do not change the meaning of the formula:

Proposition 4 XOR(¢) = XOR(XOR(¢)).

Proof: Suppose CONS(¢) = {ai,...,ar}, and
let D = CONS(¢) U {b}. Then, for every t €
TERMS(¢), XOR(¢) includes XOR(¢, D). Observe that
TERMS(XOR(¢)) = TERMS(¢). So, for for every ¢ €
TERMS(¢), XOR(XOR(¢)) includes XOR(z, D) (from
XOR(¢)) and XOR(z, D’), where D’ = D U {c} and c is
some new constant. But then XOR(z, D) = XOR(z, D) A
XOR(t, D), since XOR(z, D) is a weaker constraint. il

Putting it together, here is the main theorem:

Theorem 5 Suppose ¢, a are ground flat formulas. Then
¢ E a iff XOR(¢ A —a) is unsatisfiable.

Essentially, the forcing constraints for primitive terms
added to a formula limit the number of possible assign-
ments, making it essentially equivalent to a propositional
theory, a point we return to later. But first, to establish
the theorem, we proceed as follows:

Lemma 6 Suppose ¢ is a ground flat formula, and t €
TERMS(¢p). For any a,b ¢ CONS(¢), ¢ A (t = a) is
satisfiable iff § A (t = b) is satisfiable.

Proof:  Suppose M | ¢ A (t = a) iff by definition,
M E ¢ and M[1] = aiff M ¢!, where ¢/, is ¢ with ev-
ery occurrence of  replaced by a. Now, ¢/, does not men-
tion ¢, and moreover, every occurrence of ¢ = ¢ for some
¢ € CONS(9) is replaced by a = ¢, and every occurrence
of t # c is replaced by a # c. But because a ¢ CONS(¢)
and equality is understood as identity, a = c is false ev-
erywhere, and a # c is true everywhere. By extension,
because b ¢ CONS(¢), ¢/, is logically equivalent to ¢} .
Since ¢;, does not actually mention #, construct a M” such
that M’[t] = b and for all terms ¢’ # t, M'[{'] = M[{].
Clearly, M' = ¢ A (t = D). 1

Lemma 7 Suppose ¢, D and t are as above. Then ¢ is
satisfiable iff § A XOR(¢, D) is satisfiable.

Proof:  The if direction is obvious, since the satisfia-
bility of ¢ A XOR(#, D) immediately implies that of ¢.

So suppose M = ¢. By construction, there is some a € N
such that M[f] = a. So ¢ A (¢ = a) is satisfiable.

Suppose (1 = a) is mentioned in XOR(#, D), then M
XOR(t, D) and so we are done. Suppose not, that is, a ¢
D. Then, a ¢ CONS(¢) as well. Suppose b € (D —
CONS(¢)). So we have that ¢ A (r = a) is satisfiable iff
by Lemma 6, ¢ A (¢ = b) is satisfiable, which means that
dAN({E=aV...Vt=a,Vt=>b)mustbe as well. ll

Corollary 8 Suppose ¢ is above. Then ¢ is satisfiable iff
XOR(9) is satisfiable.

We are now prepared for the proof of Theorem 5.

Proof: Here, ¢ F « iff ¢ A -« is unsatisfiable iff by
Corollary 8, XOR(¢ A =) is unsatisfiable. Il

The added constraints essentially limit the number of as-
signments to primitive terms, and in fact, we can think of
each atom in XOR(#, D) as a proposition, and thereby re-
turn to the familiar setting of £, First, let us introduce
the logical exclusive-or symbol @ with the understanding
that for any model M, M = p1 @ ... ® p; iff M | p; for
some i and M - p; for all j # i. Observe that, in LI~,
replacing the disjunctions in XOR(z, D) with & does not
affect logical equivalence, since the semantics enforces it
anyway.

Proposition 9 Suppose XOR(¢) is as above, and
XOR'(¢) denote the same formula but with every
XOR(t,D) = (t = a4 V...Vt = a) replaced by
(t=a1®...®t=a). Then XOR(¢p) = XOR'(¢).

However, the point is that by making the exclusive-or
explicit preserves satisfaction in the simpler £,

Proposition 10 Suppose * is a bijection from the atoms
in XOR(¢) to the propositions in L. Then ¢ is satisfi-
able iff (XOR'(¢))* € L7 is satisfiable.

Example 11 Suppose ¢ = (f # 1), then XOR(¢) =
¢ A(f =1V f=2). Then the LiN-model M = (f =
2) A (f # 1) is the only one satisfying XOR(¢). Al-
ternatively, suppose p and g are propositions from L7,
and suppose *: [f = 1,f = 2] — [p,q] is a bijection,
then (XOR'(¢))* = =p A (p & ¢), and the LP-model
M = {q,—-p} is the only one satisfying (XOR'(¢))*.

Corollary 12 Suppose ¢,a are ground flat formulas.



Then there is a formula B = (XOR'(¢ A —a))* € L
such that ¢ = « iff B is unsatisfiable.

4.2 Acceptable Knowledge Bases

Here, we will be interested in a version of Corollary 12
but under the generalization that ¢ is an acceptable KB.
Unfortunately, in general, acceptable KBs are logically
equivalent to a possibly infinite set of ground clauses,
so we cannot simply apply Corollary 12. Our key result
will be to show that grounding the KB wrt a finite set of
constants is sufficient for checking satisfiability.

First, some notation. Given a universally quantified basic
clause such as Vx, y(f(x) = y vV g(y) = x), let its rank be
the maximum number of variables mentioned (here 2). A
ground clause, then, has 0 rank. The rank of an accept-
able KB is the maximum of the ranks of its clauses.

Given an acceptable KB ¢, a ground theory is obtained
by substituting variables with constants. Suppose 6 de-
notes a substitution. For any set of names D C N, we
write 8 € D to mean substitutions are only allowed wrt
the constants in D. Then, define:

e GND(¢) ={cO| (Vx,...,yc) € ¢,0 € N};

e GND(¢,k) = {cO| (Vx,...,yc) € ¢,0 € D}, where
k > 0 and D is the set of constants mentioned in ¢
plus k (arbitrary) new ones;

e RGND(¢) = GND(¢, k) where k is the rank of ¢;

e XOR(¢) = ¢ A Aserermsy) XOR(2, D) where ¢ =
RGND(¢), and D = CONS(¢¥) U {b} and b is any
constant not mentioned in CONS(¢).

Note that XOR(¢) for acceptable KBs and ground flat
formulas is compatible: if ¢ is a ground flat formula, then
its rank is 0, and so, in fact, RGND(¢) = ¢.

Example 13 Let ¢ denote {VYx(father(x) # adam D
mother(x) # beth)}. Abbreviating symbols to their first
letters, we have:

e GND(¢,0) = {f(a) # a D m(a) # b, f(b) # a D
m(b) + b};

e RGND(¢) = GND(¢,0) U {f(c) # a D m(c) # b},
because ¢’s rank is 1 and where c is arbitrarily cho-
sen from N — {a, b};

e XOR(¢) = RGND(¢) U {XOR(t, D):t € T}, where
T = {f(@),m(a), f(b),m(b), f(c),m(c)} and D =
{a,b,c,d}.

e GND(¢) = RGND(¢p) U {f(d) # a D m(d) #
b, f(e) #a>m(e) #b,...}.

We are now in a position to formally discuss the compact
property we expect of our knowledge bases.

Definition 14 Suppose ¢ is a conjunction of universally
quantified clauses, of rank k. Suppose GND(¢) is satis-
fiable iff GND(¢, j) is satisfiable for all j > k. Then we
say ¢ is compact.

Recall that the compactness theorem [Enderton, 1972]
says that a possibly infinite set of sentences S is sat-
isfiable iff every finite subset of S is satisfiable. This
property does not hold LN, not even when restricted to
universally quantified basic clauses. Therefore, we ex-
plicitly require that our knowledge bases are compact.*

The main theorem for the section is:

Theorem 15 Suppose ¢ is an acceptable KB, and « is
any ground flat formula. Then ¢ = « iff XOR(¢ A —a) is
unsatisfiable.

Proof: Let us suppose ¢’s rank is k. We first begin
with some observations. Note that ¢ E «a iff ¢ A —a is
unsatisfiable iff GND(¢) A —a is unsatisfiable. Also note
that = ¢ A—a is also an acceptable KB, since —« can be
converted to a ground flat clause. Finally, by Corollary
8, RGND(y) is satisfiable iff XOR(y) is, and so in the
arguments below, we only make use of RGND(y).

The if direction is immediate, because if RGND(¢ A —a@)
is unsatisfiable, then so is GND(¢ A =a) = GND(¢) A -«
since RGND(¢ A ~@) € GND(¢ A ~).

For the only-if direction, suppose ¢ = a but RGND(¢ A
—) is satisfiable. It suffices to show that for the accept-
able KB ¢ = ¢ A —a of rank k if A = RGND(y) =
GND(y, k), is satisfiable then so is A’ = GND(¥, j) for
any j > k. Then, by the compact property assumption,
this means GND() = GND(¢) A —a is also satisfiable,
which contradicts ¢ E a.

Without loss of generality, assume CONS(A’) =
CONS(A) plus n new ones, where n = j — k. By assump-
tion, there is a M such that M | A. Construct a M’:

1. for all t € TERMS(A), M’[t] = M[t];

4Our view is that KBs not enjoying the compact
property do not come up often in practice. To see
an example of such a KB, imagine a language with
2 function symbols that simulate relations R(x,y) and
P(x) respectively. Then, let ¢ be {Vx,y,z (R(x,y) A
R(y,z) > R(x,2)),Yx (=R(x,x)),¥x (P(x) > Jy (R(x,y) A
P(y))), ¥x (=P(x) 2 y (R(x,y) A =P(y))), P(1),~P(2)}. That
is, R is irreflexive but transitive. After Skolemization and flat-
tening, it can be seen that XOR(¢) (and hence, RGND(¢)) is
unsatisfiable, but strangely, GND(¢) is indeed satisfiable in a
LFN-model where infinitely many instances of P are true and
infinitely many instances of P are false.



2. for all t ¢ TERMS(A'), M'[t] = M[t];

3. for all t € TERMS(A’” — A), do as follows. Con-
sider that 7 is mentioned in some c € (A’ — A)
such that Vx,...,y ¢ € ¢, and 6 is a substitution
possibly using constants from ¢ and A, but at least
some, say di,...,a;, [ < k, from (A" — A). (Oth-
erwise, cf ¢ (A’ — A).) But by that account, 6 does
not mention / constants from CONS(A)— CONS(¥),
say by, ..., b;. Let = be a bijection from N to N such
that maps a; with b; but otherwise maps constants to
themselves.

By construction, (c6)*, that is, c8* € A. In other
words, for every f(ey,...,e;) = ey appearing in c#6,
(fler,....e;) = ep)", thatis, (f(e},...,e;) = eg) €
co. Let M'[f(ey,...,e)] = M[f(e],....e))]

We have completed the construction of M’. It is easy to
show (by induction) that M’ satisfies A because of con-
struction step (1). Similarly, it is easy to show that M’
satisfies A’ — A because of construction step (3). Thus,
M’ satisfies A’ and we are done. I

Example 16 Suppose ¢ is the conjunction of
female(beth) = 1,¥Vx(female(x) = 1V female(x) = 0),
and Vx(female(x) = 1 D Vy(father(y) # x)), that is, if x
is a female than she is not a father to any y.

Suppose «a is father(beth) # beth. Suppose RGND(¢ A
—@) is wrt constants {beth,adam,dave}, since (¢ A
—a)’s rank is 2. Observe that XOR(¢ A —a) includes
father(beth) # beth from ¢ and father(beth) = beth from
-, which is inconsistent. So ¢ E «.

Suppose 8 = (father(adam) = beth). It is not hard to see
that XOR(¢ A —f) is satisfiable, and so ¢ [~ S.

At this point, it should be clear that the familiar setting
of LPr is sufficient here as well:

Proposition 17 Suppose = is a bijection from the atoms
in XOR(¢ A —a) to the propositions in L, and
XOR'(9) is as before. Then ¢ E a iff XOR'(¢p A —~a@))* €
LP is unsatisfiable.

S WEIGHTED MODEL COUNTING

We now propose an account of WMC for acceptable
KBs, which will then lead to a notion of conditional
probabilities. The proposal is motivated from a logi-
cal point of view, that is, the definition of probabilities
obeys a number of non-trivial properties that respect log-
ical entailment over possibly infinitely many atoms.> In

5Other accounts of probabilities in the presence of infinitely
many atoms are also conceivable [Singla and Domingos, 2007,

essence, the definition satisfies the following properties
in a first-order setting:

1. Ifthe query is believed, it has probability 1.

2. Ifthe query contradicts what is believed, it has prob-
ability 0.

3. Ifthe query mentions unknown individuals, these in-
dividuals are interchangeable with other unknowns.

4. If two queries are logically equivalent, then they
have the same probability.

5. Probabilities satisfy the addition laws over Boolean
connectives [Fagin and Halpern, 1994].

The proposal, as one would surmise, leverages Theorem
15 as this has the advantage of grounding the KB wrt
finitely many constants. Moreover, from a representa-
tional viewpoint, no structural assumptions are needed
about the encoding. Recall that we provided a definition
for WMC(¢, D, w) earlier, that is, where the domain was
fixed to a finite set of constants D. If the D is implicit, as
enabled by a set of possible assignments like XOR(z, D),
we simply write WMC(¢, w). Turning now to a countably
infinite domain, such as N, we define:

WMC(¢, N, w) = WMC(XOR(¢), w)

That is, we compute the WMC of XOR(¢) (where the
domain is implicit).

Suppose Q, E are ground flat formulas.® Then, the prob-
ability of Q given E wrt (¢, w) is defined as:

P (Q1 E) = WMC(HAQAE, N, w)/ WMC(SAE, N, w).

We drop the subscript (¢, N, w) when the context is clear,
and often write Pr(Q) to mean E = true. Of course, by
means of Proposition 17, probabilities can be computed
using propositional WMC. For the sake of completeness,
Algorithm 1 provides the pseudocode.

Overall, the definition is reasonable in terms on the fol-
lowing properties:

Theorem 18 Suppose ¢ is any acceptable KB, «,f
ground flat formulas, and w any weight function map-
ping function symbols to positive reals. Then

Riguzzi, 2015].

%Observe that the WMC formulation is sensitive to the set
of ground atoms over which the set of interpretations are con-
sidered. So, for purely technical reasons, we need to assume
that all the primitive atoms in {Q, E} are also mentioned in
¢. This is without loss of generality: let y = {(p V —p) |
atom p is mentioned in Q A E}. Since ¢ Ay = ¢, replace ¢
with ¢ A v when computing the model count.



Algorithm 1 Prx,,)(Q | E) using propositional WMC

Iy =¢ANQANE,ap =¢pANE

2: ,B,' = XOR,(Q,‘)

3: > Construct bijection * to map atoms in XOR(«a;) to
propositions py, ..., p,

4 yi =B

5: » Construct « to map a L7 model to the weight of
the corresponding L™ model, which is obtained by
mapping propositions back to £{’~-atoms using *

6: return WMC(y1, u)/ WMC(y,, u)

1. Pr(e)=1ifF¢Da;
2. Pr(@) =0ifE ¢ D —a;

3. Pr(a) = Pr(a*) for any bijection = from N to N such
that it maps names from ¢ to themselves and other-
wise arbitrary;

4. Pr(a) =Pr(B) ifa = 6;
5. Pr(a Vv B) = Pr(@) + Pr(B) — Pr(a A B);
6. Pr(a) = Pr(a A B) + Pr(a A —B).

Proof: For (1), since E ¢ D @, ¢ = ¢ A a. For (2), if
¢ E -, ¢ Aa has no model. For (3), by construction, (¢A
)" = ¢ Aa*. By induction on @, we can show that for any
model M of ¢ A, we can construct a model M’ of p A,
and vice versa. For (4), assume «a and S mention the same
set of atoms. (If not, augment the formulas appropriately
in a equivalence-preserving manner.) Then, M = ¢A« iff
by definition, M = ¢ and M [ « iff by assumption, M |
¢and M = Bifft M | ¢AB. So every model of XOR(pA@)
is amodel of XOR(¢AR) and vice versa. For (5), M | ¢A
(avB)iff M = pAaor M |E pAB. Itis not hard to see that
the models of XOR(¢A(aVp)) is the union of XOR(pA@)
and XOR(¢ A B). By applying the cardinality property
for set union, we avoid double counting by subtracting
the intersection, which is precisely the set of models for
XOR(¢ A (@ A B)). The proof for (6) is analogous, but
we recognize that the models for ¢ A @ A 8 and those for
¢ A @ A = are disjoint. il

Example 19 Suppose ¢ is the conjunction of
father(adam) = dave, and Vx(father(x) # x). Sup-
pose the weight function is factorized in terms of v,V
(that is, positive and negative instances) which map
father to 1 and 1 respectively, for simplicity. Here are
a few examples corresponding to items 1, 3 and 5 from
Theorem 18:

o Suppose « is father(dave) # dave. Since ¢’s rank
is 1, and letting beth be the new constant, it is

easy to see that XOR(¢) includes formulas such as
father(adam) #+ adam and father(dave) # dave, and
so XOR(¢) is identical to XOR(¢ A @), and thus,
Pr(a) = 1.

e Suppose « is father(john) = dave. Since john is not
mentioned in ¢, let * be a bijection that maps john
to jane but otherwise maps constants to themselves.
So a* = (father(jane) = dave).

Recall that, prior to computing the model counts,
we need to ensure that the atoms in the query
are also mentioned in ¢. So, let ¢’ = ¢ A (@ V
—a@). Then RGND(¢’) involves grounding ¢’ wrt
the constants in ¢’ plus one new one, say, mary.
Next, XOR(¢’) over a new constant beth essen-
tially boils down to the ground terms father(x), x €
{dave,john, mary} taking on possible values y €
{dave, adam, john, beth, mary} under the constraint
x # y. Note that ¢’ already assigns dave to
father(adam), and so this ground term is not sig-
nificant. In sum, each of the 3 ground terms can
take on 4 possible values, and so the model count of
XOR(¢) = 43. In contrast, XOR(¢’ A ) additionally
assigns a value to the term father(john) and there-
fore its model count is 42, yielding Pr(e) = 1/4.

Now, consider a* and to account for the unmen-
tioned atoms, let ¢ = ¢ A (¢* V —a®). It is not
hard to see that the model count of XOR(¢"”) = 43
and that of XOR(¢"’ Aa*) = 42 and so Pr(a*) = 1/4.

e Suppose « is father(john) = dave and B is
father(john) = adam. To account for the unmen-
tioned atoms, let ¢’ = ¢ A (@ V —a@) A (BV —5). Anal-
ogous to how we proceeded before, XOR(¢") has a
model count of 43, and XOR(¢’ A @), XOR(¢’ A B)
a model count of 42. Since @ A B is unsatisfiable,
XOR(¢" A (@ A B)) has a model count of 0. So,
Pr(a) = 1/4, Pr(B) = 1/4, Pr(a A B) = 0 and there-
fore, Pr(a vV B) = 1/2.

To reiterate the intuition, these probabilities account for
the unknowns: RGND(¢) accounts for unknown terms,
XOR(¢) accounts for unknown values to these terms,
which is then used to define Pr.

6 LINEAGE AND DISCUSSION

In the literature on extending graphical models to han-
dle first-order features, several influential papers have
appeared. We sketch the main directions that are most
closely related to our own work, and refer interested
readers to [Milch et al., 2005a, Russell, 2015] for a more
comprehensive list.



While existential quantifiers are already dis-
cussed in finite-domain Markov logic  net-
works [Richardson and Domingos, 2006], these are,

in fact, interpreted as a disjunction over ground in-
stances, which is possible because the domain is finite.
To avoid such expansions, [Van den Broeck et al., 2014]
suggest an elegant alternative. There is also exten-
sive work in database theory on labeled unknowns
[Farré et al., 2007], and in the verification community
on functions in ground formulas against background
axioms (e.g., theory of arithmetic) [Barrett et al., 2009].
In that vein, logical languages with arithmetic con-
straints have been shown to be useful for prob-
abilistic reasoning in mixed discrete-continuous
spaces [Sanner and Abbasnejad, 2012, Belle et al., 2015,
Alberti et al., 2016, de Salvo Braz et al., 2016]. Using
the relational structure to speed-up inference has
also received attention [Gogate and Domingos, 2011,
de Salvo Braz et al., 2005, Van den Broeck et al., 2014].
A synthesis of both threads is further investigated
in [de Salvo Braz and O’Reilly, 2017].

The starting point for our work was a recent attempt
to lift the finite domain assumption in probabilistic re-
lational languages [Belle, 2017]. The thrust of our re-
sults follows the style of that work; however, function
symbols necessitated a completely new set of techni-
cal devices. Recall that a key construction throughout
this paper was a way to reason about possible assign-
ments to ground terms in a finite manner; this is based
on a reformulation and generalization of the develop-
ment in [Belle and Lakemeyer, 2011]. Moreover, when
limited to universally quantified clauses over a relational
vocabulary, the compactness theorem from propositional
logic is applicable [Belle, 2017, Theorem 8]. As we saw,
compactness does not hold for us. Finally, from an ex-
pressiveness point of view, functions are more powerful.
Recall that functions can simulate predicates easily. For a
function f(x) to be simulated by a predicate, we need an
extra argument for the value: f(x) = z can be represented
by P(x, z). The trouble is that functions are implicitly as-
sumed to be assigned a value, but then we would need
a constraint Iz (P(x, z)) in the knowledge base, but this
cannot be represented in [Belle, 2017], because no exis-
tential quantifiers are allowed. (It cannot be replaced by
a disjunction because the range of z is N.) Of course, with
functions, we are able to also handle nesting of terms.

In general, the crux of our work is in handling infinite
domains. In that regard, [Singla and Domingos, 2007]
handle infinite domains in Markov logic networks using
locality constraints over Gibbs measures, [Jaeger, 1998]
proves decidability in infinite-domain relational BNs
given independence constraints in query atoms,
[Laskey and da Costa, 2005] provides a semantics for

infinite-state BNs assuming stratification conditions, and
[Milch et al., 2005b] provide a semantics for infinite-
state BNs while assuming that only a finite number
of ancestors affect a variable, which drives the formal
foundations of BLOG. Readers may want to consult
[Milch et al., 2005a, Singla and Domingos, 2007] for
a better understanding on how other known methods
in the literature, e.g. [Gilks et al., 1994], compare to
those listed here. Finally, as mentioned earlier, most
languages based on distribution semantics admit infinite
instantiations [Sato, 1995].

In our view, all of these approaches are interesting, and
it is difficult, from a formal angle, to suggest that one
approach subsumes another. What we have attempted
in this paper is a new algorithmic contribution that: (a)
makes no assumptions about the syntax (outside of as-
suming it is in CNF, which is usual), (b) can embody
full logical reasoning over complex, nested terms and un-
bounded quantification, and (c) can simply use any stan-
dard exact or approximate model counter.

While we investigated general results, it is conceivable
that more restricted fragments are sufficient for the ap-
plication at hand. Perhaps ground flat formulas in L™
(discussed in Section 4.1) represents the most useful but
non-trivial extension to the propositional fragment from
Section 3.2, the latter being virtually identical to exist-
ing probabilistic relational languages. Roughly, if we
think of the propositional fragment as an instantiation of
a first-order language where both the arguments and val-
ues come from finite sets, Section 4.1 can be thought of
as an instantiation where only the arguments come from
finite sets. Thus, while standard probabilistic relational
languages are restricted to finite-outcome discrete distri-
butions, the fragment from Section 4.1 could be used for
aricher class of distributions.

For the future, it would be worthwhile to better relate
the semantics of other infinite domain approaches and
our proposal. Moreover, in this paper, we exploited
symmetries over unmentioned constants, and it would
be worth exploring how symmetries over instances can
be additionally exploited [Van den Broeck et al., 2014,
Belle, 2017].

In the last decade, weighted model counting has en-
abled efficient probabilistic reasoning in a number of
challenging domains and over heterogeneous represen-
tations. Like classical model counting, our approach
supports a general grammar where logical connectives
{V, A, =} can be used freely. In this spirit, the methodol-
ogy in this paper could serve as a general framework onto
which one would encode expressive first-order proba-
bilistic logical and probabilistic programming languages
involving functions and quantifiers.
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