LEARNING SEMANTIC SIMILARITY IN MUSIC
VIA SELF-SUPERVISION

Mason Bretan
Samsung Research America
mason.bretan @samsung.com

ABSTRACT

Neural networks have been used to learn a latent “musi-
cal space” or “embedding" to encode meaningful features
and provide a method of measuring semantic similarity be-
tween two musical passages. An ideal embedding is one
that both captures features useful for downstream tasks
and conforms to a distribution suitable for sampling and
meaningful interpolation. We present two new methods for
learning musical embeddings that leverage context while
simultaneously imposing a shape on the feature space dis-
tribution via backpropagation using an adversarial compo-
nent. We focus on the symbolic domain and target short
polyphonic musical units consisting of 40 note sequences.
The goal is to project these units into a continuous low di-
mensional space that has semantic relevance. We evaluate
relevance based on the learned features’ abilities to com-
plete various musical tasks and show improvement over
baseline models including variational autoencoders, adver-
sarial autoencoders, and deep structured semantic models.
We use a dataset consisting of classical piano and demon-
strate the robustness of our methods across multiple input
representations.

1. INTRODUCTION

Music is inherently complex. A single motif can be de-
scribed along a multitude of dimensions. Some of these
dimensions may describe the motif in broad terms and cap-
ture properties that offer a more aggregate representation
including tonality, note density, complexity, and instru-
mentation. Others may consider the sequential nature and
temporal facets of music such as syncopation, harmonic
progression, pitch contour, and repetition. While these fea-
tures may describe specific attributes about the music, they
are intrinsically related and when combined can be used to
predict or classify higher level musical descriptors such as
genre, style, or even mood and emotion.

In recent years, neural networks have been used to
learn a low dimensional latent “musical space” or “em-
bedding" to encapsulate such features and provide a

(© Mason Bretan, Larry Heck. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Mason Bretan, Larry Heck. “Learning Semantic Similarity in
Music via Self-Supervision”, 20th International Society for Music In-
formation Retrieval Conference, Delft, The Netherlands, 2019.

446

Larry Heck
Samsung Research America
larry.h@samsung.com

method of measuring semantic similarity between two mu-
sical passages [26]. Ideally, the embedding f(z) € R?
for a passage z is learned such that the Euclidean dis-
tance D; ; = || f(x;) — f(z;)||* between two passages de-
scribes their semantic relationship. For the task of au-
tonomous music generation learning this space effectively
is important in order to influence the generator such that
its outputs conform to human expectations. This is par-
ticularly true in interactive applications where a machine’s
response is typically conditioned on a human performer.
Thus, an effective embedding is one that is capable of in-
terpreting music in a manner which correlates with human
perception.

Previously, musical embeddings have been learned us-
ing restricted boltzman machines (RBMs) [9, 22, 27],
autoencoders (with various denoising techniques) [2, 3],
siamese network models [4,13,23], word2vec models [11],
and sequence prediction models [1, 6, 18]. Variational au-
toencoders (VAEs) have also demonstrated some success
with monophonic inputs [25]. VAEs learn a normally dis-
tributed latent space which has shown to make sampling
and embedding manipulation more effective [15]. Though
VAEs are useful for constraining the statistical properties
of the learned space, it has also been shown that, like word
embeddings in language, improved features can be learned
when networks are trained to reconstruct the context. The
resulting features perform well on prediction and composer
classification tasks [2].

An ideal embedding is one that both captures useful fea-
tures and conforms to a distribution suitable for sampling
and meaningful interpolation. In this work, we present two
methods for learning musical embeddings. The methods
leverage context and simultaneously impose a shape on the
feature space distribution via backpropagation using an ad-
versarial component. We focus on the symbolic domain
and target short musical units such as a three second clip
or a sequence consisting of a small of number notes. The
goal is to project these units into a continuous low dimen-
sional space that has semantic relevance. We evaluate rel-
evance based on the learned features’ abilities to complete
several music-related tasks. We use a dataset consisting of
classical piano and demonstrate that it is possible impose
a prior distribution on the embeddings while maintaining
the quality of the features.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

2. RELATED WORK

One possible scenario for learning a space which encodes
semantic similarity is to explicitly label pairs of musical
units as being similar and train a model in a supervised
fashion, thus, pulling units labeled as similar closer to-
gether and pushing non-related units further apart in the
latent space. This type of metric learning can be effective,
however, the requirement for constructing such a dataset
makes it challenging. In this work we focus on self-
supervised methods that don’t require explicitly labeled
data.

RBMs, autoencoders, and prediction are all examples
of self-supervised learning paradigms. They rely on what
is readily available in the data to serve as a proxy to hu-
man labeled data, thus, autonomously constructing the su-
pervising signal. Many of the methods have been inspired
from the natural language processing community includ-
ing skip-gram and language models [20]. For example,
both [11] and [18] used skip-gram inspired techniques to
embed chords. The learned tonal space had similarities to
the circle of fifths. Context is also leveraged in [4] where
a Deep Structured Semantic Model (DSSM) is used learn
one, two, and four bar embeddings [12]. Such siamese net-
work techniques have proven useful for learning semantic
similarity in language. In [21] labeled pairs were used to
train siamese networks to effectively learn sentence simi-
larity. A pairwise ranking loss was similarly used for the
task of hit song prediction [30].

RBM and autoencoder methods don’t leverage context,
but have still demonstrated the ability to learn good fea-
tures compared to manually designed features. This is
particularly true in the audio domain [9, 16,29]. In [7]
autoencoders were used to learn a latent space encoding
timbre. Autoencoders are particularly useful because they
inherently support contain a generative component and if
learned effectively the embeddings can be manually ma-
nipulated for interactive applications [3]. VAEs, in par-
ticular, have shown promise and utility for music because
the latent space is regularized in a manner that makes sam-
pling and manipulation more convenient and meaningful
[15,24,25].

The methods in this work are inspired by adversarial
autoencoders [19]. Like VAEs, the goal of this type of
autoencoder is to constrain the latent codes to some arbi-
trary prior distribution. However, instead of using a KL-
divergence penalty, the autoencoder incorporates an adver-
sarial method to train the distribution of the latent codes to
match that of the prior distribution.

While both VAEs and adversarial autoencoders are use-
ful for generation, it has been shown that autoencoder fea-
tures are not as effective for downstream tasks compared
to methods that include context or prediction [2]. In this
work we propose a solution that computes a pairwise loss
based on context and includes an adversarial component to
regularize the latent space.

3. METHODS

We present two methods. At a high level the embed-
dings of semantically similar units should be geometrically
closer in the latent space than units that are dissimilar. For
each method the objective is to learn a space that achieves
this by leveraging context while adhering to a predefined
distribution. In lieu of explicitly labeled data we train the
networks using the assumption that two adjacent units (i.e.
two adjacent measures in a composition) are related. In
other words the distance between two adjacent units should
be smaller than two random units in the database.

3.1 Adversarial DSSM

Our first method is a modified implementation of the
DSSM. If ¢(z) represents the aggregated posterior distri-
bution of all the embeddings of length d generated by the
DSSM f(z) for z € X then the goal here to is match ¢(z)
to a prior distribution p(z) we define as z; ~ Ny(u, 02)
where 1 = 0 and 02 = 1. This is achieved by connecting
a discriminator to the last layer of the DSSM as shown in
Figure 3. This discriminator is trained adversarially in co-
alescence with the generator which also happens to be the
DSSM itself.

The standard DSSM training procedure is well-suited
for metric learning as it explicitly trains parameters to pro-
duce embeddings that are closer together (according to
a distance metric) for related items while pushing non-
related items away. However, the number of negative
examples and the ratio of easy to hard examples is usu-
ally greatly biased towards the easy-end. This often pro-
duces poor performance since many examples can satisfy
the constraint with a very small loss that provides no real
meaningful update during backpropagation [5]. This typi-
cally leads to high inter-class and low intra-class variance
making fine grained categorization or meaningful similar-
ity measures (important for music) challenging or impos-
sible.

To address this problem a bootstrapping method was
used in [5] in which particularly difficult examples were
manually mined from the dataset and used during different
stages of training. In this work, the adversarial component
naturally helps to mitigate this problem by enforcing the
prior distribution. The network parameters must find a way
to achieve the desired similarity metric, but adhere to a dis-
tribution that does not allow for a learned space in which
most examples can easily satisfy the similarity constraint.

The adversarial DSSM is trained in two stages: 1) Us-
ing the standard DSSM technique compute a softmax loss
with negative examples and 2) Using the adversarial net-
work train the generator and discriminator so that the gen-
erator is trained to produce embeddings that look as if they
have been sampled from the predefined distribution p(z).
Thus, the parameters are being optimized according to two
different losses with one learning the similarity metric and
the other learning to describe the data such that the aggre-
gated posterior distribution of the embeddings are Gaus-
sian and continuous.

447

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

@ Adversarial discriminator

@ Adjacency Discriminator
@S Generator
" Mirrored generator

a) Adversarial DSSM

=" Mirrored adversarial discriminator

b) Adversarial Adjacency Discriminator

)
S)
Fully])
Connected ' 3 ||| ||
L) 3}
Convolutional [] (] 7
Input [) [
Reference Pos Example Neg Example(s)

[] []
G (I
])
ameEmy

D
(B

Pos/Neg Example

Fully .
Connected

Convolutional ——

Reference

Input

Figure 1. Architectures for a) Adversarial DSSM and b) Adversarial Adjacency Model

For the first part the network is trained using Euclidean
similarity.
_ 1
) =TT E T
Negative examples are included in a softmax function to

compute P(R|Q) where R is the reconstructed vector and
@ is the input vector.

~

sim (X, (1)

exp(sim(Q, R))
Z&eD exp(sim(Q, d))
The network learns the parameters by minimizing the fol-
lowing loss function using gradient descent:

L=-log [[P(RIQ). 3)
(Q,R)

For the second part generative adversarial network
(GAN) training procedures are used [8]. First, the ad-
versarial discriminator is trained to distinguish between
the generated embeddings and vectors sampled from ¢(z).
Second, the generator (also the DSSM or f(x)) is trained
to fool the discriminator. We use a deterministic version of
the GAN where stochasticity comes solely from the data
distribution. In other words no additional randomness is
incorporated.

Training alternates between the DSSM and GAN pro-
cedures until Eqn. 3 converges. We found that a higher
learning rate for the GAN procedures (particularly for up-
dating the generator) relative to the DSSM loss was nec-
essary in order to get the desired results. Otherwise, the
GAN based updates had very little to no effect resulting in
a model with a very similar behavior to the vanilla DSSM
without the adversarial component.

P(R|Q) =

(@)

3.2 Adversarial Adjacency Model

The second method we propose is also inspired by siamese
network paradigms. However, unlike the DSSM, the em-

448

beddings are not directly optimized for the desired met-
ric. Instead, a classifier is trained to determine whether two
units are related or not. Though, because we use adjacency
as the self-supervising surrogate signal in lieu of manu-
ally designed similarity labels the classifier is really being
trained to determine whether two units would be contigu-
ous or not in a composition.

A simple version of this classifier would concatenate
both units into a single input and be trained to produce a bi-
nary classification from this concatenated vector. Our goal,
however, is to be able to embed a single unit and having a
network which requires two units as input would prevent
this. Therefore, we use tied weights in which the lower
layers of the network are identical and the embeddings are
not concatenated until several layers deep into the network
(see Figure 3). In other words the two inputs are embedded
independently, but use the same parameters to do so.

A much smaller classifier is attached to the top of the
concatenated embeddings to discriminate between related
and non-related inputs. By using only a couple layers to
perform the actual discrimination most of the good features
for classification will need to be learned by the embedding
portion. This enforces the network to embed an input in a
manner that not only efficiently encodes itself, but also can
effectively distinguish itself from unrelated inputs. Our
thinking was that hopefully the network would achieve this
by embedding related units closer together. (Note, for ease
of comparison the architecture of the embedding network
here is identical to the DSSM network in the previous sec-
tion).

Like the previous method we attach an adversarial com-
ponent to the end of the embedding portion of the net-
work. The goal is the same in that the aggregated posterior
distribution of the embeddings should conform to a pre-
defined distribution. The model is trained in two stages:
1) Train the classifier to discriminate between related and
non-related inputs and 2) Train the embeddings to fit a

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

prior distribution using the GAN scheme. Therefore, the
embedding portion of the model is updated during both
stages.

For the first part the classifier is trained using cross en-
tropy with two classes (related and non-related).

M
— > yilog(ye) &
c=1

where M = 2, 4/ is the predicted probability and ¥ is the
ground truth. The GAN portion is trained similarly to the
previous method. We found that this method was inher-
ently more stable than the previous method and much less
tuning of the learning rates between the two losses were
necessary.

4. EXPERIMENTS

In order to test the various networks and training proce-
dures we used a collection of piano compositions from 27
artists. The distribution of compositions among artists is
depicted in Table 4. At least two songs from each artist
were held out for testing. We augmented the data by trans-
posing each piece into all keys. This also prevented the net-
works from simply learning the bias any composers might
have had for specific key signatures. We also augmented
the data by altering the tempo randomly within a range of
.95 to 1.05 of the original.

Composer Num. Train Songs Num. Test Songs
Albeniz 15 2
J.S. Bach 8 2
Bartok 21 4
Beethoven 30 4
Borodin 8 2
Brahms 31 5
Burgmueller 10 2
Byrd 34 4
Chopin 49 6
Clementi 17 2
Couperin 10 2
Debussy 10 2
Galuppi 6 2
Grieg 17 2
Handel 20 3
Haydn 20 3
Scott Joplin 57 4
Liszt 17 2
Mendelssohn 16 2
Mozart 22 3
Mussorgsky 9 2
Rachmaninov 10 2
Ravel 5 2
Scarlatti 6 2
Schubert 30 4
Schumann 25 3
Tschaikovsky 13 2

Table 1. Piano Music Dataset.

4.1 Baseline Models

We compare our methods against four baseline models for
a total of six methods:

Variational autoencoder (VAE)

Adversarial autoencoder (AAE)

Deep structured semantic model (DSSM)

Adjacency Discriminator (AdjD)

Adversarial deep structured semantic model (A-DSSM)
Adversarial Adjacency Discriminator (A-AdjD)

SNk L=

4.2 Input Representation

Often performance of a music-based model is ultimately
determined by the input representation of the data. There-
fore, we test our system using two different input represen-
tations.

#1 (00..000100..001..0 0 |

2425 ...57 5859606162 ...10 20 30 ... 1990 2000’

Pitch (midi value) Duration (ms)

[(60.0. 33.0

Pitch Duration

Figure 2. Two representations for encoding middle 'C’
(midi note 60) and a 33ms interval to the next pitch. Input
representation #1 uses a two-hot encoding that discretizes
time in 10ms chunks. Input representation #2 uses a single
floating point value for both pitch and time.

The first representation is inspired by Google Magenta’s
event based method [28] in which each event is one-hot en-
coded. Because much of the data does not include relevant
volume information we do not include it in our representa-
tion. We also use only the onset time and use a fixed dura-
tion for each note, therefore, it is not necessary to include
note off events. This was primarily to simplify the input
space and attempt to better interpret the results. Pitch is
represented in a one-hot manner on a vector representing
midi values 24 to 96. We encode intervals between pitch
events discretely in 10ms intervals from O to 2000ms, thus,
the time portion of the vector consists of 200 values. The
single vector for all possible events including pitch and in-
terval has a length of 272. A two-hot encoding method is
used so both the pitch and interval before the next pitch is
encoded using the 272 values (see Figure 4.2).

The second representation is much less conventional.
We represent both pitch and time intervals continuously.
The pitch of a note is represented by a single floating point
value determined by its midi value and the interval between
notes is also represented by a single floating point value
determined by the number of milliseconds. Therefore a
vector for a single event only has a length of two (4.2).

On the surface, this continuous pitch representation
does not make a lot of sense as the Euclidean distance
in this space does not really translate to pitch distances

449

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

that are particularly meaningful in Western music or pi-
ano. An autoencoder trained to reconstruct this input using
a Euclidean-based loss is unlikely to learn many relevant
musical features. However, the two methods proposed in
this work do not compute the loss in the original space.
The adversarial DSSM optimizes the latent space by com-
puting the loss directly on the embeddings and the adver-
sarial adjacency model optimizes the latent space through
a classification task using a cross entropy loss. Therefore,
we hypothesize that our methods should be more robust
against varying input representations compared to models
that compute a loss in the original space (e.g. autoen-
coders). Additionally, a method that is robust when us-
ing this representation can be useful for styles of music or
particular instruments in which continuous pitch represen-
tations are more appropriate.

In this continuous representation the pitches and in-
tervals are standardized to a mean of zero and standard
deviation of one. In our experiments we did not find a
difference in our final results when compared to using
non-standardized input vectors, however, the learning was
faster using standardized vectors.

We focus on short musical units consisting of exactly
40 notes. This means that the input vector to the network
using the first representation has a length of 10880 (40 *
272). The input vector using the second representation has
a length of only 80 (40 pitches and 40 intervals). Forty
notes was chosen because it provides enough content to
capture local structure, yet, the vector length using the first
representation is not overwhelmingly large.

4.3 Architectures

The first layer of the network is convolutional using a filter
with an input length equivalent to a vector containing one
note and one interval (i.e. 272 for the first representation
and 2 for the second). The filter is convolved over the entire
vector using an equivalent stride length (272 or 2), thus,
the filter learns to encode a single pitch and interval. After
this initial convolutional layer all remaining layers are fully
connected.

For each method the portion of the network which per-
forms the embedding is the same aside from marginal dif-
ferences in the number of parameters for the first convolul-
tional layer between the two representations. The network
encodes the input into a 32-dimensional vector. Each net-
work has eight layers between the final embedding and in-
put vector and uses residual connections [10] as depicted
in Figure 3.

It is plausible that higher capacity networks (both wider
and deeper) may improve results further, however, the pri-
mary objective in this work is to compare various training
methods and not architectures. We designed this architec-
ture because it allowed us to leverage the utility of deep
learning and specific techniques (e.g. convolution, residual
connections, etc.), yet, it is not too large that training time
would become problematic during experimentation. Each
layer uses LeakyReLU and the parameters are updated us-
ing Adam optimization [14, 17].

450

4.4 Experiments

We perform five different experiments based on music-
related tasks. Performance on these tasks will be used to
determine the efficacy of the learned latent space and fea-
tures for the various models.

Ranking The primary measure for evaluation is based
on a ranking task. Given a reference unit and a group of
100 units consisting of 99 random units from the database
and one unit that is adjacent to the reference (either be-
fore or after) the task is to rank all 100 units according
to their Euclidean distance to the reference in the latent
space. This is repeated for each unit in the test set and
a mean rank is reported where the a lower rank indicates
a higher similarity. The assumption is that adjacent units
should be geometrically closer in the latent space relative
to non-adjacent units.

Composer Classification We evaluate how useful the
learned features are for classifying the units according to
their composers. Using the embeddings as inputs we train
a simple two layer network to perform classification. In the
test set there are 27 possible composers. Though works by
these composers are seen during the training phase, the test
set consists of unique compositions that were not available
during training.

Pitch Chroma Prediction We evaluate whether the em-
bedding retains enough information about the input units to
reconstruct a unit’s chromagram representation. We train
a two layer network to minimize a softmax function (Eqn.
3) over cosine similarity. Thus, in Eqn. 2 we replace the
Euclidean similarity (Eqn. 1) with sim(X, Y) = l))(;"}:‘.
The positive example is the true chroma extracted from the
unit computed directly from the original input vector. Neg-
ative examples come from chroma extracted from random
units in the data.

Note Density Regression We evaluate whether the embed-
ding retains enough information about the input units to
describe their note density. Because we use a fixed num-
ber of notes per unit the network is trained to predict the
unit’s duration in seconds. We use root mean square error
(RMSE) to measure performance.

Forward Prediction We evaluate whether a sequential
model can be trained to predict the embedding of the
next unit in a composition given a sequence of the pre-
vious seven units. This task is related to the first Ranking
task, but focused on generation and prediction rather than
general distances in the learned manifold. We train two
stacked LSTM cells, each with 200 units, to predict the
next step of a sequence. Specifically, at each time step,
the input to the network is a the 32-dimensional embed-
ding vector of a 40 note unit z;. We train this network
to predict the 8" unit, ;- given the previous 7 units
Ti, Zi+1,-- - Ti+6. This means that 280 notes of context
are provided before the prediction is made.

For each given target x;47 as described above, we cre-
ate a set of 32 embedding vectors: one is f(x;17), the true
embedding for the target. The other 99 vectors are em-
beddings of randomly selected units in the data set. The
Euclidean distance is measured between the output of the

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

LSTM and the encodings of each unit. The distances are
then sorted and ranked similarly to the first Ranking exper-
iment.

S. RESULTS

The results for each experiment are reported in Tables 2-6.

Method | Representation #1 | Representation #2
VAE 10.8 12.3
AAE 9.9 12.3
DSSM 11.2 14.8
AdjD 5.8 6.3
A-DSSM 8.8 9.2
A-AdjD 5.1 5.6

Table 2. Ranking Results. Geometric means are reported
for the adjacency ranking task. A lower score indicates a
better result.

Method | Representation #1 | Representation #2
VAE 11 .087
AAE 11 .091
DSSM 18 .10
AdjD .26 .26
A-DSSM .23 .19
A-AdjD 27 .28

Table 3. Composer Classification Macro-F1 scores are
reported for the composer classification task. A higher
score indicates a better result.

Method | Representation #1 | Representation #2
VAE .56 43
AAE 57 44
DSSM 34 27
AdjD 1 .68
A-DSSM 72 .67
A-AdjD .83 8

Table 4. Chroma Predication Geometric means of cosine
similarities between predicted and ground truth chroma. A
higher score indicates a better result.

Method | Representation #1 | Representation #2
VAE .33 28
AAE .33 .29
DSSM .20 18
AdjD .26 .20
A-DSSM 21 .19
A-AdjD 21 .19

Table 5. Note Density Regression RMSE values are re-
ported for note density regression. The deviations were
measured in seconds. A lower score indicates a better re-
sult.

Method | Representation #1 | Representation #2
VAE 59 8.7
AA 5.9 8.6
DSSM 10.7 11.5
Adj 2.7 3.0
A-DSSM 4.8 52
A-Adj 2.6 2.7

Table 6. Forward Prediction Geometric means are re-
ported for the adjacency ranking task. A lower score indi-
cates a better result.

5.1 Discussion

The vanilla DSSM performed relatively poorly on all tasks
except for note density regression. Without the adversar-
ial component it learns the most significant feature (in this
case note density in time), yet, fails to learn much more
beyond this. By fitting the latent space to a prior distribu-
tion, the adversarial component seems to do what it was
designed for — preventing the model from satisfying the
similarity constraint without actually learning too many
meaningful features.

Our adjacency discriminator model worked reasonably
well even without the adversarial training. We found that
without the adversarial component the latent embeddings
were naturally fairly close to a Gaussian distribution, thus,
adding an adversarial discriminator had much less of an ef-
fect than when used with the DSSM. Though the additional
fine tuning did improve performance across the tasks albeit
marginally.

Finally, the differences in performance for the two input
representations were much less pronounced for our meth-
ods. This suggests our proposed methods (the Adversarial
Adjacency Discriminator in particular) may be useful for
non-Western music and instruments capable of continuous
pitch spaces.

6. CONCLUSION

In this work we described new approaches to self-
supervised metric learning. The learned features showed
improved results on downstream tasks over various base-
line methods. Most importantly, the quality of the features
were either improved or maintained when imposing a prior
distribution on the embeddings. The next steps for this
work are to: 1) develop decoders from the latent spaces
learned from our methods and 2) measure the perceptual
significance of the learned space.

7. REFERENCES

[1] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to poly-
phonic music generation and transcription. arXiv
preprint arXiv:1206.6392, 2012.

[2] Mason Bretan, Sageev Oore, Doug Eck, and Larry
Heck. Learning and evaluating musical features with

451

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

(3]

[4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

deep autoencoders. In KDD Workshop on Machine
Learning for Creativity, 2017.

Mason Bretan, Sageev Oore, Jesse Engel, Douglas
Eck, and Larry Heck. Deep music: towards musical
dialogue. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Mason Bretan, Gil Weinberg, and Larry Heck. A unit
selection methodology for music generation using deep
neural networks. In Proceedings of the 8th Interna-
tional Conference on Computational Creativity, At-
lanta, 2017.

Yin Cui, Feng Zhou, Yuanqing Lin, and Serge Be-
longie. Fine-grained categorization and dataset boot-
strapping using deep metric learning with humans in
the loop. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1153—
1162, 2016.

Douglas Eck and Juergen Schmidhuber. Finding tem-
poral structure in music: Blues improvisation with Istm
recurrent networks. In Proceedings of the 12th IEEE
workshop on neural networks for signal processing,
pages 747-756. IEEE, 2002.

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander
Dieleman, Mohammad Norouzi, Douglas Eck, and
Karen Simonyan. Neural audio synthesis of musical
notes with wavenet autoencoders. In Proceedings of the
34th International Conference on Machine Learning-
Volume 70, pages 1068-1077. JMLR. org, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial

nets. In Advances in neural information processing sys-
tems, pages 2672-2680, 2014.

Philippe Hamel and Douglas Eck. Learning features
from music audio with deep belief networks. In ISMIR,
volume 10, pages 339-344. Utrecht, The Netherlands,
2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 770-778, 2016.

Cheng-Zhi Anna Huang, David Duvenaud, and
Krzysztof Z Gajos. Chordripple: Recommending
chords to help novice composers go beyond the or-
dinary. In Proceedings of the 21st International Con-
ference on Intelligent User Interfaces, pages 241-250.
ACM, 2016.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. Learning deep structured
semantic models for web search using clickthrough
data. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management,
pages 2333-2338. ACM, 2013.

452

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

Yu-Siang Huang, Szu-Yu Chou, and Yi-Hsuan Yang.
Similarity embedding network for unsupervised se-
quential pattern learning by playing music puzzle
games. arXiv preprint arXiv:1709.04384, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Honglak Lee, Peter Pham, Yan Largman, and An-
drew Y Ng. Unsupervised feature learning for au-
dio classification using convolutional deep belief net-
works. In Advances in neural information processing
systems, pages 1096—1104, 2009.

Andrew L. Maas, Awni Y Hannun, and Andrew Y Ng.
Rectifier nonlinearities improve neural network acous-
tic models. In Proc. icml, volume 30, page 3, 2013.

Sephora Madjiheurem, Lizhen Qu, and Christian
Walder. Chord2vec: Learning musical chord embed-
dings. In Proceedings of the constructive machine
learning workshop at 30th conference on neural in-
Jformation processing systems (NIPS’2016), Barcelona,
Spain, pages 1-5, 2016.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
Ian Goodfellow, and Brendan Frey. Adversarial au-
toencoders. arXiv preprint arXiv:1511.05644, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In
Advances in neural information processing systems,

pages 3111-3119, 2013.

Jonas Mueller and Aditya Thyagarajan. Siamese recur-
rent architectures for learning sentence similarity. In
Thirtieth AAAI Conference on Artificial Intelligence,
2016.

Juhan Nam, Jorge Herrera, Malcolm Slaney, Julius O
Smith, et al. Learning sparse feature representations for
music annotation and retrieval. In ISMIR, pages 565—
570, 2012.

Xiaoyu Qi, Deshun Yang, and Xiaoou Chen. Triplet
convolutional network for music version identification.
In International Conference on Multimedia Modeling,
pages 544-555. Springer, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Adam Roberts, Jesse Engel, and Douglas Eck. Hier-
archical variational autoencoders for music. In NIPS
Workshop on Machine Learning for Creativity and De-
sign, 2017.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

[26] Fanny Roche, Thomas Hueber, Samuel Limier, and
Laurent Girin. Autoencoders for music sound synthe-
sis: a comparison of linear, shallow, deep and varia-
tional models. arXiv preprint arXiv:1806.04096, 2018.

[27] Jan Schluter and Christian Osendorfer. Music simi-
larity estimation with the mean-covariance restricted
boltzmann machine. In 2011 10th International Con-
ference on Machine Learning and Applications and
Workshops, volume 2, pages 118—123. IEEE, 2011.

[28] Tan Simon and Sageev QOore. Performance rnn:
Generating music with expressive timing and dy-
namics. Magenta Blog: https://magenta. tensorflow.
org/performancernn, 2017.

[29] Jan Wiilfing and Martin A Riedmiller. Unsupervised
learning of local features for music classification. In
ISMIR, pages 139-144, 2012.

[30] Lang-Chi Yu, Yi-Hsuan Yang, Yun-Ning Hung, and
Yi-An Chen. Hit song prediction for pop music
by siamese cnn with ranking loss. arXiv preprint
arXiv:1710.10814, 2017.

453

