
  
 

MAPPING TIMING STRATEGIES IN DRUM PERFORMANCE 

George Sioros Guilherme Schmidt Câmara Anne Danielsen 
RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion 

Department of Musicology, University of Oslo 
{georgios.sioros, g.s.camara, anne.danielsen}@imv.uio.no 

 

ABSTRACT 

How do drummers express different timing styles? We 
conducted an experiment in which we asked twenty-two 
professional drummers to perform a simple rhythmic pat-
tern while listening to a metronome. Here, we investigate 
the strategies they employed to express three different 
instructed timing profiles for the same pattern: “On”, 
“Pushed” and Laid-back. Our analysis of the recordings 
follows three stages. First, we compute sixteen boolean 
features that capture the microtiming relations of the kick, 
snare and hi-hat drum onsets, between each other and 
with regards to the metrical grid. Second, we construct a 
microtiming profile (mtP) for every performance by aver-
aging the boolean features across the recording. An mtP 
codifies the frequency with which the various features 
were found in a performance. Third, through a “similarity 
profiles” hierarchical clustering analysis, we identify 
groups of recordings with significant similarities in their 
mtPs. We found distinct strategies to express each intend-
ed timing profile that employ specific combinations of 
relations between the instruments and with regards to the 
meter. Finally, we created a map that summarizes the 
main characteristics of the strategies and their relations 
using a phylogenetic tree visualization. 

1. INTRODUCTION 

In groove performance, it has been assumed that musi-
cians can apply different timing ‘feels’ to a given pattern 
by, amongst other things, subtly altering the temporal lo-
cation of events at the ‘micro-rhythmic’ level by playing 
either slightly early (‘pushed’) or late (‘laid-back’) in re-
lation to other players’ rhythm, a metronomic beat refer-
ence or simply their own internal pulse [1, 3, 6, 7, 9, 10, 
15, 19]. Typical reported values of microtiming devia-
tions in performance range from 0 ms (no displacement) 
to 50 ms or more, depending on instrument, tempo and 
genre [2, 11, 13, 22] An instructed timing experiment by 
Danielsen et al. [9] showed that drummers were able to 
consistently play a snare-drum pattern with laid-back and 
pushed feel significantly behind- and ahead-of an in-
structed on-beat performance, respectively, with similar 
values. In polyphonic drumkit performance, expert 

drummers are able to control the degree of onset timing 
asynchrony between the various constituent drum instru-
ments. These inter-instrument onset asynchronies may 
play a role in the production and perception of groove 
timing feel, since both magnitude and order of onset 
asynchrony between near-simultaneous events have been 
previously shown to affect judgements of timing in per-
ceptual experiments with musical stimuli [12, 14, 25].  

In order to explore potential interactions between in-
structed timing feel and various audio/motion features in 
drum-kit performance, a series of experiments was con-
ducted by Câmara et al. [4] where participants played a 
simple ‘back-beat’ pattern with On-beat, Pushed and 
Laid-back timing feel along to a metronome. In the pre-
sent study, we analyze the data from one of these experi-
ments, limiting our focus towards investigating the extent 
to which professional drummers employed different strat-
egies in order to achieve the instructed timing feel in 
terms of the magnitude and order of onset asynchrony 
between the instruments of the drum-kit themselves, as 
well as in relation to a metrical reference grid. We hy-
pothesize that drummers chose different elements (read: 
instruments) of the rhythmic pattern to produce in sync, 
late and early timing performance for the On, Laid-back 
and Pushed timing condition, respectively. For example, 
in order to achieve the same timing instruction, one group 
of participants may have focused on the relation between 
two drum instruments, where one led and the other fol-
lowed, while another group instead on the relation be-
tween both instruments and the metrical grid, and yet an-
other group may have incorporated a combination of two 
such approaches. In other words, for the same timing in-
struction, drummers may produce different combinations 
of microtiming onset strategies in order to communicate 
the same intended timing feel. This article focuses on the 
novel analysis we developed which aims at mapping and 
identifying these potentially different strategies. 

At the core of our analysis lie the microtiming profiles 
– structures that effectively codify the onset asynchronies 
of the instruments as the probabilities or frequencies with 
which they occur in the performances of the participants. 
A hierarchical classification of the performances based on 
their microtiming profiles reveals specific timing strate-
gies, which are summarized as microtiming archetypes 
that capture the main characteristics of the clusters in a 
symbolic form. Finally, a visualization of the clustering 
result as a phylogenetic tree enables us to better under-
stand and identify these strategies.  
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The rest of the article is divided in four sections. In 
section 2, we describe the experiment. In section 3, we 
describe the analysis method, the microtiming profiles in 
3.1 and their clustering in 3.2. In section 4, we present the 
results of our analysis. In the final section 5, we discuss 
methodological issues.  

2. EXPERIMENT 

22 male drummers, 22-64 years of age [M = 36, SD = 11] 
participated in the experiment. All of them were active 
part-time or full-time musicians and had between 4 and 
40 years of professional performance experience [M = 16, 
SD = 11]. All were familiar with at least one groove-
based performance tradition, typically either jazz, 
funk/soul/R&B, hip-hop, rock, or reggae. Two partici-
pants’ data were excluded from the analysis: one due to 
technical issues during the recording process, and the 
other was deemed to not have successfully understood the 
task based on responses from a follow up interview. 

The participants were instructed to play a standard 
‘back-beat’ pattern (see ) ubiquitous in groove music and 
highly familiar to drummers. They performed along to a 
metronome (woodblock) track at a tempo deemed com-
fortable in a pilot of the experiment (96 b.p.m) in 3 dif-
ferent timing style conditions: 
1. in a laid-back manner, i.e. behind-the-beat (condi-

tion: Laid-back) 
2. in a pushed manner, i.e. ahead-of-the-beat (condi-

tion: Pushed) 
3. in an on-the-beat manner, (condition: On) 

At the beginning of the experiment, a practice round 
was given to in order to allow for participants to accus-
tom themselves to the following timing style conditions 
(‘Laid-back’, ‘On’, and ‘Pushed’), which were subse-
quently randomized. Each timing condition trial lasted for 
approximately 70 seconds where participants began to 
play as soon as they had entrained with the timing refer-
ence track. This resulted in approximately 200 hi-hat and 
50 snare and kick drum strokes captured per trial. 

 For our drum instrumental setup, we used the follow-
ing equipment: a Gretsch acoustic metal snare drum 
(Gretsch Drums, CT), 7 in. deep, 14 in. wide, with a 
Remo Emperor X drumhead (Remo, CA) with a thin 
plastic muffle ring; a Gretsch 21-in. bass drum with 
Remo FA batter drumhead; a Pearl hi-hat stand with 14” 
Yamaha cymbals.  

Pilot tests of the sound recordings revealed that close-
microphone techniques with dynamic microphones led to 

too much leakage between the different drum signals, 
therefore AKG C411 contact microphones (AKG, Aus-
tria) were used instead and placed on the top skins of the 
kick and snare, and on the top cymbal of the hi-hat. 

3. ANALYSIS 

Since the focus of this investigation is the microtiming 
relations of the drum instruments, we create microtiming 
profiles (mtPs) of the performances for all participants 
and instructed timing condition trials, comprised of set of 
features that capture those relations. Based on how simi-
lar the mtPs are, we group them using a hierarchical clus-
tering algorithm and construct archetypes that summarize 
the main characteristics of each group. Finally, we map 
the relations between the groups’ recordings using a phy-
logenetic tree visualization.  

Our analysis and all following computations are based 
on the temporal location of onsets of individual strokes 
from each instructed timing condition recording that were 
calculated using an adaptation of an existing onset detec-
tion algorithm of the MIRtoolbox [17] which will be de-
tailed in a forthcoming publication of our group.  

 We describe the mtPs and the measurements we use to 
obtain them in subsection 3.1, then present the clustering 
results and their visualization in subsection 3.2.  

3.1 Microtiming Profiles 

To obtain the mtP of a recording we first extract a set of 
sixteen boolean features that capture the microtiming re-
lations between the strokes of the snare, kick drum and 
hi-hat cymbals relative to each other, as well as to the lo-
cation of the metrical grid. The boolean features are cal-
culated for each 4/4 measure of a timing condition trial 
while the mtP is calculated as the average of the boolean 
features across all measures of a trial. The mtPs were in-
spired by the motion templates designed by Müller and 
Röder [20] to describe geometric relations of the human 
body for the purpose of the analysis of body movements.  

 
Kick on beat 1 x2 features per instrument 

late/early relative to the  
hi-hat cymbal 

Snare on beat 2 
Kick on beat 3 
Snare on beat 4 
Kick + Hi-hat on beat 1 x2 features per beat 

both instruments 
late/early relative to the 

metrical grid 

Snare + Hi-hat on beat 2 
Kick + Hi-hat on beat 3 
Snare + Hi-hat on beat 4 

Table 1: Summary of the sixteen boolean features ex-
tracted from the recordings for each bar. 

Each feature tests whether an instrument is late or early 
with respect to a certain reference time point. The first 
eight features use the onsets of the hi-hat strokes as a ref-
erence and the other eight features use the metrical grid 
as a reference. For instance, feature 1 tests whether the 
kick drum follows the corresponding hi-hat cymbal, 

 

Figure 1: Standard back beat grove pattern in 4/4 me-
ter. Upper notes in the score denote hi-hat cymbal; the 
middle notes, the snare drum; the bottom notes, the kick 
drum 
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while feature 9 tests whether both the kick and hi-hat oc-
cur after the position of the respective beat. Table 1 
summarizes the sixteen binary features extracted from the 
recordings of each trial.  

The above features depend on “tolerance” thresholds 
with which two instrument’s strokes are considered syn-
chronous with each other (for features 1 to 8) or with 
which the instruments’ strokes are considered to occur 
late or early relative to the beat of the metrical grid (for 
features 9 to 16). For instance, when the inter-onset inter-
val (IOI) between a pair of kick and hi-hat strokes is 
greater than the respective synchronicity threshold, fea-
ture 1 (kick later than hi-hat) is true. In the opposite case 
where IOI is sub-threshold, both features 1 and 5 (kick 
later and earlier than hi-hat) are false, since the pair is 
considered to be synchronous.  

Furthermore, to determine the relation between the 
three drum strokes and the metrical grid with which 
drummers used as a beat reference, we need first to de-
termine the location of this grid. Although one might in-
tuitively assume that the onset of the sounding metro-
nome would correspond to that location, it has been re-
peatedly observed that people tend to tap to a steady 
pulse systematically earlier than the actual pulse—a phe-
nomenon known as negative mean asynchrony (NMA) 
[8]. As such, it may be assumed that the internal pulse 
scheme with which drummers operate with, that is, their 
subjective metrical grid, is slightly anticipated. 

Even though percussionists and drummers tend to dis-
play lower NMA than other musicians in both in-phase 
synchronous tapping [21] and drumming [11] experi-
ments, NMAs still tends to vary significantly between in-
dividuals [8]. Therefore, it is difficult to assume a single 
global NMA value for all the drummers. Similarly, the 
two thresholds values described above cannot easily be set 
universally. In what follows, we will describe how we ob-
tain individual values for these parameters for each 
drummer based on the performance of their On timing 
condition, essentially turning the On recordings into a 
baseline reference. We will discuss the reasoning behind 
this choice as well as some of its implications in section 5. 

For the synchronicity threshold values used in features 
1-8, i.e. the tolerance with which two coinciding drum 
strokes are considered synchronous or not, we use the 
variability of the IOI between the hi-hat and coinciding 
kick or snare strokes on each of the four main quarter-
note beats of the 4/4 metre (kick + hi-hat on beats 1 and 
3, snare + hi-hat on beats 2 and 4). For each drummer, we 
first calculate the standard deviation of the inter-
instrument IOIs of the corresponding beats in each meas-
ure of their respective On condition recording. This yields 
four separate values, two for each hi-hat + kick, and hi-
hat + snare, feature. To be conservative, the synchronicity 
threshold for a drummer is chosen as the maximum of 
these four values, then multiplied by 2. Thus, a kick or 
snare stroke is considered to occur as either asynchro-

nously late or early relative to its coinciding hi-hat stroke 
when their onsets satisfy the following inequalities:  
Late:  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑖𝑖, 𝑗𝑗) > 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟(𝑖𝑖) 
Early:  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑖𝑖, 𝑗𝑗) < −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟(𝑖𝑖) 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟(𝑖𝑖) = 2 × max𝑘𝑘=14  �𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑘𝑘� 
where j is the beat number from a recording of drummer i. 

The synchronicity threshold used in features 9 – 16 on 
the other hand, i.e. the tolerance with which a stroke is 
considered to occur late or early relative to a correspond-
ing subjective metrical beat, is based on the timing varia-
bility of the hi-hat strokes in the On condition. The hi-hat 
is chosen because it can be considered more of a ‘time-
keeper’ instrument than the other drums, thus serving 
more aptly as a proxy for the beats of the drummers’ sub-
jective metrical reference. To account for the commonly 
observed anticipation of the beats of the metronome 
(henceforth abbreviated as AoB), we first calculate the 
mean position of the hi-hat strokes relative to the metro-
nome in the On recordings for each drummer. 18 out of 
20 drummers displayed NMA of hi-hat strokes relative to 
the actual metronome, consequently yielding negative 
AoB values. Two participants displayed either no NMA 
or minutely positive mean asynchrony, and in these cases 
the AoB was set to 0 (no anticipation). Finally, we con-
sider any drum stroke as occurring asynchronously late or 
early in relation to the beats of the metrical grid accord-
ing to the following inequalities: 
Late:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑗𝑗) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) > 2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 
Early:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑗𝑗) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) < −2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 
where j is a drum stroke of drummer i, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑗𝑗) is the cor-
responding position of the metronome, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 
is the standard deviation of the IOI of the hi-hat from the 
respective metrical beat positions in the On recording of 
the same drummer. For one of the features 9-16 to be 
true, the onsets of both strokes—hi-hat and kick or 
snare—must be either early or late. In all other cases, in-
cluding when one stroke is early and the other late, the 
corresponding features would be false.  

Two main observations must be made about the boolean 
features. First, all boolean features form mutually exclusive 
pairs. For instance, feature 9 (strokes on beat 1 are early) 
and feature 13 (strokes on beat 1 are late) cannot be both 
true for the same bar of a recording. However, they can 
both be false, in which case the combination of the two 
strokes is considered on the beat. Second, features 1-8 
(kick and snare relative to hi-hat) and features 9-16 (onsets 
relative to metrical grid) are independent. For instance, a 
kick onset can be early relative to the respective hi-hat on-
set (feature 5 true) while at the same time they are both late 
relative to the beat position (feature 9 true).  

The final microtiming profiles (mtPs) of the recordings 
are calculated by averaging the boolean features across 
each timing condition recording for all drummers. As the 
boolean features take either true (1) or false (0) values, 
averaging them results in values in the range [0, 1], which 
represent the frequency with which a feature was 

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

778



  
 

encountered in a recording. The mtPs of all the record-
ings are visualized in matrix form in Figure 2. 

3.2 Hierarchical clustering 

We sought to identify the extent to which drummers im-
plemented distinct microtiming strategies for different 
timing conditions and whether they formed different 
groups. To this end, we used an agglomerative, hierar-
chical cluster analysis of the mtPs. A hierarchical cluster-
ing was preferred to other clustering methods, like k-
means, since it is flexible in that it does not require an a-
priori number of clusters to be determined, nor does it 
impose restrictions on the distribution of the data. Its only 
requirement is a similarity metric between the data points. 
We treated the mtPs as arrays of variables, where the sim-
ilarity between two mtPs is the Euclidian distance be-
tween them. 

Hierarchical agglomerative algorithms result in den-
drograms by successively joining neighboring data points 
or groups of previously joined points. A linkage criterion 
determines the distance between groups of points as a 
function of the pairwise distances of the points them-
selves. In this study, we used the common Unweighted 
Group Average linkage (UPGMA) [18, p. 352]. 

To create clusters of similar data points, one generally 
“cuts” the dendrogram at different heights. Here, we bor-
rowed methods from the fields of bioinformatics an-
decology to identify clusters of mtPs. We used the

similarity profiles (SIMPROF) method [5]—as imple-
mented in the Fathom Toolbox for Matlab [16]—to test 
the statistical significance of the branches’ internal struc-
ture. SIMPROF takes the form of a series of permutation 
tests. Beginning at the top of a precalculated hierarchy, 
thesetests stop the ever finer partitioning into subgroups. 
When a branch in the hierarchy is deemed to have no in-
ternal structure and is therefore homogenous, it is no 
longer subdivided.  Thus, a cluster is formed that is com-
prised of recordings with “exchangeable” features. 

For the permutation test, we set the number of itera-
tions to 1000 and the significance level alpha to 0.05—
the probability value at which the hypothesis of an inter-
nal structure is rejected. We used the Bonferroni correc-
tion [18, p. 745] to progressively adjust the probability 
values for multiple simultaneous tests (see also parameter 
mc=true of the f_disprof_clust function of the Fath-
om toolbox [16]). 

The results of the clustering analysis are shown in Fig-
ure 2. The dashed horizontal lines cut the mtP matrix into 
clusters of recordings that show statically significant sim-
ilarities. In Figure 3, we present the same result as an un-
rooted phylogenic tree. Recordings of the various Laid-
back, On and Pushed performances are represented as 

 
 
Figure 2: Microtiming profiles (mtPs) for all recordings 
shown as a greyscale image representing the probability 
or frequency with which a feature is encountered in a re-
cording. Features are laid along the horizontal axis. On 
the vertical axis, recordings are sorted and grouped based 
on the proximity of the SIMPROF clusters (see section 
3.2 and Figure 3). Horizontal dashed lines represent the 
cluster boundaries. The corresponding group mt arche-
types are marked on the right with the letters A-H. 

 

Figure 3: Hierarchical clustering presented as a phyloge-
netic tree (unrooted, equal daylight visualization). Each 
triangle corresponds to the microtiming profile of a single 
recording. Letters A-H are used to label the clusters. Next 
to each cluster the corresponding mt-Archetype is shown. 
Label C is assigned to a group of proximal clusters which 
correspond to the same mt archetype.  

 

Figure 4: Explanation of an mt-Archetype symbol.  
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black, grey or white triangles, respectively, while the dis-
tance between the clusters of recordings corresponds to 
the UPGMA linkage criterion [18, p. 352]. 

As our aim is to identify distinct timing strategies in 
the recordings, we summarize the main characteristics of 
each cluster into microtiming archetypes. An archetype is 
computed by first averaging the probabilities of the fea-
tures that belong in beats 1 and 3 (where the kick strokes 
occur) as well as the ones that belong in beats 2 and 4 
(where the snare strokes occur). The two groups of prob-
abilities describe the relation of the kick/hi-hat and 
snare/hi-hat combinations of strokes between them and in 
relation to the meter. Those relationships are reduced into 
archetypes according to whether the average probability 
of each feature is above or below 50%. An example of 
such an archetype is shown in Figure 4. In this example, 
the average probability of both a kick and corresponding 
hi-hat stroke to be late relative to the beat is above 50%. 
At the same time, the average probability of a kick stroke 
being ahead of the corresponding hi-hat stroke is also 
above 50%. In contrast, the snare strokes have a probabil-
ity below 50% to either occur ahead or after the corre-
sponding hi-hat stroke. In other words, most of the snare 
strokes are considered as synchronous with their corre-
sponding hi-hat strokes. 

Clusters with common microtiming archetypes that are 
relatively proximal in the phylogenetic tree are grouped 
together to create an overall map of strategies. In Figure 
2, these groups are labeled with the letters A to H and in 
Figure 3 the same groups are annotated with their corre-
sponding archetype.  

4. RESULTS 

The classification of the mtPs shows that the majority of 
the Laid-back and Pushed performances form separate 
homogenous clusters. The purely Laid-back clusters are 
characterized by generally late timing while the Pushed 
ones by early timing, as expected. However, the analysis 
reveals that drummers implemented distinct strategies to 
express a given timing feel by focusing on different 
rhythmic elements. The microtiming archetypes assigned 
to the various group clusters highlight those elements. 

More specifically, there are 5 purely Laid-back clusters 
which comprise 15 out of the 20 Laid-back performances. 
However, 4 of those recordings (split into 2 clusters in 
group C) are proximal to the two On clusters and are thus 
subsumed by the very same archetype. The other 11 are 
split in three clusters each forming a separate group (D, E 
and F). All three groups are characterized by late strokes. 
On the one hand, in group E, the snare stroke is late in rela-
tion to the hi-hat and in F, both hi-hat and snare are played 
late relative to the metrical beat. On the other hand, in 
group F, the combined kick/hi-hat strokes are late relative 
to the beat, while the kick additionally precedes the hi-hat. 

The Pushed performances are mainly found in purely 
Pushed clusters (18 out of the 20). However, in similar 
fashion to the Laid-back condition, a small portion (3) are 

found proximal to the On clusters in group C. 15 of the 
remaining Pushed performances form 4 distinct groups 
(A, B, G and H). All of them are characterized by the ear-
ly timing of the snare strokes. In group B, the snare pre-
cedes the hi-hat although the snare/hi-hat combination is 
considered as synchronous with the beat. Group B exhib-
its the inverse pattern of the Laid-back group E (snare 
early in relation to hi-hat). Similarly, the Pushed group G 
has its counterpart in the Laid-back group F, with both 
instruments being early in relation to the beat instead of 
late but the kick still precedes the hi-hat.  

In groups A and H the rhythmic pattern appear to be 
simply shifted early in relation to the beat. However, alt-
hough the two groups correspond to the same archetype, 
they are relatively distant on the tree. A closer look at 
their mtPs in Figure 2 reveals that in group A, the strokes 
are anticipating the beat significantly less often than in 
group H. This can also be seen in the proximity of the 
group A to group C which is dominated by the On re-
cordings. The similar proximity of the Laid-back group D 
to the On group C reflects the analogous weak late timing 
features of the mtPs in comparison with the other Laid-
back groups (E, F). 

The On performances are all found in Group C which 
is characterized by synchronous on-the-beat stroke on-
sets. Within the group, the On recordings are split into 
two clusters. Examining their mtPs, we see their differ-
ence stem from the tendency of some musicians to play 
the kick drum ahead of the hi-hat.  

5. DISCUSSION 

In this study, we present findings of an experiment in 
which professional drummers performed the same rhyth-
mic pattern with an On, Laid-back and Pushed timing 
feel. We found that participants used more than one dis-
tinct onset microtiming pattern for each intended timing 
instruction (see section 4). A more in-depth discussion of 
the timing strategies and their musicological implications 
will be undertaken in an upcoming publication. In the 
present discussion, we will focus on methodological is-
sues concerning, first, the various parameters of the anal-
ysis and their implications, and second, the interpretation 
of the clustering results. 

Our analysis begins with the encoding of the onset 
asynchronies found in the performances of the drummers 
into sets of boolean features. Microtiming profiles of the 
performances are calculated then by averaging those fea-
tures over the respective recordings. The mtPs codify the 
probability or frequency with which each feature was en-
countered in a recording. Finally, by clustering the mtPs 
we discover the recordings with similar features and 
group them together.  

The boolean features, however simple in their defini-
tions, depend on parameters and thresholds which are 
crucial to the outcome of the analysis and are closely re-
lated to the research questions. In this study, we chose to 
use individual values for each drummer instead of setting 
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global ones across all participants. This decision partly 
reflects the fact that phenomena such as negative mean 
asynchrony (NMA) typically varies between individuals. 
and, at the same time, naturally follows from our research 
question that seeks to identify individual strategies that 
musicians employ. The three parameters used for calcu-
lating the boolean features reflect mechanisms relevant to 
the perception and production of the subtle asynchronies 
we are studying. Therefore, setting individual values in 
our analysis corresponds to adopting the ‘point of view’ 
of each separate musician independently, whereas global 
values might instead correspond better to the perception 
of a ‘typical’ listener.  

 The way in which individual values are assigned to 
each parameter can significantly impact results depending 
on how the research question is formalized. In our current 
approach, we chose to derive the individual parameters for 
each musician based on their respective On performances, 
essentially rendering the On condition into a baseline from 
which the other timing conditions were compared against. 
For instance, whether a stroke is considered as ‘on-the-
beat' or not depends on whether it was performed late or 
early relative to the average hi-hat stroke in the On condi-
tion. In this case, the research question could perhaps be 
interpreted instead as “how do musicians differentiate their 
Laid-back or Pushed from an On timing feel”. 

Consequently, one might assume that the mtPs of the 
On recordings contain no meaningful information since, 
after all, they cannot be different from themselves! Nev-
ertheless, the On performances should not be excluded 
from the analysis: firstly, their mtPs can still exhibit sig-
nificant enough differences between the performances to 
classify them separately (see group C), though those dif-
ferences can solely be obtained from the onset relations 
between the instruments themselves, and not with respect 
to the metrical grid.  Secondly, the proximity of the Laid-
back and Pushed clusters to the two On clusters in the 
phylogenetic visualization of Figure 3 is informative in-
somuch as it is telling of the strong tendency for drum-
mers to differentiate these asynchronous timing feels 
from the On timing feel. 

The further hierarchical clustering of the derived mtPs 
proved an effective means of identifying several key tim-
ing strategies implemented by the drummers. The method 
groups and sorts the recordings according to their similar-
ity, revealing their relations without the need for a-priori 
hypotheses about the existence of specific strategies. Alt-
hough in principle it is possible to analyze the data using 
more conventional multivariate statistical approaches, it 
would be difficult to formalize the hypotheses to be test-
ed, especially considering the variety of strategies that the 
musicians seem to exhibit. However, in future studies, the 
two approaches could eventually complement each other: 
hierarchical clustering can assist in formalizing concrete 
hypotheses while conventional analyses provide more 
robust statistical results. 

  The similarity profiles method (SIMPROF) permits 
the clustering of statistically similar performances togeth-
er. It should be noted that other techniques such as boot-
strapping [23, 24] may be used as statistical means to de-
fine the boundaries of clusters in the mtPs matrix (Figure 
2). We leave the exploration of these alternative tech-
niques for a forthcoming publication. 

An important parameter in SIMPROF is the signifi-
cance level (alpha) with which the null hypothesis (that 
the differences in the mtPs inside a cluster are the result 
of random combination of the various features) is reject-
ed. The value of alpha, together with the Bonferroni cor-
rection for multiple simultaneous tests, determines the 
level of detail of the final classification, or in other 
words, the size and scope of the clusters. For instance, if 
we do not adjust the p-values for multiple tests (Bonfer-
roni correction parameter set to false in the 
f_disprof_clust function of the Fathom toolbox 
[16]), groups B and F are split into three and two sub-
clusters respectively. Looking at the mtPs in Figure 2, we 
see that for group B this is due to the subtle tendency of 
some performances to play ahead of the beat. In group F, 
it is due to the relation of the kick and hi-hat strokes. In 
the more common approach to hierarchical clustering, in 
which dendrograms are cut horizontally, this level is con-
trolled by the height that a dendrogram is cut. 

The way mtPs are clustered together plays central role 
in the creation of archetypes and therefore in the charac-
terization of the various timing strategies. Archetypes are 
calculated as averages of the mtPs in each cluster which 
are further reduced into eight boolean values. For exam-
ple, if group F was to be split into two sub-clusters, they 
would not correspond to the same archetype but would 
form distinct groups. In contrast, the sub-clusters of group 
B discussed above correspond to the same archetypes.  

Exploring and understanding the results of the cluster-
ing analysis requires a side-by-side examination of the 
mtP matrix (Figure 2) and the phylogenetic tree (Figure 
3). The two visualizations combined offer an overview of 
the performances allowing for a closer examination of the 
finer timing relation details between the different strate-
gies. This simultaneous multilevel view of the recordings 
enables us to draw conclusions about the timing strategies 
which would otherwise be obfuscated or oversimplified. 

In conclusion, the encoding of the drum performances 
into boolean features and the hierarchical classification of 
the derived microtiming profiles effectively cluster the 
performances into meaningful groups. The further phylo-
genetic visualization and the symbolic representation of 
the groups through microtiming archetypes is an efficient 
way of mapping drummers’ main timing strategies, 
providing an easily interpretable overview of the results. 
Our analysis simultaneously brings to the surface higher 
level rhythmic aspects common to the performances as 
well as the finer details that differentiate them without the 
one occluding the other.  
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