
Scalable Logit Gaussian Process Classification

Florian Wenzel1,3 Théo Galy-Fajou2, Christian Donner2, Marius Kloft3 and Manfred Opper2
1Humboldt University of Berlin, 2Technical University of Berlin, 3Technical University of Kaiserslautern

Contact: wenzelfl@hu-berlin.de

Abstract

We propose an efficient stochastic variational approach to Gaussian Process (GP)
classification building on Pólya-Gamma data augmentation and inducing points,
which is based on closed-form updates of natural gradients. We evaluate the
algorithm on real-world datasets containing up to 11 million data points and
demonstrate that it is up to two orders of magnitude faster than the state-of-the-art
while being competitive in terms of prediction performance.

1 Introduction

In GP classification, naive inference typically scales cubic in the number of data points, and exact
computation of posterior and marginal likelihood is intractable. Nevertheless, the combination of so-
called sparse Gaussian process techniques with approximate inference methods, such as expectation
propagation (EP) or the variational approach, have enabled GP classification for datasets containing
millions of data points [1, 2, 3].

While these results are already impressive, we will show in this paper that a speedup of up to two
orders magnitudes can be achieved. Our approach is based on replacing the ordinary (stochastic)
gradients for optimizing the variational objective function by more efficient natural gradients, which
recently have been successfully used in a variety of variational inference problems [e.g., 4, 5].

Our main contributions are as follows:

• We present a fast Gaussian process classification model using a logit link function. Our
approach relies on Pólya-Gamma data augmentation and inducing points for Gaussian
process inference.

• We derive an efficient inference algorithm based on stochastic variational inference and
natural gradients [6]. All natural gradient updates are given in closed-form and do not
rely on numerical quadrature methods or sampling approaches. Natural gradients have the
advantage that they provide effective second-order optimization updates [6].

• In our experiments, we demonstrate that our approach drastically improves speed up to two
orders of magnitude while being competitive in terms of prediction performance. We apply
our method to massive real-world datasets up to 11 million points and demonstrate superior
scalability.

2 Model

The logit GP Classification model is defined as follows. Let X = (x1, . . . ,xn) ∈ Rd×n be the
d-dimensional training points with labels y = (y1, . . . , yn) ∈ {−1, 1}n. The likelihood of the labels
is

p(y|f , X) =

n∏
i=1

σ(yif(xi)), (1)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

where σ(z) = (1 + exp(−z))−1 is the logit link function and f is the latent decision function. We
place a GP prior over f and obtain the joint distribution of the labels and the latent GP

p(y,f |X) = p(y|f , X)p(f |X), (2)

where p(f |X) = N (f |0,Knn) and Knn denotes the kernel matrix evaluated at the training points
X . For the sake of clarity we omit the conditioning on X in the following.

Pólya-Gamma data augmentation We augment the logit GP classification model by Pólya-
Gamma random variabels which are defined as follows. The random variable ω ∼ PG(b, 0), b > 0

is defined by the moment generating function EPG(ω| b,0)[exp(−ωt)] = (coshb(
√
t/2))−1.The gen-

eral PG(b, c) class which is derived by an exponential tilting of the PG(b, 0) density is given by
PG(ω| b, c) ∝ exp(− c

2

2 ω)PG(ω| b, 0).

We write the non-conjugate logistic likelihood function (1) in terms of Pólya-Gamma variables

σ(zi) = (1 + exp(−zi))−1 =
exp(1

2zi)

2 cosh(zi2)
=

1

2

∫
exp

(
zi
2
− z2i

2
ωi

)
p(ωi)dωi, (3)

where p(ωi) = PG(ωi|1, 0). For more details consult [7]. Using this identity and substituting
zi = yif(xi) we augment the joint density (2) with Pólya-Gamma variables

p(y,ω,f) = p(y|f ,ω)p(f)p(ω) ∝ exp

(
1

2
y>f − 1

2
f>Ωf

)
p(f)p(ω), (4)

where Ω = diag(ω) is the diagonal matrix of the Pólya-Gamma variables {ωi}.

Sparse Gaussian process Inference in GP models typically has the computational complexity
O(n3). We aim to obtain a scalable approximation of our model and focus on inducing point methods
[8]. We follow a similar approach as in [1] and reduce the complexity to O(m3), where m is number
of inducing points.

We augment the latent GP f with m additional input-output pairs (Z1, u1), . . . , (Zm, um), termed as
inducing inputs and inducing variables. The function values of the GP f and the inducing variables
u = (u1, . . . , um) are connected via

p(f |u) = N
(
f |KnmK

−1
mmu, K̃

)
, p(u) = N (u|0,Kmm) , (5)

where Kmm is the kernel matrix resulting from evaluating the kernel function between all inducing
inputs, Knm is the cross-kernel matrix between inducing inputs and training points and K̃ =
Knn − KnmK

−1
mmKmn. Including the inducing points in our model gives the augmented joint

distribution

p(y,ω,f ,u) = p(y|ω,f)p(ω)p(f |u)p(u). (6)

3 Inference

We aim to approximate the posterior of the inducing points p(u|y) and apply the methodology
of variational inference to the marginal joint distribution p(y, ω, u) = p(y|ω,u)p(ω)p(u). We
construct a variational lower bound on the evidence

log p(y) ≤ Eq(u,ω)[log p(y|u,ω)]−KL (q(u,ω)||p(u,ω))

≤ Ep(f |u)q(u)q(ω)[log p(y|ω,f)]−KL (q(u,ω)||p(u,ω))

=: L, (7)

where the first inequality is the usual evidence lower bound (ELBO) in variational inference and in
the second line we apply Jensen’s inequality.

We follow a structured mean-field approach [9] and consider a variational distribution of the form
q(u, ω) = q(u)q(ω) with q(ωi) = PG(ωi|1, ci) and q(u) = N (u|µ,Σ) and employ stochastic
variational inference (SVI) [6] to optimize the variational bound (7) using stochastic optimization.

2

Figure 1: Average median of the negative test log-likelihood and average test prediction error as a
function of training time (seconds in a log10 scale) on the datasets Electricity (45,312 points), Cod
RNA (343,564 points) and Higgs (11 million points).

Since we have the variational objective in closed-form we are able to compute the natural gradients
in closed-form as well. Using the natural gradient over the standard Euclidean gradient is favorable
since natural gradients are invariant to reparameterization of the variational family [10, 11] and
provide effective second-order optimization updates [12, 6].

This is in contrast to the model of [1] where the global updates cannot be computed in a closed-
form and one relies on less efficient Euclidean gradient updates that are computed using numerical
quadrature methods.

Closed-form updates Our algorithm alternates between updates of the local variational parameters
c = (c1, . . . , cn) and global parameters µ and Σ. In each iteration we update the parameters based
on a mini-batch of the data S ⊂ {1, ..., n} of size s = |S|.
We update the local parameters cS in the mini-batch S by employing coordinate ascent

ci =

√
K̃ii + κiΣκ>i + µ>κ>i κiµ, (8)

where κi = KimK
−1
mm and i ∈ S.

We update the global parameters based on stochastic estimates of the natural gradients of the global
parameters. We use the natural parameterization of the variational Gaussian distribution, i.e the
parameters η1 := Σ−1µ and η2 = − 1

2Σ−1. The natural gradients w.r.t. natural parameters of the
variational Gaussian distribution based on the mini-batch S are given by

∇̃η1
LS =

n

2s
κ>S yS − η1

∇̃η2LS = −1

2

(
K−1mm +

n

s
κ>SΘSκS

)
− η2,

(9)

where Θ = diag(θ) and θi = 1
4ci

tanh
(
ci
2

)
.

4 Experiments

To compare our method X-GPC (extremely fast Gaussian process classification) against the state-of-
the-art SVGPC [1], we use the highly optimized implementation of SVGPC provided in the package

3

GPflow1 [13], which builds on TensorFlow [14]. Both methods are applied to real-world datasets
containing up to 11 million datapoints.

Dataset n / d X-GPC SVGPC

aXa 36974 Error 0.17± 0.07 0.17± 0.07

123 NLL 0.16± 0.10 0.18± 0.12
Time 8.7± 0.9 571± 2.2

Bank 45211 Error 0.11± 0.09 0.11± 0.09

Market. 43 NLL 0.10± 0.10 0.10± 0.09
Time 7.4± 1.8 609± 2.7

Click 399482 Error 0.17± 0.00 0.17± 0.00

Predict. 12 NLL 0.17± 0.01 0.24± 0.01
Time 35± 2.7 1256± 191

Cod RNA 343564 Error 0.04± 0.00 0.05± 0.00

8 NLL 0.02± 0.00 0.01± 0.00
Time 134± 15 3002± 122

Cov Type 581012 Error 0.32± 0.06 0.32± 0.05

54 NLL 0.53± 0.06 0.54± 0.07
Time 29± 9.66 1004± 51

Diabetis 768 Error 0.23± 0.07 0.23± 0.07

8 NLL 0.31± 0.12 0.33± 0.11
Time 0.8± 0.1 405± 59

Electricity 45312 Error 0.25± 0.07 0.25± 0.06

8 NLL 0.29± 0.05 0.34± 0.05
Time 4.6± 1.2 888± 1.9

German 1000 Error 0.25± 0.13 0.25± 0.13

20 NLL 0.40± 0.19 0.39± 0.18
Time 1.03± 0.2 319± 15

Higgs 11M Error 0.36± 0.00 0.35± 0.00

22 NLL 0.05± 0.01 0.03± 0.02
Time 14.1± 5.7 1019± 5.9

Shuttle 58000 Error 0.02± 0.00 0.03± 0.00

9 NLL 0.01± 0.00 0.00± 0.00
Time 139± 6.6 1501± 92

SUSY 5M Error 0.20± 0.01 0.21± 0.01

18 NLL 0.21± 0.01 0.27± 0.01
Time 523± 25 10366± 360

Table 1: Average test prediction error, negative test log-
likelihood (NLL) and time in seconds along with one stan-
dard deviation.

We train both methods using a mini-
batch size of 100 points and 100 induc-
ing points. The initial inducing points
are chosen using the k-means clustering
algorithm as done in [15] and are the
same for both methods. In all experi-
ments a squared exponential covariance
function with a common length scale
parameter for each dimension, an am-
plitude parameter and an additive noise
parameter is used. The kernel hyper-
parameters are initialized to the same
values. All algorithms are run on a sin-
gle CPU.

We experiment on 11 datasets from the
OpenML website and the UCI repos-
itory ranging from 768 to 11 million
points and report the average prediction
error, the negative test log-likelihood
(NLL) and the run time along with one
standard deviation.

Numerical comparison X-GPC
slightly improves prediction perfor-
mance while being one to two orders of
magnitude faster than SVPGC. More,
precisely we obtain speed ups ranging
from a factor 10.8 on Shuttle to a factor
506 on Diabetes.

Performance as a function of time
Since X-GPC and SVGPC are based on
an optimization scheme there is a trade-
off between the run time of the algo-
rithm and the prediction performance.
We profile each method and monitor
the negative test log-likelihood and pre-
diction error on a hold-out test set as function of time. As a benchmark, we fit a linear model and use
the logistic regression implementation in scikit-learn [16], which is based on LIBLINEAR [17].

The results are displayed in figure 1. X-GPC is already very close to the optimum after a few iterations
due to its efficient natural gradient updates. The test log-likelihood and the prediction error of X-GPC
converge around one to two orders of magnitude faster than SVGPC.

5 Conclusions

We proposed an efficient Gaussian process classification method that builds on Pólya-Gamma data
augmentation and inducing points. The experimental evaluations shows that our method is up to two
orders of magnitude faster than the state-of-the-art approach while being competitive in terms of
prediction performance. Speed improvements are due to the data augmentation approach that enables
efficient second order optimization.

1We use GPflow version 0.4.0.

4

Acknowledgments.

We thank Stephan Mandt, Patrick Jähnichen, Matthäus Deutsch and Robert Vandermeulen for fruitful
discussions. This work was partly funded by the German Research Foundation (DFG) award KL
2698/2-1.

References

[1] J. Hensman and A. Matthews, “Scalable Variational Gaussian Process Classification,” in Pro-
ceedings of the 18th International Conference on Artificial Intelligence and Statistics,, 2015.

[2] A. Dezfouli and E. V. Bonilla, “Scalable inference for gaussian process models with black-box
likelihoods,” in Advances in Neural Information Processing Systems 28, pp. 1414–1422, 2015.

[3] D. Hernández-Lobato and J. M. Hernández-Lobato, “Scalable gaussian process classification
via expectation propagation,” in Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pp. 168–176, 2016.

[4] A. Honkela, T. Raiko, M. Kuusela, M. Tornio, and J. Karhunen, “Approximate riemannian
conjugate gradient learning for fixed-form variational bayes,” Journal of Machine Learning
Research, vol. 11, pp. 3235–3268, 2010.

[5] P. Jähnichen, F. Wenzel, and M. Kloft, “Scalable inference in dynamic mixture models,” NIPS
Workshop on Advances in Approximate Bayesian Inference, 2016.

[6] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic Variational Inference,” Journal
of Machine Learning Research, 2013.

[7] N. G. Polson, J. G. Scott, and J. Windle, “Bayesian inference for logistic models using pólya–
gamma latent variables,” Journal of the American Statistical Association, vol. 108, no. 504,
pp. 1339–1349, 2013.

[8] E. Snelson and Z. Ghahramani, “Sparse GPs using Pseudo-inputs,” NIPS, 2006.
[9] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and variational

inference,” Found. Trends Mach. Learn., pp. 1–305, Jan. 2008.
[10] S. Amari and H. Nagaoka, Methods of Information Geometry. American Mathematical Society,

2007.
[11] J. Martens, “New insights and perspectives on the natural gradient method,” Arxiv Preprint,

2017.
[12] S. Amari, “Natural grad. works efficiently in learning,” Neural Computation, 1998.
[13] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,

Z. Ghahramani, and J. Hensman, “GPflow: A Gaussian process library using TensorFlow,”
Journal of Machine Learning Research, vol. 18, pp. 1–6, apr 2017.

[14] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software avail-
able from tensorflow.org.

[15] F. Wenzel, T. Galy-Fajou, M. Deutsch, and M. Kloft, “Bayesian nonlinear support vector
machines for big data,” in Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, 2017.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR: A library for
large linear classification,” Journal of Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

5

	Introduction
	Model
	Inference
	Experiments
	Conclusions

