Towards Homotopical Algebraic Quantum Field Theory

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Talk @ Foundational and Structural Aspects of Gauge Theories, Mainz Institute for Theoretical Physics, 29 May – 2 June 2017.

 $\mbox{Based on works with different subsets of} \\ \mbox{Collaborators} := \left\{\mbox{C. Becker, M. Benini, U. Schreiber, R. J. Szabo}\right\} \\$

Outline

1. Explain why

AQFT/LCQFT is insufficient to describe gauge theories

2. Present ideas/observations indicating that the key to resolve this problem is

 $homotopical\ LCQFT:=homotopical\ algebra\ +\ LCQFT$

Discuss our results and inform you about the state-of-the-art of our development of homotopical LCQFT

LCQFT vs Gauge Theory

LCQFT = AQFT on Lorentzian manifolds

Basic idea [Brunetti, Fedenhagen, Verch; ...]

$$\begin{array}{ccc} \text{Loc} & \xrightarrow{\text{functor } \mathfrak{A}} & \text{Alg} \\ & \text{category of spacetimes} & \text{category of algebras} \end{array}$$

- "Coherent assignment of observable algebras to spacetimes"
 - $-\mathfrak{A}(M)=$ observables we can measure in M
 - $-\mathfrak{A}(f):\mathfrak{A}(M)\to\mathfrak{A}(M')=$ embedding of observables along $f:M\to M'$
 - **BFV** axioms (motivated from physics)

Local-to-global property

For every spacetime M, the global algebra $\mathfrak{A}(M)$ can be "recovered" from the algebras $\mathfrak{A}(U)$ corresponding to suitable sub-spacetimes $U\subseteq M$.

- Different ways to formalize this property:
 - 1. Cosheaf property: $\mathfrak{A}:\mathsf{Loc}\to\mathsf{Alg}$ is cosheaf (w.r.t. suitable topology) \checkmark only true for extremely special covers \Rightarrow too strong condition
 - 2. Additivity: $\mathfrak{A}(M)\simeq\bigvee_{\alpha}\mathfrak{A}(U_{\alpha})$ for suitable covers $\{U_{\alpha}\subseteq M\}$ [Fewster; ...] \checkmark true in examples \checkmark need to know $\mathfrak{A}(M)$
 - 3. Universality: $\mathfrak{A}(M)$ is isomorphic to Fredenhagen's universal algebra corresponding to $\{U\subseteq M:$ open, causally compatible and $U\simeq \mathbb{R}^m\}$

 $\checkmark \mathfrak{A}$ determined by restriction $\mathfrak{A}_{\textcircled{\mathbb{C}}}: \mathsf{Loc}_{\textcircled{\mathbb{C}}} \to \mathsf{Alg}$ via left Kan extension

√ true in examples [Lang]

Does U(1)-Yang-Mills theory fit into LCQFT?

⋄ Differential cohomology groups = gauge orbit spaces

$$\widehat{H}^2(M) \cong \frac{ \big\{ \text{ principal } U(1)\text{-bundles } P \to M \text{ with connection } A \big\} }{ \big\{ \text{ gauge transformations } \big\} }$$

 \diamond Solution spaces of U(1)-Yang-Mills theory

$$\mathcal{F}(M) := \left\{ h \in \widehat{H}^2(M) : \delta \operatorname{curv}(h) = 0 \right\}$$

are Abelian Fréchet-Lie groups with natural presymplectic structure ω_{M}

Theorem [Becker, AS, Szabo: 1406.1514]

Quantization of smooth Pontryagin dual of $(\mathcal{F}(M),\omega_M)$ defines functor $\mathfrak{A}:\mathsf{Loc}\to\mathsf{Alg}$ which satisfies causality and time-slice, but violates isotony and local-to-global properties.

NB: Similar results for S-duality invariant theory [Becker,Benini,AS,Szabo:1511.00316] and also for less complete approaches based on A-fields or F-fields [Sanders,Dappiaggi,Hack; Fewster,Lang; . . .]

What is the source of these problems?

1. Isotony fails because gauge theories carry topological charges

2. Local-to-global property fails because we took gauge invariant observables

$$\widehat{H}^2(\mathbb{S}^1) \cong U(1) \quad \longleftarrow \quad \widehat{\mathbb{I}}_1 \\ \mathbb{I}_2 \\ \widehat{H}^2(\mathbb{I}_{1/2}) \cong 0$$

- 1. Violation of isotony is a physical feature, hence we have to accept that!
- 2. Violation of local-to-global property is an artifact of our description by gauge invariant observables, hence we can improve that!

Groupoids vs Gauge Orbit Spaces

Groupoids of gauge fields

- \diamond Let's consider for the moment gauge theory on $M \simeq \mathbb{R}^m$
 - 1. Gauge fields $A \in \Omega^1(M, \mathfrak{g})$
 - 2. Gauge transformations $g \in C^{\infty}(M,G)$ acting as $A \triangleleft g = g^{-1} A g + g^{-1} dg$
- \diamond **Groupoid** of gauge fields on M

$$\mathcal{G}(M) := \Omega^1(M,\mathfrak{g}) \rtimes C^\infty(M,G) =$$

Two groupoids are "the same" not only when isomorphic, but also when **weakly equivalent** \leadsto model category/homotopical algebra

- \diamond Non-redundant information encoded in the groupoid $\mathcal{G}(M)$
 - 1. Gauge orbit space $\pi_0(\mathcal{G}(M)) = \Omega^1(M,\mathfrak{g})/C^{\infty}(M,G)$
 - 2. Automorphism groups $\pi_1(\mathcal{G}(M),A)=\{g\in C^\infty(M,G):A\triangleleft g=A\}$
- ! Gauge invariant observables ignore the π_1 's, hence are incomplete!

Groupoids and local-to-global properties

Groupoids of gauge fields satisfy very strong local-to-global property

Homotopy sheaf property

For all manifolds M and all open covers $\{U_{\alpha} \subseteq M\}$, the canonical map

$$\mathcal{G}(M) \; \longrightarrow \; \mathsf{holim}\Big(\prod_{\alpha} \mathcal{G}(U_{\alpha}) \; \Longrightarrow \; \prod_{\alpha\beta} \mathcal{G}(U_{\alpha\beta}) \; \Longrightarrow \; \prod_{\alpha\beta\gamma} \mathcal{G}(U_{\alpha\beta\gamma}) \; \Longrightarrow \; \cdots \Big)$$

is a weak equivalence in Grpd.

Precise formulation of the familiar "gluing up to gauge transformation"

$$\begin{cases} \left(\{A_{\alpha}\},\{g_{\alpha\beta}\}\right): \ A_{\beta}|_{U_{\alpha\beta}} = A_{\alpha}|_{U_{\alpha\beta}} \triangleleft g_{\alpha\beta} \ , \quad g_{\alpha\beta} \, g_{\beta\gamma} = g_{\alpha\gamma} \ \text{on} \ U_{\alpha\beta\gamma} \end{cases} \\ \updownarrow \quad 1:1 \\ \left\{ \ \text{gauge fields on} \ M \ \right\}$$

♦ Crucial Point: Taking into account the groupoids of gauge fields, rather than only the gauge orbit spaces, there are very strong homotopical local-to-global properties for classical gauge theories! Cosimplicial observable algebras

What are "function algebras" on groupoids?

- QFT needs quantized 'algebras' of functions on the 'spaces' of fields
 - ✓ Space of fields $\mathcal{F}(M)$ is set (+ smooth structure) \sim $\mathcal{O}(M) = C^{\infty}(\mathcal{F}(M))$ has the structure of an algebra
- \diamond Nerve construction $N:\mathsf{Grpd} \to \mathsf{sSet}$ assigns the simplicial set

$$N(\mathcal{G}(M)) = \left(\Omega^1(M,\mathfrak{g}) \iff \Omega^1(M,\mathfrak{g}) \times C^{\infty}(M,G) \iff \cdots\right)$$

Taking level-wise smooth functions gives cosimplicial algebra

$$\mathcal{O}(M) = \Big(\ C^{\infty} \big(\Omega^{1}(M, \mathfrak{g}) \big) \ \stackrel{\textstyle \longrightarrow}{\Longrightarrow} \ C^{\infty} \big(\Omega^{1}(M, \mathfrak{g}) \times C^{\infty}(M, G) \big) \ \stackrel{\textstyle \longrightarrow}{\Longrightarrow} \ \cdots \ \Big)$$

Relation to the BRST formalism and ghost fields

- Dual Dold-Kan correspondence gives equivalence cAlg \rightleftharpoons dgAlg $^{\geq 0}$
- \Rightarrow Equivalent description of $\mathcal{O}(M)$ in terms of **differential graded algebra**

$$\mathcal{O}_{\mathrm{dg}}(M) = \left(C^{\infty} \left(\Omega^{1}(M, \mathfrak{g}) \right) \stackrel{\mathrm{d}}{\to} C^{\infty} \left(\Omega^{1}(M, \mathfrak{g}) \times C^{\infty}(M, G) \right) \stackrel{\mathrm{d}}{\to} \cdots \right)$$

Considering only infinitesimal gauge transformations $C^{\infty}(M,\mathfrak{g})$

$$\mathcal{O}_{\mathrm{dg}}(M) \xrightarrow{\quad \text{van Est map} \quad} \underbrace{C^{\infty}\big(\Omega^1(M,\mathfrak{g})\big)}_{\text{gauge field observables}} \otimes \underbrace{\wedge^{\bullet}C^{\infty}(M,\mathfrak{g})^*}_{\text{ghost field observables}}$$

The cosimplicial algebra $\mathcal{O}(M)$ (or equivalently our dg-algebra $\mathcal{O}_{\mathrm{dg}}(M)$) describes non-infinitesimal analogs $C^{\infty}(M,G)$ of ghost fields $C^{\infty}(M,\mathfrak{g})$

⇒ BRST formalism for **finite** gauge transformations

Working definition for homotopical LCQFT

Working definition (intentionally imprecise)

A homotopical LCQFT is a (weak) functor $\mathfrak A: \mathsf{Loc} \to \mathsf{dgAlg}^{\geq 0}$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:

1. Causality: Given causally disjoint $M_1 \xrightarrow{f_1} M \xleftarrow{f_2} M_2$, there exist a (coherent) cochain homotopy λ_{f_1,f_2} such that

$$[\cdot,\cdot]_{\mathfrak{A}(M)}\circ (\mathfrak{A}(f_1)\otimes \mathfrak{A}(f_2))=\lambda_{f_1,f_2}\circ d+d\circ \lambda_{f_1,f_2}$$

- 2. Time-slice: Given Cauchy morphism $f: M \to M'$, there exists a (coherent) homotopy inverse $\mathfrak{A}(f)^{-1}$ of $\mathfrak{A}(f)$.
- 3. Universality: $\mathfrak{A}: \mathsf{Loc} \to \mathsf{dgAlg}^{\geq 0}$ is the homotopy left Kan extension of its restriction $\mathfrak{A}_{\textcircled{\mathbb{C}}}: \mathsf{Loc}_{\textcircled{\mathbb{C}}} \to \mathsf{dgAlg}^{\geq 0}$.

Rem: 'Coherent' in e.g. 1.) means that the homotopies for different commutations of more than 2 observables (e.g. $a\,b\,c \to a\,c\,b \to c\,a\,b$ vs $a\,b\,c \to c\,a\,b$) coincide up to specified higher homotopies.

Precise definition requires colored operads [Benini, AS, Woike: work in progress]

 $\hbox{homotopical LCQFT} \ := \ LCQFT_{\infty}\hbox{-algebra} \ + \ \hbox{operadic universality}$

Local-to-global property in Abelian gauge theory

Universal global gauge theory observables

 \diamond For G=U(1) and $M\simeq \mathbb{R}^m$, $\mathcal{G}(M)$ can be described by chain complex

$$\mathcal{G}_{\text{chain}}(M) = \left(\Omega^1(M) \stackrel{\frac{1}{2\pi i} \text{ d log}}{\longleftarrow} C^{\infty}(M, U(1)) \right)$$

Smooth Pontryagin dual cochain complex of observables

$$\mathcal{O}_{\widehat{\mathbb{C}}}(M) := \left(\Omega_{\mathbf{c}}^{m-1}(M) \xrightarrow{\mathbf{d}} \Omega_{\mathbf{c};\mathbb{Z}}^{m}(M) \right)$$

 $\diamond \ \ \text{Homotopy left Kan extension of} \ \ \mathcal{O}_{\textcircled{\textcircled{c}}}: \mathsf{Loc}_{\textcircled{\textcircled{c}}} \to \mathsf{Ch}^{\geq 0}$

$$\mathcal{O}(M) := \operatorname{hocolim} \left(\mathcal{O}_{\textcircled{\mathbb{C}}} : \operatorname{Loc}_{\textcircled{\mathbb{C}}} \downarrow M \longrightarrow \operatorname{Ch}^{\geq 0} \right)$$

Theorem [Benini,AS,Szabo:1503.08839]

- 1. For $M \simeq \mathbb{R}^m$, $\mathcal{O}_{\textcircled{C}}(M)$ and $\mathcal{O}(M)$ are naturally weakly equivalent.
- 2. For every M, $\mathcal{O}(M)$ weakly equivalent to dual Deligne complex on M.
- ◇ Crucial Point: Our homotopical version of "Fredenhagen's universal algebra" produces the correct global observables in Abelian gauge theory, in contrast to the non-homotopical version [Dappiaggi,Lang; Fewster,Lang]!

Toy-models of homotopical LCQFT

LCQFT on structured spacetimes

- ♦ Basic idea [Benini,AS:1610.06071]
 - 1. Consider LCQFT $\mathfrak A: \mathsf{Str} \to \mathsf{Alg}$ on category of spacetimes with extra geometric structures, i.e. category fibered in groupoids $\pi: \mathsf{Str} \to \mathsf{Loc}$. $(\pi^{-1}(M))$ is groupoid of structures over M, e.g. spin structures, gauge fields)
 - 2. Regard $\mathfrak A$ as a trivial homotopical LCQFT $\mathfrak A: \operatorname{Str} \to \operatorname{dgAlg}^{\geq 0}$ via embedding $\operatorname{Alg} \to \operatorname{dgAlg}^{\geq 0}$ of algebras into dg-algebras.
 - 3. Perform homotopy right Kan extension

to induce a nontrivial homotopical LCQFT hoU $_{\pi}\mathfrak{A}$ on Loc.

 \diamond **Physical interpretation:** Homotopy right Kan extension turns the background fields described by $\pi^{-1}(M)$ into observables in $hoU_\pi\mathfrak{A}(M)$.

Properties of hoU $_{\pi}\mathfrak{A}$

Explicit description of degree 0 of hoU $_{\pi}\mathfrak{A}(M)$

$$\mathsf{hoU}_\pi\mathfrak{A}(M)^0 = \prod_{S \in \pi^{-1}(M)} \mathfrak{A}(S) \ni \left(a : \pi^{-1}(M) \ni S \longmapsto a(S) \in \mathfrak{A}(S)\right)$$

 Physical interpretation: Combination of classical gauge field observables and quantum matter field observables!

Theorem [Benini, AS:1610.06071]

Assume that $\pi: \mathsf{Str} \to \mathsf{Loc}$ is strongly Cauchy flabby. Then the homotopy right Kan extension $hoU_{\pi}\mathfrak{A}: Loc \to dgAlg^{\geq 0}$ satisfies the causality and time-slice axioms of homotopical LCQFT. (Coherences just established in low orders.)

✓ First toy-models satisfying the new homotopical LCQFT axioms! (Proving universality is hard: hocolim's in $dgAlg^{\geq 0}$ are beyond our current technology.) Stack of non-Abelian Yang-Mills fields

Yang-Mills stack

- **Motivation:** Prior to deformation quantization, we have to understand the geometry of the groupoid of Yang-Mills solutions and the Cauchy problem
- \rightarrow Stacks \cong presheaves of groupoids X on Cart satisfying descent [Hollander]
 - \diamond **Basic idea:** Smooth structure on X is encoded by specifying groupoid $X(\mathbb{R}^k)$ of all smooth maps $\mathbb{R}^k \to X$ for all \mathbb{R}^k in Cart (functor of points)
 - ∃ abstract model categorical construction of the stack of non-Abelian Yang-Mills solutions GSol(M) [Benini,AS,Schreiber:1704.01378]
 - \diamond Explicit description of GSol(M) up to weak equivalence

$$G\mathbf{Sol}(M)(\mathbb{R}^k) = \begin{cases} \mathrm{obj}: & \mathrm{smoothly} \ \mathbb{R}^k\text{-parametrized Yang-Mills solutions} \ (\mathbf{A}, \mathbf{P}) \\ \mathrm{mor}: & \mathrm{smoothly} \ \mathbb{R}^k\text{-parametrized gauge transformations} \\ & \mathbf{h}: (\mathbf{A}, \mathbf{P}) \to (\mathbf{A}', \mathbf{P}') \end{cases}$$

 \diamond For $M \simeq \mathbb{R}^m$ even simpler in terms of vertical geometry on $M \times \mathbb{R}^k \to \mathbb{R}^k$

$$(\mathbf{A},\mathbf{P}) = A \in \Omega^{1,0}(M \times \mathbb{R}^k,\mathfrak{g}) \qquad \text{s.t.} \qquad \delta_A^{\text{vert}} F^{\text{vert}}(A) = 0$$

Stacky Cauchy problem

 $\diamond \exists$ map of stacks $\mathrm{data}_{\Sigma}: G\mathbf{Sol}(M) \to G\mathbf{Data}(\Sigma)$ assigning to Yang-Mills solutions their initial data on Cauchy surface $\Sigma \subseteq M$

Def: The stacky Cauchy problem is well-posed if $data_{\Sigma}$ is a weak equivalence.

Theorem [Benini, AS, Schreiber: 1704.01378]

The stacky Yang-Mills Cauchy problem is well-posed if and only if the following hold true, for all \mathbb{R}^k in Cart:

- 1. For all $(\mathbf{A}^{\Sigma}, \mathbf{E}, \mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(\mathbb{R}^k)$, there exists (\mathbf{A}, \mathbf{P}) in $G\mathbf{Sol}(M)(\mathbb{R}^k)$ and iso $\mathbf{h}^{\Sigma} : \mathrm{data}_{\Sigma}(\mathbf{A}, \mathbf{P}) \to (\mathbf{A}^{\Sigma}, \mathbf{E}, \mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(\mathbb{R}^k)$.
- 2. For any other iso \mathbf{h}'^{Σ} : $\mathrm{data}_{\Sigma}(\mathbf{A}',\mathbf{P}') \to (\mathbf{A}^{\Sigma},\mathbf{E},\mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(\mathbb{R}^k)$, there exists unique iso $\mathbf{h}: (\mathbf{A},\mathbf{P}) \to (\mathbf{A}',\mathbf{P}')$ in $G\mathbf{Sol}(M)(\mathbb{R}^k)$, such that $\mathbf{h}'^{\Sigma} \circ \mathrm{data}_{\Sigma}(\mathbf{h}) = \mathbf{h}^{\Sigma}$.
 - ! Interesting smoothly \mathbb{R}^k -parametrized Cauchy problems! To the best of my knowledge, positive results only known for \mathbb{R}^0 [Chrusciel,Shatah; Choquet-Bruhat].

Summary and Outlook

Summary and Outlook

- Quantum gauge theories are NOT contained in the LCQFT framework
- ⋄ To capture crucial homotopical features of classical gauge theories, one needs "higher algebras" to formalize quantum gauge theories
 - ⇒ Homotopical LCQFT
- Already very promising results:
 - ✓ Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
 - ✓ Toy-models of homotopical LCQFT [Benini,AS:1610.06071]
 - ✓ Yang-Mills stack and stacky Cauchy problem [Benini,AS,Schreiber:1704.01378]
- Open problems/Work in progress:
 - 1. Develop operadic approach to homotopical LCQFT to control coherences
 - 2. Construct proper examples of dynamical and quantized gauge theories
 - 3. What's the physics behind "higher algebras"? [Thanks for asking, Klaus!]

Thanks for your attention.