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Abstract— We present an efficient graph-theoretic algorithm
for segmenting a colored laser point cloud derived from a
laser scanner and camera. Segmentation of raw sensor data
is a crucial first step for many high level tasks such as object
recognition, obstacle avoidance and terrain classification. Our
method enables combination of color information from a wide
field of view camera with a 3D LIDAR point cloud from an
actuated planar laser scanner. We extend previous work on
robust camera-only graph-based segmentation to the case where
spatial features, such as surface normals, are available. Our
combined method produces segmentation results superior to
those derived from either cameras or laser-scanners alone. We
verify our approach on both indoor and outdoor scenes.

I. INTRODUCTION

Cameras and laser scanners each provide robots with a
very rich sensory experience. However, each sensor has dis-
tinct failure modes: cameras are unable to directly perceive
depth, while laser scanners cannot directly perceive color. By
combining these sensors to produce a colored point cloud we
can obtain a best-of-both-worlds representation. Robots using
these sensors face the challenge of processing the data from
these devices in real-time. Extracting high level information
directly from these data streams using model-based object
detection or complex surface fitting is infeasible in real-time.
Even the comparatively simple problem of estimating the
surface normal at every point can be quite expensive [7].
Further, typical depth estimation techniques from the vision
community are either high quality and not real-time [19],
[10], or real-time at the expense of quality [15]. Laser
scanners, however, support acquisition of highly accurate and
reliable spatial data without expending significant additional
computation resources.

A common technique to make processing this inundation
of sensory information tractable in real-time is to segment
the data into superpixels [3] or spatially adjacent regions [8].
This data reduction technique enables tractability for terrain
classifiers [12], or object classification algorithms [5]. While
jointly calibrated laser and camera systems have been used
widely for applications such as pedestrian tracking [14] and
road following [12], such approaches have all separately
considered the visual and spatial components. These ap-
proaches segment separately, and then recombine the results
near the end of the processing pipeline. Some recent work
has also considered the case of colored point clouds in
aerial surveying applications [18]. While the work shows
the benefits of analyzing the joint data stream, it does not
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(a) Colored lidar scan (b) True-color segmentation results

Fig. 1: Sample segmentation result with proposed method.

address the efficiency or robustness aspects required for use
on a robot system.

Prior work on segmenting laser point clouds relies either
on determining segment boundaries using Euclidean separa-
tion or change in local surface normals. The former approach,
[8], fails to produce meaningful segments when objects can
be connected by a continuous string of points through some
common supportive surface (e.g. the ground plane, or a wall).
This can lead to improper agglomeration with the supporting
surface and make later detection or classification difficult.
More sophisticated methods use a local estimation of the sur-
face normal for every point as a segmentation criterion [9].
However, they utilize a kd−tree to lookup nearby points,
which requires O(n log n) time to construct. Furthermore,
solely determining reasonable segment boundaries based on
surface normals can result in over segmentation. This occurs
because local surface normal estimation is very sensitive to
the range noise when scan density is high. Others have shown
success in indoor or simulated environments using a high
frequency, high precision, low range, low field of view laser
scanner [7]. However, with lower resolution, wider field of
view scanners, such as those often used for robot navigation
(and in this paper), normal estimation becomes more noisy.

Using our co-registered sensors, we demonstrate a robust
method that exploits the strucutre of the laser data in
combination with the additional information provided by the
camera to speedup and improve the segmentation process.
The key contributions of our paper are:

• An extension of graph-theoretic segmentation to pro-
pose segment unions based on spatial proximity.

• A dynamic segment union criterion based on color and
surface normals that produces a quality segmentation.

• An efficient segmentation process, bounded by
O (nα(n)), which is a linear bound for all practical n.

Quantitative evaluation of segmentation quality is difficult
because the effectiveness of the segmentation is determined



by the application for which it is intended. In this paper, we
evaluate segmentation quality based on its ability to distin-
guish between objects and the surrounding environment.

The remainder of this paper is structured as follows:
we begin in Section II by discussing our co-registration
method. Section III describes the graph-based segmenta-
tion method upon which we build our implementation. In
Sections IV and V we explain our experimental setup and
showcase our results. Finally, we conclude in Section VI.

II. POINT CLOUD CO-REGISTRATION

Given a set of laser scans L, and a corresponding image
I , we are interested in computing the joint point cloud of
vectors ~v = [x y z r g b]T which will form the basis
of our segmentation algorithm described in the following
sections. Each laser scan L contains a set of range-bearing
measurements R = {(r1, θ1), · · · , (ri, θi)}, and an associ-
ated rigid body transformations Ti = Ti(φ) mapping each
homogeneous vector ~ri = [ri cos(θi) ri sin(θi) 0 1]T to a
point ~li = [x y z 1]T in the sensor’s coordinate frame. These
rigid body transformations are determined dynamically from
the angle of the servo controlling the laser scanner, φ.
The full experimental sensor configuration can be seen in
Figure 2.

Producing the joint cloud now only requires projection
of the laser points li into the most recent image I , and
discovering the pixel ~pi = [px py] with coloring r, g, b
that corresponds to li, finally producing vi. Determining the
correct pixel ~pi also depends on the distortion model for
the camera, as covered in [20] and [6]. The projection is
described precisely by Equation 1.

pi = d(KETi~ri) (1)

where K is the standard 3 × 3 intrinsics matrix with 5
degrees of freedom (DOF), E = [R t] is the 3× 4 extrinsics
matrix with 6 DOF, Ti is the 4×4 rigid body transformation
described above, and d(·) is a sixth degree polynomial
approximation of the lens distortion using only 5 DOF.

The production of the joint cloud is highly sensitive to the
accuracy of the co-registration between the two sensors de-
scribed by the 16 parameters in Equation 1. Some prior work
on accurately co-registering laser and cameras is covered
in [16], [1] and [13]. In the first case, calibration is achieved
by manually placing specialized calibration targets in the
scene. The second case relies on measurements from an IMU
directly attached to the sensor rig to aid calibration. In the
final case, some pre-processing of the the laser and camera
data is done to aid a human in identifying correspondences
manually. For the purposes of this paper, we follow an
approach very similar to [13]. Our calibration is optimized
on a scene-by-scene basis. For each scene, we manually
select a set of corresponding points in both camera and
LIDAR space. For example, object corners are generally
easy to identify in both the camera image and the point
cloud. We then run an iterative compass search, varying
k1 · · · k5, e1 · · · e6, d1 · · · d5, to minimize the mean square

Fig. 2: Our sensor configuration that enables co-registration
of laser and camera sensors.

error projection error as defined below:

e =
∑
j

|pj − d(KETj~rj)|2 (2)

As the calibration is an offline process and the method
herein requires a very accurate calibration, the optimization
is allowed to run until completion.

After calibration, points which project into the image are
assigned the appropriate color, as shown in Figure 3a. An
alternative approach would be to label all the pixels in the
image with an x, y, z point. However, the angular resolution
of the camera is finer than that of the laser scanner, so we can
avoid dealing with a missing data problem by considering the
color points in 3D space.

III. GRAPH-BASED SEGMENTATION

In this section we discuss the extension of a popular graph-
theoretic segmentation method for images to the domain of
co-registered laser and color points [3]. This method has been
extended successfully to many domains, including for use in
parallel segmentation [17] and to tracking fiducial tags [11].
Given the joint cloud V = [v1, · · · , vi] whose construction is
specified above, we consider the problem of segmenting (or
clustering) this set into disjoint subsets Si s.t.

⋃
i Si = V .

We consider a graph (or mesh) G = (V,E) whose
vertices V are points from the joint cloud (above), and some
set of edges E. In the vision literature, where the nodes
of the graph are typically the pixels in the image, E is
constructed such that each pixel is 8-connected to all of
its neighbors. In recent work on clustering laser clouds, E
is determined by connecting all points to all the neighbors
within a radius r [8].

Given this graph, there are many ways of clustering nodes
together. In [8], the resulting clusters are all the connected
components, determined by greedily merging all nodes which
are connected by an edge. This approach, variants of which
are used also in [9] only incorporates a binary edge criterion.
That is, each edge is either present or absent. In [9], edge
existence is further screened by a fixed threshold for angular
difference in surface normal. Other segmentation criteria, for
example making assumptions designed to remove the ground
plane, are discussed in [4].



In the proposed method, we also use a real-valued edge
weight, but only leave edges up to a specified length in-
tact, generally 0.25 meters. This avoids the requirement to
enact special case removal of the ground plane, and allows
segments to be formed which are uniformly variable, while
with the same parameters also separate smooth areas from
segments which have a high variability. To achieve this, we
use as a foundation a segmentation algorithm from the vision
community as presented in [3].

When operating on an image, this segmentation algorithm
generates an 8-connected graph as described above. Edge
weights are then determined as a function of color error
between neighboring pixels. In the next phase of the process,
edges are sorted in increasing order.

Segments are then formed by processing each edge e =
〈pi, pj , w〉 in sorted order starting with the smallest w. For
each pixel pi and pj , the corresponding segments containing
those pixels, Sl and Sm, are retrieved, in addition to corre-
sponding threshold values threshl and threshm. A merge
between Sl, and Sm to form Slm is accepted if and only if
w < threshh for both h = l and h = m. If the merge is
accepted, w is guaranteed to be the largest weight between
any two pixels in Slm, so we can update the threshold for
the newly formed segment as:

threshlm = w +
krgb
|Slm|

(3)

The net effect is that as the segments grow, the threshold
approaches the largest intra-segment weight. The resulting
segmentation process ensures that areas of uniform edge
cost are joined first, while segments with larger variability
are formed after small-weight edges are considered. This
enables the highly desirable property of segmenting regions
of uniform color, gradients, and, crucially, regions of uniform
variability. These results are discussed in more detail in [3].

We extend this method in two ways. First, we replace
the image-based grid with a surface mesh constructed di-
rectly from successive laser scans. Each point in the joint
cloud is connected by a potential edge to its 8 neighbors
in the current, previous and subsequent scans. While the
segmentation depends heavily on the actual edge weights,
a significant segmentation improvement can be obtained by
simply building a mesh which does not contain an edge
from an object in the foreground to one far away in the
background. This extension better enables separation of
similarly color objects from a background, which using the
image based grid often cannot handle.

Second, we consider the case where there are two weights
for every edge: one for color difference and one for angle
difference between surface normals. Integrating a second
edge weight into the scheme described above raises two
important issues. Both issues stem from the fact that weights
for the surface normals and weights for color are in funda-
mentally different units and cannot be directly compared. The
first problem is that sorting simultaneously on two distance
metrics is ill-defined. One could conceivably define a mixture
of the two measures and sort on the combined weight.

However, this introduces an additional parameter which must
be tuned, and requires finding appropriate normalization
schemes for both the color distance and the surface normal
distance metrics.

When considering how to sort the edges, runtime is an
important concern. If the edges are real-valued, the best
sorting performance is O(n log n). However, in the case of
the discrete labels (e.g. in RGB), the number of possible
distances is constant (though potentially large). This allows
a constant time sorting algorithm to sort edge weights in
O(n + k), where k is number of possible distances. Since
n is very large for a laser point cloud, sorting real-valued
edges quickly becomes prohibitive. Because sorting on both
edge weights is ill-defined, we choose only one of the edge
weights to sort on. Since the edge weights corresponding to
color are more stable than local surface normal estimation,
and since they are also discrete, we can continue to use
counting sort in O(n+ k) time.

Note that sorting edges without incorporating surface nor-
mal weights does not provide the same theoretical guarantees
shown in the color-only case [3]. However, in practice, our
algorithm still yields a significantly improved segmentation.
As noted above, sorting on both criteria is ill-defined.

To integrate the edge weight corresponding to the surface
normals, we add an additional threshold in similar fashion
to the camera-only approach described above, knorm. This
means that for an edge e = 〈li, lj , wrgb, wnorm〉 to connect
two segments Sl, Sm into a larger segment Slm, we need
the following to hold: wrgb < threshrgb and wnorm <
threshnorm for the thresholds corresponding to both Sl and
Sm.

Similar to [3], we employ an 8-connected graph for
segmentation. This graph is extracted from the mesh of laser
scans. Only laser points which have a corresponding color
value are included in the mesh. Each node in the surface
mesh is connected to up to 8 others by edges labeled with
two edge weights. The first edge weight, discussed above, is
simply the Euclidean distance in the RGB color space. The
RGB color space is chosen over HSV or other alternative
color spaces because it corresponds to the native color space
used by our camera, and because it was used effectively in
prior work [3]. The color edge weight between two pixels
~u,~v is then given as:

wrgb(~u,~v) =
√

(ur − vr)2 + (ug − vg)2 + (ug − vg)2 (4)

Computing the corresponding edge weights for surface nor-
mals is slightly more involved because it involves computing
the surface normal at each point. In practice, this can be done
with reasonable accuracy by only looking at the neighboring
points. A comprehensive study of local normal estimation
techniques is presented in [8]. In our case, we find the
best fit plane for the 8 neighbors using a Singular Value
Decomposition (SVD) (this corresponds to the “PlanePCA”
method in [8]) because it has the highest accuracy and a
reasonably fast runtime.

Let ~q1 · · · ~qm be the m points connected to point ~q0 by an
edge, where m is necessarily no greater than 8. Define the



mean of the points to be q̄ =
∑

j ~qj/m, then we can pack
a m × 3 matrix Q, such that row j corresponds to ~qj − q̄.
Using the SVD, we can factor Q = UDV T , where V is a
3× 3 matrix containing the principal components of Q. The
two largest principal components define the bases for the
best fit plane; we are interested in extracting the normal, the
smallest principal component, thus we are interested in the
column of V corresponding to the smallest singular value.

A key observation here is that the computation of normals
is extremely dependent on which points in the neighbor-
hood of q0 are chosen. In our case, we choose to use the
topology of the mesh to choose neighbors. However, as the
resolution density of the scans increase, the normal estimates
are increasingly sensitive to noise in the range returns.
Thus, finding good normals may necessitate increasing the
neighborhood size used in PlanePCA calculation.

One way to achieve this is to create an O(n log n) spatial
data structure to find more points in the neighborhood. The
extra computation is hard to justify, however, because a
similar effect can be found by simply sub sampling the laser
data appropriately. The latter is the approach we choose in
this paper, and it is directly motivated by finding an efficient
solution for coping with noisy range data.

Once the normals have been estimated for each point for
which color information is available, edge costs between
points are straightforward to compute. Let ~ni and ~nj be the
unit normal vectors at two nodes i and j separated by an
edge e = (i, j), then the edge weight computed from the
surface normals is given in Eq. 5:

wnorm = arccos (ni · nj) (5)

Given the mesh of colored points and the two edge costs
for color and surface normals we now have the essential ma-
terial to begin segmentation. Algorithm 1 gives pseudocode
for the complete pipeline. The raw laser and camera data is
first processed into an augmented set of point pi ∈ Points,
where pi = [x y z r g b nx ny nz] and a set of edges
em ∈ Edges, where em = [i, j], where i, j are the indices
of two points pi and pj . In lines 3 and 4, we compute edge
weights, and sort the edges and the weights in increasing
order. This takes O(n + k) time. In line 5 we initialize a
disjoint UnionFind data structure to keep track of which
points belong to which segment [2]. Each union or find
operation is O (α(n)), where α is the inverse Ackermann
function, which is bounded by 5 for any practical value of
n. Thus, a sequence of n unions or finds takes O (α(n)n),
which is effectively linear for any realistic number of nodes.
In lines 7-9 we iterate through edges in increasing order
of color weights, and propose unions between the sets
connected by that edge. Line 10 shows that unions are only
accepted if they meet both the dynamic criteria for color edge
weights and normal edge weights as described previously.

IV. EXPERIMENTAL SETUP

To evaluate our proposed method, we collected two dis-
tinct datasets, one indoors in an office hallway (the “hallway
dataset”), and another outdoors in bright sunlight on a small

Algorithm 1 Segmentation Algorithm
1: function SEGMENTCOLOREDPOINTCLOUD(L, I)
2: 〈Edges, Points〉 = buildGraph(L, I)
3: Weights = computeEdgeWeights(Edges, Points)
4: countingSortOnRGB(Edges,Weights)
5: segments = new UnionFind(Edges)
6: init thresholds
7: for 〈pi, pj〉 ∈ Edges, 〈wrgb, wnorm〉 ∈Weights do
8: Si = segments.find(i)
9: Sj = segments.find(j)

10: if belowThresh(〈wrgb, wnorm, i, j〉, thresholds) then
11: newID = segments.join(i, j)
12: updateThresh(〈wrgb, wnorm, newID〉, thresholds)
13: end if
14: end for
15: return segments

(a) Colored laser scan (b) Downsampled surface mesh

Fig. 3: An example of the graph that is produced for the
orange barrel at low spatial resolution.

hill (the “hill dataset”). Because our sensor configuration is
novel, we are unable to evaluate our method using previously
published datasets.

For our experiments, we used a Hokuyo UTM-30LX
planar laser scanner, which returns 270 degree FOV planes
at 40 Hz with 1/4◦ angular resolution. The laser is attached
to a custom-made mount printed using rapid-prototyping
ABS plastic, and actuated with an AX-12 Dynamixel servo
(1/3◦ angular resolution). The camera is a color USB Firefly
MV 03MTC camera with 752 x 480 resolution used in
conjunction with a wide angle (111◦) Tamron M13VM246
lens. The camera is attached to the same structure, and is
actuated with a pan and tilt servo. For the purposes of this
paper, the camera is held fixed with respect to the robot; only
the Hokuyo was actively actuated. This was to simplify the
calibration process between the two sensors.

We compared the performance of our method under differ-
ent conditions. At a high level, we compared the efficacy of
using a spatially-informed mesh, versus a topology formed
purely in pixel space. We then further tested the performance
of segments formed on the spatially-informed mesh using
surface normal angle differences and color differences to
determine segment boundaries. We ran tests using only color
difference, only surface normal angle variation, and both
together to showcase our proposed method (which consists
of using both features for boundary determination).



In general, we make segment boundaries as explicit as
possible by artificially coloring each segment. Each dataset
consists of a series of timestamped servo positions, camera
images, and laser range measurements. For both datasets
discussed below, we used similar parameters when possible,
but varied to produce best-case results for each algorithm.
The parameters we used are listed in Table 1 where ‘Edge
cut’ denotes the maximum edge length threshold and both
Krgb and Knorm are the graph-cut parameters for their
respective quantities. We also downsampled our LIDAR data
uniformly, as noted in the table. This increased the fidelity
of the PCA surface normal estimation algorithm, since small
variations in surfaces were eliminated. An approach intended
to smooth variation in surface normals is also employed
in [4].

V. RESULTS

The hallway dataset has several everyday objects placed
haphazardly to fill the scene. The camera image correspond-
ing to this scene is shown in Figure 4a. We first show
what previous methods from [3] produce using only the
full resolution image. These results are shown in Figure 4b.
Tuning the parameters for the image-only method can change
which segments are created, but some objects cannot be
disambiguated on color alone.

This motivates the migration from a pixel-based mesh to
a spatially grounded mesh, as described previously. Building
the mesh from the laser scans enables using additional
information to suggest connections between regions in the
scene. Using this mesh yields significant improvements over
the vision-only method, even without any consideration of
surface normals. This is shown in Figure 4c. However, as in
the image-only segmentation, some of the objects cannot be
disambiguated on color alone even when using the spatial
mesh. In particular, the gray trash bin is difficult to separate
from the floor using only color information.

We can also examine the segmentation performance when
only surface normals are used to determine segment bound-
aries. Figure 4d shows how segmentation using surface
normals is able to separate the gray trash barrel from the
floor, but is unable to separate the blue recycling bin from
the rear wall.

Our proposed method combines both of these approaches
to give a segmentation more consistent with our expectations.
The results of the joint segmentation is shown in Figure 4e.
For the segments using the proposed method, we also show
how the segments look without false coloring; Figure 4f
instead shows each segment colored by its average color.

The proposed method is considerably more robust than
either laser data alone or color alone can provide. To show
this, consider the “hill dataset” scene depicted in Figure 4i.
In this case, the sun is so bright that the camera (whose
color calibration was fixed indoors) does a poor job of
distinguishing between the color of the ground, the color
of the orange buckets, and the color of the tree trunk. In this
case, we observe that valid segmentation is still generated,
even using the proposed method which determines segment

Table 1: Segmentation Parameters
Figure 4c 4d 4e, 4f 4g, 4h 4j

Resolution (deg) 0.75 0.75 0.75 0.25 0.50
Edge cut (m) 0.25 0.25 0.25 0.25 0.50

Krgb 1000 n/a 9000 9000 12000
Knorm n/a 9 10 10 9
minsize 100 100 100 100 100

(a) The camera image for the “hall-
way” dataset.

(b) 2D segments extracted via image-
only segmentation from [3].

(c) Graph segments with only color
difference as a cluster criterion.

(d) Graph segments with only surface
normals as a cluster criterion.

(e) Graph segments via the proposed
method.

(f) Graph segments via the proposed
method (true color).

(g) Over-segmented result via the
proposed method (true color).

(h) Result in 4g from an alternate
viewpoint (true color).

(i) The camera image for the “hill”
dataset.

(j) Graph segments extracted via the
proposed method.

Fig. 4: Segmentation results for multiple algorithms. Note
the highlighted undesirable results in 4c and 4d



breaks using both color and surface normals. This is shown
in Figure 4j, where the barrels, the ground and the tree
are segmented separately. Outdoor environments present a
particular challenge for normal estimation algorithms be-
cause terrain is more variable, and laser scanners produce
results which are less consistent. By increasing knorm, we are
able produce a segmentation which separates the important
objects in the scene. However, our metric for evaluating how
“good” a segmentation is remains subjective. Different values
for the threshold constants will be required depending on the
application (e.g. obstacle avoidance, object detection, etc).
For example, an over-segmented result is shown in Figure 4g.

Even though the implementation we present is a batch
operation on the data, the algorithm is fast enough to easily
operate in real time. The scans in question were collected
over a period of 12 seconds. The downsampled graph ini-
tialization over 148500 laser points took 176 milliseconds
on the 2.6 GHz Core 2 Duo laptop attached to the robot.
Segmentation of the downsampled 4161 points with color
information took an additional 73 milliseconds. In this case,
we are only using 2.1% of the CPU. (Note: even if the points
are not downsampled, which produces poor segmentation
due to range noise, the total runtime for segmenting 151201
points with color information is only 5.2 seconds, taking
43% of the CPU.) This means the proposed methods can be
run in tandem with other processes that still use a significant
amount of CPU power.

VI. CONCLUSION

Segmentation is an important pre-processing step nec-
essary for higher-level tasks such as object recognition.
We have demonstrated a novel method for efficiently and
robustly segmenting a colored laser point cloud. Our method
enables the detection of segment boundaries on the basis of
both spatial cues and color information, improving perfor-
mance in domains which previous unimodal methods found
difficult.

Since objects often cannot be segmented (let alone recog-
nized), without using color, our approach is crucial for boost-
ing the capabilities of such higher level processes. Although
our algorithm has a small number of tunable constants, we
demonstrated that our algorithm performs well in multiple
environments using similar parameters. This demonstrates
the robustness of our approach.

Our method has also been shown to be suitable for use in
real-time applications such as mobile robotics. We achieve
good complexity bounds and good practical efficiency by
exploiting the structure of the laser scans and by using
color information to speed up the segmentation process. The
segmentation results we present are a significant improve-
ment over previous methods. Using color information allows
robots to have a richer sensory experience.

This extra information is particularly useful for terrain
classification and object recognition. In future work we will
focus on real-time object recognition and terrain classifica-
tion which will allow further evaluation of the segmentation
process we present here.

The two datasets from this paper are available for down-
load on our website at http://april.eecs.umich.
edu.
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