THE ANALYTIC
S-MATRIX

BY

R.J.EDEN P.V.LANDSHOFF D.I.OLIVE
J.C.POLKINGHORNE

i

3
3
A*A‘AE;;A‘L;A
i

CAMBRIDGE
AT THE UNIVERSITY PRESS
1966

T



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcéon 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Cambridge University Press 1966

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1966
First paperback edition 2002

Library of Congress Catalogue Card Number: 66-13387

ISBN 0521048699 hardback
ISBN 0521 523362 paperback



CONTENTS
Preface

Chapter 1. Introduction
1.1 Survey of objectives

1.2 The S-matrix and its unitary and kinematic
properties

1.3 Analyticity, crossing and dispersion relations
1.4 High-energy behaviour and subtractions

1.5 Feynman diagrams and the S-matrix

1.6 Applications

Chapter 2. Analytic properties of perturbation theory
2.1 Singularities of integral representations
2.2 The Landau equations
2.3 The triangle graph
2.4 The square graph

2.5 Single variable dispersion relations and physical-
region singularities

2.6 Scattering amplitude as a function of two variables
2.7 Continuation in the external masses

2.8 The acnode graph

2.9 Discontinuities and generalised unitarity

2.10 Second-type singularities

Chapter 3. Asymptotic behaviour
3.1 Complex angular momentum

3.2 Relativistic theories

page vii

10
22
26
36

39
50
57
73

80
90
99
104
110
116

123
126



3.3
3.4
3.5
3.6
3.7

3.8
3.9

CONTENTS
High-energy behaviour in perturbation theory

End-point contributions
Regge poles in perturbation theory
Mellin transforms and ladder diagrams

Pinch contributions and the Gribov-Pomeranchuk
phenomenon

Regge cuts

Particles with spin : Reggeisation

3.10 Production processes

Chapter 4. S-matrix theory

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Introductory survey

Unitarity and connectedness-structure
Lorentz invariance and kinematics
Analyticity

Physical-region poles

Hermitian analyticity and extended unitarity
Normal-threshold discontinuities
Antiparticles, crossing and the TCP theorem
Unstable particles

4.10 Generation of singularities

4.11 The triangle singularity in the physical region

References

Index

page 131

138
146
151

158
163
170
176

182
185
196
204
211
220
229
238
247
258
266

279

285



CHAPTER 1
INTRODUCTION

1.1 Survey of objectives

We begin by considering the motivation for developing an S-matrix
theory of particle interactions. The purpose of the book is to indicate
how such a theory may be developed from physical principles and to
discuss some of the properties of the S-matrix. Particular attention
will be given to its analyticity properties and our study of these will
rest very largely, though not entirely, on an analysis of the corre-
sponding properties of Feynman integrals.

At present it is believed that the forces between particles fall into
four categories, depending on their strength. The most familiar of
these is the electromagnetic force, which has been expressed in terms
of a field since the work of Maxwell. The quantisation of the electro-
magnetic field finally resolved the old paradox of the wave and particle
nature of light.

The quantisation procedure uses either a Lagrangian or a Hamilto-
nian whose form is taken from classical physics. A solution of the
resulting equations can be achieved in the form of a perturbation
series expansion in powers of the square of the electric charge which,
in rationalised units, is

The two most important difficulties encountered in this perturbation
solution arise from two types of divergence. One of these, the infra-red
divergence, can be eliminated in principle by taking account of the
fact that the zero mass of the photon makes it impossible for the
number of zero-energy photons to be measured. The other, the ultra-
violet divergence, is eliminated by renormalisation, although it may
be thought that the manipulation of infinite constants is still an
unsatisfactory feature of the theory. For an account of these methods
the reader is referred to books on quantum field theory, for example
Schweber (1961); here we remark only that the results are in very good
agreement with experiment.

The type of interaction with which S-matrix theory is mainly con-
cerned comprises all strong interactions (we do not distinguish between

I EA



2 SURVEY OF OBJECTIVES 1.1

these and the possible ‘super-strong’ interactions). These are respon-
sible for nuclear forces and for the production of strange particles.
Earlier formulations of a theory of strong interactions have proceeded
analogously to electromagnetic theory. In the simplest form the
strong interactions correspond to a field that is carried by the 77-meson
just as the electromagnetic field is carried by the photon. More
generally a formal theory can be set up that involves the fields of all
strongly interacting particles. However, there is a serious obstacle to
the solution of the resulting equations since the only known methods
of solution are based on a perturbation series in powers of the coupling
constant and, in dimensionless units, so as to compare it with 2, the
square of this constant has a value about 15. Thus the perturbation
series does not even begin to converge and a solution based on the first
few terms is very unlikely to be useful.

In the last ten years a new approach to strong interactions has been
developed which avoids the obvious defect of an expansion in the
coupling constant, based on field theory. It is recognised that the fields
themselves are of little interest, but that they are merely used to
calculate transition amplitudes for interactions. These amplitudes are
the elements of the S-matrix. The new approach is concerned with a
direct study of the S-matrix, without the introduction of fields. It was
first suggested by Heisenberg much earlier (Heisenberg, 1943; see also
Moller, 1945, 1946) that the S-matrix might provide a means of
avoiding the divergence difficulties of field theory, which at that time
had not been solved by renormalisation. Heisenberg’s formulation of
S-matrix theory is in spirit very close to the formulation of a deductive
S-matrix theory which will be described in chapter 4 of this book.
However at that time (1943-52) progress was much more difficult,
because a knowledge of the analytic properties of perturbation theory
was not available to provide the guide-lines for applications of the
S-matrix theory and for the formation of a deductive theory. The
main parts of chapters 2 and 3 of this book will be concerned with the
analytic properties of perturbation theory.

The deductive approach to S-matrix theory is based on the idea that
one should try to calculate S-matrix elements directly, without the
use of field quantities, by requiring them to have some general
properties that ought to be valid, whether or not some underlying
Lagrangian theory exists. (There is a tendency in the literature to call
these properties ‘axioms’, but we do not use this term since it would
suggest a degree of mathematical rigour that is lacking in the present



1.1] SURVEY OF OBJECTIVES 3

state of the subject.) A list of the important properties to be satisfied
by the S-matrix would include:

(a) the superposition principle of quantum mechanies;
(b) the requirements of special relativity;

(¢) the conservation of probability;

(d) the short-range character of the forces;

(e) causality and the existence of macroscopic time.

Notice that (d) actually excludes the electromagnetic interaction and
there is at present no S-matrix theory which properly includes the
presence of photons. The essential difficulty is the same one as leads to
the infra-red divergence of perturbation theory, that the number of
massless particles is not measurable. In practice one uses a combina-
tion of a perturbation series for the electromagnetic interaction and
S-matrix theory for the strong interactions, but this procedure does
not overcome the difficulty of principle where photons are involved.

The property {e) is the one whose consequences are most difficult
to derive rigorously, and at the same time it is one of the most im-
portant. It is generally believed that the causality property requires
the transition amplitudes to be the real-boundary values of analytic
functions of complex variables. In view of the difficulties in deriving
this result rigorously it is common to replace the property (e) by the
assumption

(¢’) transition amplitudes are the real-boundary values of
analytic functions.

This assumption is much more precise mathematically than the
property of causality but its physical meaning is more obscure. We
will illustrate the connections between the two, and indicate the
nature of the difficulty of making it rigorous, by considering a simple
example.

Let A(z,t) be a wave packet travelling along the z-direction with
velocity v:

Az, t) :Z%)%fjwdwa(w) exp{iw (g—t)} (1.1.1)

Suppose this wave packet is scattered by a particle fixed at the origin
z = 0. The scattered wave, in the forward direction, may be written as

G(r,t) = @Jﬁ; dof(w)a{w) exp {iw (Z—t)} . (1.1.2)

I-2



4 SURVEY OF OBJECTIVES 1.1
The inverse of equation (1.1.1) is
1
alw) = —
(v) @
and this tells us that if the incident wave does not reach the scatterer
before time £ = 0, that is if

A(0,t) =0 for t<0, (1.1.4)

f 2t A(0, ) exp (iot), (1.1.3)

then a(w) is regular in the upper half of the plane of the variable w
now regarded as complex. For if, as we assume, the integral (1.1.3)
converges for real w, it will, by virtue of (1.1.4), converge even better
for Im (w) > 0.

We now impose a causality condition,

G(r,t) =0 for vt—r<O. (1.1.5)

This expresses the requirement that no scattered wave reaches a point
at distance r before a time v/r after the incident wave first reaches the
scatterer. Then from the inverse of equation (1.1.2), using (1.1.5) we
find that the product a(w)f(w) is analytic in Im (w) > 0. Hence the
scattering amplitude f(w) itself is analytic in Im (w) > 0, except
possibly at zeros of a(w).

Arguments such as this about causality and analyticity can be made
in various branches of classical physics, particularly in the theory of
dispersion in optics (for a review see Hamilton (1959)). Thus the
approach to high-energy physics that we describe in this book is often
known as the ‘dispersion relation’ approach.

The difficulty in making the above discussion rigorous arises from
the condition (1.1.4), which cannot actually be realised. This condition
would imply a precise localisation in time (microscopic time) for the
incident wave packet. But in S-matrix theory the quantity that we
wish to know precisely is the energy, since this is one of the essential
variables on which transition amplitudes depend. If we compromise,
in accordance with the uncertainty principle, and set up our theory
with only a partial knowledge of time and a partial knowledge of
energy, our conclusions about analyticity are less precise. These
problems relating to the use of macroscopic time persist in a relativistic
formulation. They will be considered in more detail in chapter 4.

The causality condition in quantum field theory is usually assumed
to correspond to the commutativity of the field operators for space-
like separation of their arguments

[¢x), Pz} ] =0 for (x—2x')2 <0, (1.1.6)
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where for four-vectors we write © = (x,, X) and use the metric
x? = 2§ X2 (1.1.7)

Only for the electromagnetic field is the field operator physically
observable, so the condition (1.1.6) for any other field can only have
an indirect relation to causality in physics. Even if this condition is
accepted it is very difficult to make use of it to prove rigorously any
analytic properties of transition amplitudes (see, for example
Froissart (1964)), though an heuristic derivation can be given fairly
simply (Gell-Mann, Goldberger & Thirring (1954)). Within the frame-
work of quantum field theory, without using perturbation expansions,
only very limited information about analyticity properties has been
obtained.

If, however, the perturbation series for a transition amplitude is
used as a means for obtaining analyticity properties, much more
information becomes available. The procedure, which will be followed
in chapter 2 of this book, is to examine the analytic properties of
individual terms in the perturbation series. Although one does not
believe the magnitude of the individual terms to be significant, it is
hoped that their analytic properties will indicate the analytic proper-
ties of the transition amplitude itself, particularly when properties are
derived that hold for every term in the series. In chapter 3 this method
is extended to include some aspects (particularly asymptotic beha-
viour) of the analytic properties of partial infinite sums of series within
the full perturbation series.

In this book our discussion of the analytic S-matrix is limited to
strong interactions. One hopes that in time a method for dealing with
massless particles can be found. In the meantime, apart from sum
rules, which seem to have limited scope, it is necessary to incorporate
electromagnetic effects by perturbation theory. A similar situation is
met with the weak interactions, at least where neutrinos are involved,
though there are difficulties of renormalisation. In most practical
situations the weakness of the interactions (about 10~° compared
with electromagnetic 1/137) permits the use of first-order perturbation
theory. The fourth category of force, the gravitational force, has a
strength of order 10-%0. It again is believed to be transferred by a
massless particle, the graviton, so it cannot at present be incorporated
into a dispersion approach.
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1.2 'The S-matrix and its unitary and kinematic properties

In using the S-matrix to describe a scattering experiment we will
assume that the forces are of sufficiently short range that the initial
and final states consist effectively of free particles. These states can
then be specified by the momentum of each particle together with
certain discrete quantum numbers such as the spin and isospin. Due
to the finite size of any experiment there is some residual uncertainty
in the momentum but we assume that this is unimportant in practice.
The momentum eigenvalues form a continuous spectrum but for
clarity of notation in this section we will begin by using a discrete
symbol m, or %, to label the states.

Let |n) denote the initial state of two particles that subsequently
come together, interact, and separate. The superposition principle in
quantum mechanics tells us that the final state can be written S|n),
where § is a linear operator. The probability that a measurement on
the final state gives a result corresponding to the state |m) is obtained
from the square of the modulus of the matrix element

{m|S|n). (1.2.1)
The set of states |n) is assumed to be orthonormal and complete,
{m|ny =8, Jlmy{m|=1 (1.2.2)
Thus any state can be expressed by a superposition of the states |n),
and the quantum numbers denoted by » uniquely specify a state.
If the initial state in a scattering experiment is the normalised state

[>, the total probability of the system ending up in some other state
must be unity. Hence, writing

) = gan[@, (1.2.3)
where Y |a,|2 = 1, we obtain
L T=SlIShI = TS mis)
= {|S'S]) =n2n’aj‘,an(n’[STS[n). (1.2.4)
In order for this to hold for all choices of the a,, it is necessary that
|88 |n) = 8y,
or St8 = 1. (1.2.5q)
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In the same way, the condition that the total probability be unity for
an arbitrary final state to arise from some initial state gives

S8t = 1. (1.2.50)

Thus the operator S is unitary.
We consider next the consequences of relativistic invariance. If L
is any proper Lorentz transformation, and if

Lim)y = |m"), (1.2.6)
we require that [(m'|S|n')[? = [(m|S|n)|% (1.2.7)
in order that observable quantities be independent of the Lorentz

frame. The definition of the S-matrix elements given above does not
specify the phase uniquely. This permits us to replace (1.2.7) by the

stronger condition |8’y = (m|S|m. (1.2.8)

For spinless particles this has the consequence that the matrix
elements depend on the four-momenta only through their invariant
scalar products. For example, the two-particle - two-particle matrix

1 t
cemen {3, Pa|S|P1, P, (1.2.9)

after removal of -functions specifying total energy-momentum con-
servation, can for the case of spinless particles be written as a function
of the variables s, £, u, where

8= (P1+20)% t=(p1—py)% u=(p—ps)? (1.2.10)
Notice that as a consequence of total energy-momentum conservation

and the mass shell condition for each particle, these variables are not
independent. From

P1+Pe = P3+Pys p% = m% (¢t=1,2,3, 4), (1.2.11)
4
it follows that s+t+u= 3 mi (1.2.12)
i=1

The above form for the matrix elements applies only to spinless
particles. However, even for these the elements of the S-matrix itself
cannot be analytic, due to the occurrence of Dirac d-functions. These
occur in two ways. First, due to overall energy-momentum conserva-
tion, the matrix element (1.2.9) will contain a factor

8U(py + P2 — P3—Pa)-
Secondly, since the state-vectors occurring in (1.2.9) are momentum
eigenstates they can contain no information about the positions of the
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particles in space. Hence they are overwhelmingly likely to be widely
separated in space and not interact at all. When this happens, the four-
momentum for each particle remains unchanged, and the S-matrix can
therefore be separated usefully into two parts by writing (see Moller,
1945, 1946), S = 1+iR. (1.2.13)

The relation between matrix elements of R and experimental cross-
sections depends on the choice of normalisation for the free-particle
states. These free-particle states are fully specified for spinless
particles when the three-momentum of each particle is given, since
the fourth component of p satisfies

P = m2+p2. (1.2.14)

We choose a covariant normalisation for the free particle states, so
that the orthogonality and completeness relations, written symboli-
cally in (1.2.2), become

{p'[p) = (2m)*. 2p, 0@ (p’ —p), (1.2.15)
N P
flp T 2l 2% (1.2.16)
or equivalently
ddp’ 8D (p'2 — m2
flp’> l—(g)?,—m)@’m = |p). (1.2.17)

Then the E-matrix element for two-particle scattering is related to a
transition amplitude # by

<P3,P4]Rlpla]’2> = (2m)* 8P, +pa—p3—py) F. (1.2.18)

The cross-section is obtained from |R|? with integration over all
possible final states when the incident flux is normalised to unity.
For two-particle scattering this gives for the cross-section o,

1 P
= 2 L
o (&) WJdQ|F| W (1.2.19)

where q is the centre of mass momentum for a particle in the initial
state, p for the final state, W is the centre of mass energy, and Q is
the solid angle in the final state. The differential cross-section for
scattering to an angle (0, ¢) in the centre-of-mass system is

do _ P 0
m = Wlel 5 (1.2.20)

with dQ = sin 0d0d¢.
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The transition amplitude F is the amplitude that is given by a
series of Feynman integrals when the particles have spin zero. It is
these Feynman amplitudes that form the main part of our discussion
of analyticity in the remaining sections of this chapter and the whole
of chapter 2.

If the scattered particles have spin the discussion of analytic
properties does not apply directly to the scattering amplitudes, and in
addition our remarks about Lorentz invariance made earlier in this
section for spinless particles must be modified. We will do no more
than illustrate the differences that arise, and for a more complete
discussion of the scattering of particles with spin and charge, the
reader is referred to the account by Jacob (Chew & Jacob, 1964).

For our example we consider pion-nucleon scattering (Chew,
Goldberger, Low & Nambu, 1957). There the amplitude ¥ that occurs
in (1.2.18) can be expressed in the form

F = 2mu(ps) {4 — §iBy,(p5 +2§)} u(p1) (1.2.21)

where u denotes the Dirac spinor for the nucleon lines, for which p,
and p, are the four-momenta. The quantities 4 and B are functions of
two independent invariants chosen from s, f, u given by equations
(1.2.10). The analytic properties of 4 and B are essentially the same
as those of the amplitude F for scalar particles, to each order in
perturbation theory. The other factors in equation (1.2.21) are often
referred to as ‘inessential complications’. Needless to say they are
crucial in establishing relations between analyticity and experimental
results.
It is frequently convenient in pion-nucleon scattering to make also

a separation of the transition amplitude F into isospin amplitudes
F(3) and F(),

F(mip—>mip) = F(§),

F(mp->np)=3F3)+3F(3), (1.2.22)

F(rmp—>mn) = }y2(F(3) - F3)}.

In this book we are concerned with analytic properties of the S-matrix
and not with the important considerations about spin and isospin
which have been fully described elsewhere (Chew & Jacob, 1964). For
most of our discussion we will therefore consider only the interactions
of particles that have zero spin and isospin. Then the amplitude ¥ is
given by the series of Feynman integrals whose analyticity we will
describe in chapters 2 and 3.
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For the case of elastic scattering of two spinless particles a conse-
quence of Lorentz invariance is the symmetry of the matrix element:

{m|S|n)y = {(n|S|m), (1.2.23)

that is (P P4 |8 D1, P2) = {P1, 12 S| D3, Po)-

This is because in the centre-of-mass system (the Lorentz frame in
which p,+p, = 0 = p;+P,) a rotation of 7 about the bisector of the
angle between p, and p; interchanges these momenta, and it also
interchanges p, and p, (see Fig. 1.2.1). So (1.2.23) follows as a result

Fig. 1.2.1. The centre-of-mass picture in momentum space for
two-particle scattering 142> 3+4.

of (1.2.8). It need not, however, be true for other amplitudes, though
it sometimes can be deduced from the invariance of strong interactions
under the operation PT. This is true for two-particle - two-particle
amplitudes.

1.3 Analyticity, crossing and dispersion relations
We now discuss in more detail some of the analyticity properties of
the scattering amplitudes that will be derived in chapter 2. First we
consider some consequences of unitarity.
Substitute from (1.2.13) into the unitarity relation (1.2.5), giving
R—PR'=14{R'R =iRR%, (1.3.1)
or, in the notation of section (1.2), for two-particle scattering

(D3 Py| B| D1, Do) — {01, Do| B| 3, D)* = K P3, 24| B'R| 0y, p2) (1.3.20)
= i<P37P4IRRT]P1’p2>’ (1.3.20)
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where the star denotes complex conjugation, and the dagger hermitian
conjugation. If the symmetry condition (1.2.23) is valid the left-hand
side of (1.3.2) is just twice the imaginary part of the matrix element:

2i Im {p;, py| B| py, ps)- (1.3.3)
Then the unitary relation (1.3.2) becomes

2Im(p3,p4]Rlp1,])2> = %O@lR]pa»PQ* <n,R|P17Z72> (1.3.4a)
=%<p3,p4lR]n><p1,p2|R|n>*, (1.3.40)

where the X denotes a sum and an integral over all intermediate states
that are allowed by conservation of the total energy and momentum.
Thus for total energies below the inelastic threshold the unitarity
condition is, in terms of the amplitude ¥ of (1.2.18)

a8k, d3k
2Im<p3p4|F|p1p2> = (277)_2f _%75—26(4)(1)1 +102—k1—k2)

X <P3P4] Fl kyko) <P1P2] F‘ kyky*
= (277)‘2fd4k1 A 0(KE — m2) SD(kE — m?)

X 09(py + Py~ ky — ko) (D3 4| F| by ko)
X {P1D2| F| oy kop*, (1.3.5)
where W is the centre of mass energy.

Above the energy-threshold for inelastic scattering a new term must
be added to the right-hand side of the unitarity relation (1.3.5) so as
to include the extra intermediate states that are allowed by energy-
conservation. This implies a change in the left-hand side, and suggests
that the elastic scattering matrix-element has a singularity at each
energy corresponding to a threshold for a new allowed physical
process. This is our first encounter with an effect of unitarity on
analyticity of the S-matrix; later, in chapter 4, we will consider these
effects in more generality.

The thresholds are branch-points of the amplitude ¥ (Eden, 1952),
as we shall see in chapter 2, so we draw cuts in the complex energy-
squared plane (s = W?2), attached to the branch-points and by con-
vention running along the real axis. The purpose of the cuts is to make
the amplitude single valued on a Riemann surface. If we do not cross
the cuts in Fig. 1.3.1, we have a single sheet of this Riemann surface.
This is called the ‘physical sheet’ if the physical scattering amplitude
is a boundary value on the real cut of the amplitude on this sheet.
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Other sheets of the Riemann surface, associated with the amplitude
F as a function of s, are reached by burrowing through a branch cut
or through several branch cuts, to reach another layer of this multi-
layer surface. These other sheets are called unphysical sheets and they
are to be distinguished from each other by the manner in which they
are connected to the physical sheet, for example by specifying which
branch cuts must be crossed to reach the physical sheet.

s-plane
P B, B, B, B,
® X
x—_
am? om” 16m*

Fig. 1.3.1. Branch cuts for the scattering amplitude F in the complex s-plane arising
from normal thresholds B, B,, .... The point P denotes a pole in F.

For two-particle scattering, the elastic amplitude F' is a function of
two variables which, to be definite, we choose as s, ¢ given by (1.2.10),

(P3pa| F| 0102y = F(s,1). (1.3.6)

Wehave so far been considering F as a function of theinvariant energy-
squared s, keeping the momentum-transfer-squared ¢, fixed. The
branch-points shown in Fig. 1.3.1 at s = 4m?2, 9m?, 16m? are called
‘normal thresholds’ and correspond to the energies at which produc-
tion of extra particles is possible. The leading normal threshold,
s = 4m?, is the least energy-squared at which a two-particle state can
exist. We assume not only equal-mass particles in this example, but
also that no conservation law except energy precludes the creation of
any particular number of particles from a two-particle state. With this
assumption, conservation laws (excluding energy) do not forbid going
from a two-particle state to a one-particle state. It is assumed that
such a state corresponds to a singularity of the amplitude F(s,t),
reached at an unphysical value of the variable s below the leading
normal threshold, at s = me. (13.7)
This singularity is denoted P in Fig. 1.3.1, and in perturbation theory
it is a pole, not a branch-point. Using unitarity and causality we will
show more generally in § 4.5 that the singularity must be a pole.

The region in which F(s,f) is the amplitude for the physical

scattering process A+ A, > A4+ A, (1.3.8)
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must have real positive energy p{® for each particle, and real three-
momentum p,. In the equal-mass case this gives

sz 4m?, t<0, u<O. (1.3.9)

This result can be obtained by expressing s, ¢, 4 in terms of the momen-
tum q and the scattering angle € in the centre-of-mass system, which
gives
s = 4(m2+g%),
t = -—-2¢%1-—cos0), (1.3.10)
u = —2¢%1 4 cos 0).

When the masses are not equal the conditions are not quite so simple;
they are derived by Kibble (1960) (see also §4.3).

So far we have varied only s in discussing analytic continuation, but
in general both s and ¢ can be regarded as complex variables in the
amplitude F(s, t). Then we can consider analytic continuation from the
physical region (1.3.9) to the region

w>4m?, s<0, t<O0. (1.3.11)

It is assumed that the resultant function F, evaluated in a suitable
limit on to the region (1.8.11), is the physical scattering amplitude for
the process - -

A+ Ay~ A+ A, (1.3.12)
where A; denotes the anti-particle of A;. For this process the energy
in the centre-of-mass frame for the initial (or final) state is just JJu.
It is further assumed that by analytic continuation to the region

t=24m? <0, s<0, (1.3.13)

the function F, evaluated in a suitable limit, gives the physical
scattering amplitude for the process

A+ A, A, + 4, (1.3.14)

for which the energy in the centre-of-mass frame is 4.

These important properties are called the ‘crossing’ properties.
They state that the same analytic function can be used to describe the
three different physical processes (1.3.8), (1.3.12), (1.3.14) by making
an appropriate choice of physical values for the variables s and ¢ (or ).
These physical processes are often called different ‘channels’, and one
refers to them as the s-channel, the -channel and the u-channel when
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s, t and u, respectively, are the energy variables. Remembering the
relation (1.2.12), which here becomes

s+i+u = 4m?, (1.3.15)

we can draw the physical regions for the three channels using oblique
axes as in Fig. 1.3.2 (Mandelstam, 1958).

\\\ / // o
7 <{//
7 \
SN

u:4m2 u=9

Fig. 1.3.2. The Mandelstam diagram using oblique axes showing the physical regions
(shaded areas) in which s, or ¢, or w denotes the square of the centre-of-mass energy
for equal-mass particles in collision.

Since we now have symmetry between the three variables s, ¢, u, it
is convenient to change the signs of the four-momenta from those
used in §1.2 (equation (1.2.10)) so as to give

8§ = (p1+P2)? = (P3+24)%
t = (p1+p4)? = (Dot p3)% (1.3.16)
% = (Py+P3)% = (Pa+D24)%

This convention will often be used in the remainder of this book.

A further convention that is sometimes used in the literature is to
write the amplitude F(s,t, ) as a function of three variables, but with
the constraint (1.3.15) relating s, t and «. In fact, F is defined only
when (1.3.15) is satisfied so this formal achievement of symmetry is
somewhat ambiguous, and in practice it is better to regard F as a
function of two variables, F(s,t) or F(s,u), for example. Similarly, it
is usually easier to work in the real s, f-plane with orthogonal axes,
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rather than with the oblique axes shown in Fig. 1.3.2. We then obtain
Fig. 1.3.3 which illustrates the physical regions for the three processes
(1.3.8), (1.3.12) and (1.3.14).

If we commence from the #-channel, with process (1.3.12), and
cross the particles 4, and 4, we obtain the process

A+ A, A+ 4, (1.3.17)
s=0 s = 4m®
N7k !
4/ t :
. < ! ,
—————— Rz-———-——\-———————:————-—--———-—-—-t:4m
\\\ \\\ :
AN \\;/ S._).t:()
N i / %
7w S /
7 NN
\%\\ u=
\u=4m2

Fig. 1.3.3. Physical regions (shaded areas) for equal-mass scattering
shown in the real (s, t)-plane.

The physical region for this process involving anti-particles is the
same as that for the process (1.3.8) involving particles. The T'CP
theorem asserts that the amplitudes for these two processes are the
same. Its proof is discussed in §4.8.

The reactions (1.3.12) and (1.3.14) also have TC P-inverses,

A2+Z4»ZI+A3,} (1.8.18)

Ay+ Ay~ A, + A,

so that altogether crossing and T'CP relate the amplitudes for six
physical processes to the same function F(s,t). Combining this with
the symmetry (1.2.23) [PT invariance] that is valid in strong inter-
actions, we obtain a further six processes by reversing the direction of
the above reactions.

Just as we were able to deduce the existence of singularities at the
normal thresholds from unitarity, it is possible also to deduce the
existence of further singularities from the assumption of crossing
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symmetry. Since 4/t and 4/u represent energies in the ¢ and % channels,
they will yield branch points exactly corresponding to those drawn
in By, By, B, ... for s in Fig. 1.3.1, that is at

t=4m2 9m?2, 16m?2, ..., (1.3.19)

u = 4m2, 9m2 16m?2, ... (1.3.20)

If we fix, say, u at a real value u,, then because of (1.3.15), the
branch-points (1.3.19) will appear in the s-plane at

$=—uy, —uU—5bm? —uy,—-12m? .., (1.3.21)
and the ¢ = m? pole will appear at
§ = — g+ 3m2. (1.3.22)

The resulting picture (for fixed u = u,) in the complex s-plane is
shown in Fig. 1.3.4. This figure depicts the physical sheet. As we
remarked earlier this is called the physical sheet since the amplitude
F(s,uy) becomes the physical amplitude for a suitably chosen value of
s on this sheet. It is of course a matter of convention that the branch
cuts are drawn along the real s-axis. Only their end-points are fixed
and they can be distorted as desired without changing the value of
the function F. The branch-points however are fixed and cannot be
moved so long as the parameter u is kept fixed at u,,.

With real branch-cuts in the s-plane it is necessary to decide which
limit on to the branch-cut gives the physical amplitude. For », < 0,
and with s real and s > 4m?--u,, we have physical values of s, £,
that correspond to the s-channel shown in Fig. 1.3.2. We shall see
in §2.3 that perturbation theory shows the physical amplitude to
be given by the limit on to this right-hand cut from the upper-half

s-plane, F(physical) = limit F(s + ie, u,). (1.3.23)
e—>0+

This result is obtained by showing it to be equivalent to Feynman’s
prescription for obtaining physical amplitudes by giving a small
negative imaginary part (—ic) to the mass of each particle in any
internal line of a Feynman diagram. With this rule, each Feynman
integral can be evaluated with real external four-momenta, that is
real s.

This result (1.3.23) from perturbation theory is referred to as ‘the
te-prescription’. Its derivation and significance outside the framework
of perturbation theory is discussed in § 4.4.



