1 ‘ the
A I Oi& MODEL
AINSTREAM
TECH

PHILIPP HALLER

Sunday, October 21, 12

Sunday, October 21, 12

ONE ANSWER:

—=> PLATFORM/EXECUTION MODEL.:
C JIT compiled bytecode

C Threading based on OS processes or native
POSIX threads

Sunday, October 21, 12

ONE ANSWER:

—=> PLATFORM/EXECUTION MODEL.:
C JIT compiled bytecode

C Threading based on OS processes or native
POSIX threads

—> STATIC TYPING

ONE ANSWER:

—=> PLATFORM/EXECUTION MODEL.:
C JIT compiled bytecode

C Threading based on OS processes or native
POSIX threads

—> STATIC TYPING

Inowr-case
THE JVM + SCALA
TR

Sunday, October 21, 12

Sunday, October 21, 12

SCALA

——> OBJECT-ORIENTED
——> FUNCTIONAL
——> AGILE, LIGHTWEIGHT SYNTAX

—> SAFE, PERFORMANT

Sunday, October 21, 12

SCALA

—> 1996-2000

Pizza, GJ, Java generics, javac

—> 2003-2006
The Scala “Experimenf”

cwikker - +
. M Lmkedm Xerox @)

&

<~ €DF pmikLouTr HSBC < @
OPOWER CapitallQ guardian... '

A Standard & Poor’s

TomTOoMmy® Ql%UBS workday
3

four sSquare livingsocial £%imagewsr

Juniper el

NETWORKS ClOUd Bees

Scalo. Actora

g"'"') LONGTIME CORE CONCURRENCY LIB
In the stdlib from early-on, (since Scala 2.1.7)

~e=) ERLANG-LIKE

\/ery C/OSe o EI’/OI’)Q’S CICf'OI”—/il(@ Processes

val shop = actor {
while (true) {
receive {
case Order(item) =>
val order = handleOrder(item, sender)
sender ! Ack(order)

case Cancel(order) =>
cancelOrder (order)
sender ! Cancelled(order)

Sunday, October 21, 12

SCAL%O&M

SCALA.ACTORS
Gools

aii—--> LIBRARY-BASED DESIGN

& Unclear which concurrency /oarao’igm will “win”

& Sco/abi/ify: enable flexible concurrency libraries

Sunday, October 21, 12

SCALA.ACTORS
Gools

“i—-> LIBRARY-BASED DESIGN

& Unclear which concurrency /oarao’igm will “win”

& Sca/abi/ify: enable flexible concurrency libraries

~—=> EMBRACE THE HOST LANGUAGE

@& “Compeﬁh’veu programming inferface

Sunday, October 21, 12

SCALA.ACTORS
Gools

—

—
—

LIBRARY-BASED DESIGN

& Unclear which concurrency /oarao’igm will “win”

& Sco:/obi/ify: enable flexible concurrency libraries

EMBRACE THE HOST LANGUAGE

@& “Compeﬁh’ve“ programming inferface

LIGHTWEIGHT EXECUTION ENVIRONMENT
@® Event-based actors much more /ighfweighf

® |ntegration with JVM threads

Sunday, October 21, 12

CTORS

IDEA: Infroduce an event-based react operation

which takes a continuation closure:

loop {
react {
case Order(item) =>

case Cancel(order) => ...

)
b

Actor detached from a thread while waiting to receive a message
*"i—-> Scales to much /orger numbers of actors

a'i"--> Uses Work—sfea/ing thread /ooo/ for message processing

Sunday, October 21, 12

Integrating EVENT
e THREADS

~====» EVENT-BASED & BLOCKING
Actors support both event-based react and b/ockmg

operations

~—==> MANAGED BLOCKING
Thread pool resizing

*‘""") SEND/RECEIVE ANYWHERE
Message send and receive also available on reqular,

non-actor threads of the |VM

j Philipp Haller,

Martin Odersky: 'y
| event-based o o ersky: Scala Actors Unifying thread-based and

rogramming. Theor, Com/ouf. Sci, 2009 (citations: 10)

Sunday, October 21, 12

SCALA ACTORgx ,
perience

SCALA ACTORgx ,
Wﬂﬂ&

f-i—'-> LIBRARY-BASED DESIGN WORKS WELL

SCALA ACTORgx ,
Wﬂﬂe

*ﬁ—'-> LIBRARY-BASED DESIGN WORKS WELL

~=p SCALABILITY
T hrough work-stealing thread pool

PROVEN IN PRODUCTION!

For exomp/e, at Twitter o’uring Obama iInauguration

Sunday, October 21, 12

SCALA ACTORgx)
Wﬂﬂ&

*ﬁ—'-> LIBRARY-BASED DESIGN WORKS WELL

~=p SCALABILITY
T hrough work-stealing thread pool

PROVEN IN PRODUCTION!

For exomp/e, at Twitter o’uring Obama iInauguration

——> ADOPTION

By many commercial users

Sunday, October 21, 12

SCALA ACTORgx)
Wﬂﬂ&

*ﬁ—'-> LIBRARY-BASED DESIGN WORKS WELL

~=p SCALABILITY
T hrough work-stealing thread pool

PROVEN IN PRODUCTION!

For exomp/e, at Twitter o’uring Obama iInauguration

——> ADOPTION

By many commercial users

=) ROBUST!

On/y a handful of known issues even aftfer years of low
maintfenance

Sunday, October 21, 12

SCALA ACTO Réa m

SCALA ACTORS:

~===» ISOLATION

® Actors are objects => direct access to its methods/state
possib/e unless precautions are taken

@ Exchcmge O][mufob/e messages by I’GI[GI’GHCG

Sunday, October 21, 12

SCALA ACTORS:

~===» ISOLATION

® Actors are objects => direct access to its methods/state
possib/e unless precautions are taken

@ Exchomge O][mufob/e messages by I’@I[GI’GHCG

~====» FAULT TOLERANCE

Resfarfing an acror is impracfica/, since it requires updaﬁng
all references to that same /ogica/ actor in the entire system

Sunday, October 21, 12

SCALA ACTORS:

~===» ISOLATION

® Actors are objects => direct access to its methods/state
possib/e unless precautions are taken

@ Exchomge O][mufob/e messages by I’@I[GI’GHCG

~===» FAULT TOLERANCE

Resfarfing an acror is impracfico/, since it requires updaﬁng
all references to that same /ogica/ actor in the entire system

*i——> REMOTING ONLY RUDIMENTARY

Sunday, October 21, 12

SCALA ACTORS:

~===» ISOLATION

® Actors are objects => direct access to its methods/state
/oossib/e unless precautions are taken

@ Exchomge O][mufob/e messages by I’@I[GI’GHCG

~===» FAULT TOLERANCE

Resfarfing an acror is impracfico/, since it requires updaﬁng
all references to that same /ogica/ actor in the entire system

;__i__> REMOTING ONLY RUDIMENTARY

~====» MESSAGE PILE-UP

EI’/OHQ’S queue moo/e/ can /@Od o message /oi/e—up, /iﬂGOI’
/oerformance d@gI’OdOﬁOﬂ

Sunday, October 21, 12

ISOLWU :

ISOLMU

> Avoiding data races when exchanging mutable objects
> No need for full ownersh/p types

ISOLWU :

=i—-> Avoiding data races when exchanging mutable objects
aﬂ-'-> No need for full ownership types

FOUNDATIONS AND SOUNDNESS PROOF:

Efg/ég%g%/g]rb/\//orﬁn Oo’ersky. Copobihﬂes for uniqueness and borrowing.

Sunday, October 21, 12

ISOLWU

a—> A\/oiding data races when exchangmg mutable objecfs

a-i—-—> No need for full ownership types

FOUNDATIONS AND SOUNDNESS PROOF:

E@/g%gglg]rb/\//orﬁn Oo’ersky. Copobihﬁes for uniqueness and borrowmg.

EXAMPLE: using the prototype of a Scala compiler plug-in:

actor { actor {
val buf: [Int] @unique = val buf: [Int] @unique =

new [Int](3) new [Int](3)
buf ++= 0, 1, 2 buf ++= 0, 1, 2

someActor ! buf , someActor ! puf
¥ println(buf.remove(0))

¥

Sunday, October 21, 12

(Reguirements of Industny

EARLY GOALS NOT ENOUGH, NEED ALSO:

~====» HIGH PERFORMANCE

;..i__> EXTENSIVE REMOTING CAPABILITIES
o Sup/oorf for third party remote transports

o Flexible COI’H[IQU ration

~===» PRAGMATIC SOLUTIONS TO CHALLENGES

~—==» SHORT RELEASE CYCLES

o Until 2100 on/y im[requemL releases of Scala
distribution

Sunday, October 21, 12

Sunday, October 21, 12

> Distinction between actors and ActorRefs

to avoid direct
access to actor instances

> /\Cfor—g/oba/ event /oop rep/oces b/ocking—sfy/e react

> Unhandled messages not kept in mailbox

Sunday, October 21, 12

Simp/er imp/emenfoﬁon

I—/igher performance

Simp/ified fault-tolerance (actor restarts made easy)

ActorRefs enable transparent remoting

Sunday, October 21, 12

AKKA « Octor OFT

SIMILAR TO scala.actors API
EXAMPLE:

class Shop extends Actor {
def receive = {

case Order(item) =>
val order = handleOrder(item, sender)
sender ! Ack(order)

case Cancel(order) =>
cancelOrder (order)
sender ! Cancelled(order)

}
¥

val shop: ActorRef = system.actorOf (Props[Shopl])

Sunday, October 21, 12

Partiol Funclions

BLOCK WITH
PATTERN MATgEéEg —— PARTIAL FUNCTION

TYPE DEFINITIONS:

| trait Function1[-A, +B] {
def apply(x: A): B
}

trait PartialFunction[-A, +B]
extends Function1[A, B] {
def isDefinedAt(x: A): Boolean

Sunday, October 21, 12

USING @, inl Fnctions

receive returns glObO/ message hano//er

handler activated when message can be removed from
mailbox

will never leave a message in the mailbox

if no pattern matches removed message, an evenr is
pub/isheo/ to the enc/osing container (actor system),
signo/ing an unhandled message

works well with case class instances: mafching on receiver s

side

use of porfio/ functions as message handlers as well as case
classes for message types infroduced by Scala Actors

Sunday, October 21, 12

Samfmgﬁneuagu

> L ike Scala Actors, Akka oo/opfs the /ormc://oo

message seno/ Op@l’df@l’ 7[I’OI’T7 EI’/OI’?Q

® a ! msg asynchronous/y sends msg fo a

;ﬁ-——> Other constructs o:o/opfeo/ from Scala Actors:

@® a forward msg, sender ! msg

® 2a ? msg asynchronous/y sends msg to a and
immediately returns a future (a !! msg in
scala.actors)

> A future is a placeholder for a response that

may evem‘ua/ be I’GC@I\/GOI

Sunday, October 21, 12

acalo.. concurvent.

FUTURE
PROMISE

CAN BE THOUGHT OF AS A SINGLE
CONCURRENCY MODEL

<—_.E

FUTURE PROMISE

CAN BE THOUGHT OF AS A SINGLE
CONCURRENCY MODEL

FUTURE PROMISE

CAN BE THOUGHT OF AS A SINGLE
CONCURRENCY MODEL

FUTURE PROMISE

IMPORTANT OPS

v/ Start async computation V4 Assign result value
V W ait for result V Obtain associated future object

Sunday, October 21, 12

Success& Fuilure

A PROMISE p OF TYPE Promise[T]
CAN BE COMPLETED IN TWO WAYS...

val result: = ...

p.success(result)

Fuilure

val exc = new (“something went wrong”)

p.failure(exc)

Sunday, October 21, 12

/ /A

é

e

AL Do not block current Hvreao/ w hile waiting

for result of future

Sunday, October 21, 12

/

®
W ehing
GOAL Do not block current f/vreao’ w hile waiting

\ for result of future

Catlbacks

=== REGISTER CALLBACK which is invoked

(osynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for manogeo/ b/ockmg)

Sunday, October 21, 12

/

®
W eking
GOAL Do not block current fhreoo’ w hile waiting

for result of future

Ga%ad’u

~====» REGISTER CALLBACK which is invoked

(osynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for momaged b/ocking)

USER DOESN’T HAVE TO EXPLICITLY MANAGEAD‘
CALLBACKS HIGHER ORDER FUNCTIONS INSTE

L ————

Sunday, October 21, 12

EXAMPLE

Thread1

Sunday, October 21, 12

EXAMPLE

Thread1

f PROMISE
val p = Promise[Int]() // Thread 1 (CREATE PROMISE)

Sunday, October 21, 12

EXAMPLE

| Thread1

e FUTURE PROMISE
val p = Promise[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)

Sunday, October 21, 12

EXAMPLE

Thread1

onSuccess
callback

FUTURE PROMISE
val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f onSuccess { (REGISTER CALLBACK)

case x: Int => println(“Successful!”)

3

Sunday, October 21, 12

EXAMPLE

' Thread1

< 42
onSuccess
callback
FUTURE PROMISE
val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f onSuccess { (REGISTER CALLBACK)
case x: Int => println(“Successful!”)

}
p.success(42) // Thread 1 (WRITE TO PROMISE)

Sunday, October 21, 12

EXAMPLE

Thread1 Thread3
< 42 Successful!
abis

1 FUTURE PROMISE CONSOLE
val p = Promise[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f. (C)gSucces; E // Thread 2 (REGISTER CALLBACK)

se x: Int => println(“Successful!” (EXECUTE CAL

} // Thread) g
p.success(42) // Thread 1 (WRITE TO PROMISE)

NOTE: onSuccess CALLBACK EXECUTED EVEN IF f HAS
ALREADY BEEN COMPLETED AT TIME OF REGISTRATION

Sunday, October 21, 12

—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [] = rateQuote map {
quote => connection.buy(amount, quote)

}

def filter(pred: T => Boolean): Future[T]

val postBySmith: [1 =
post.filter(_.author == 7Y

Sunday, October 21, 12

—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [] = rateQuote map {
quote => connection.buy(amount, quote)

}

IF MAP FAILS: purchose is Comp|e+ed with unhandled exception

def filter(pred: T => Boolean): Future[T]

val postBySmith: [1 =
post.filter(_.author == 7Y

IF FILTER FAILS: poerBySmiJrh comp|e+eo| with NoSuchE|emen+Excepﬁon

Sunday, October 21, 12

THE IMPLEMENTATION

Many operations imp/emenfed in ferms of/oromises

def [SI1(f: T => S): [S] = {
val p = [S10)

onComplete {
case result =>

try {
result match {
case (r) => p success f(r)
case (t) => p failure t
¥
} catch {
case t: => p failure t
¥
¥
p.future

)

Sunday, October 21, 12

Fbure

THE RECY IMPLEMENTATION

The real implementation (a) adds an implicit ExecutionContext, (b)

avoids extra object creations, and (c) catches only non-fatal exceptions:

def [S1(f: T => S)(executor:) : [S] = {
val p = [ST10)

onComplete {
case result =>

try {
result match {
case (r) => p success f(r)
case f: [_] => p complete f. [[S]]
¥
} catch {
case (t) => p failure t
¥
}
p.future
}

Sunday, October 21, 12

wafa.cowmnf.
EXECUTION

CONTEXT

ARE NEEDED BY:

a-> FUTURES for executing callbacks and

function argu menfts

_> ACTORS for executing message handlers,
scheduled tasks, efc.

—> PARALLEL COLLECTIONS

for executing o’ofo—paro//e/ operations

Sunday, October 21, 12

EXECUTION

CONTEXTS

Scala 2.10 infroduces

Scala 2.10 infroduces

PROVIDE GLOBAL THREADPOOL AS
PLATFORM SERVICE TO BE SHARED BY

ALL PARALLEL FRAMEWORKS

-a-i-—-> scala.concurrent package provides global ExecutionContext

a—_> Default ExecutionContext backed |oy the most recent fork join poo|
(collaboration with Doug Leq, SUNY stego)

Asynchronous computations are executed on an
ExecutionContext which is provided imp|ici+|y.

def [S1(f: => S)(executor:

def [U1(pf: [T, UD
(executor:

|m|o|i<:iJr parameters enable Fine—grained selection of the
ExecutionContext:

val context: = customExecutionContext
val fut2 = futl.filter(pred)
.map(fun)

Sunday, October 21, 12

—————

IMPLICIT ExecutionContexts ALLOW SHARING ECS |
BETWEEN FRAMEWORKS o

l def [S1(f: => S)(executor:

def LUI(pf: [T, Ul)

(executor:

|

‘ ENABLES FLEXIBLE SELECTION OF EXECUTION POLICY

o f

val context: = customExecutionContext

val fut2 = futl.filter(pred)
.map(fun)

Sunday, October 21, 12

Sunday, October 21, 12

Sunday, October 21, 12

million msg/s Throughput (msg/s) vs. number of actors
60

54
48
42
26 a
30 0
24
18 O
12
6

. 0

0

0 10 20 30 40 50 60 70 80 80

-

+MILLIONS MESSAGES PER

SECOND!

100
actors

Sunday, October 21, 12

What about

FAULT

TOLERANCE?

LET IT CRASH
FAULT TOLERANCE

»

NTAL i

val child = context.actorOf (Props[MyActor], “A”)

TRANSPARENT AND AUTOMATIC FAULT
HANDLING BY DESIGN.

Sunday, October 21, 12

AC ficranchics
® 0 O
Guardian System Actor

Sunday, October 21, 12

AC ficranchics
® 0 O
Guardian System Actor

| system.actorOf(Props[Grete],“reetr”

Sunday, October 21, 12

AC ficranchics
® 6 O
Guardian System Actor

| system.actorOf(Props[Grete],“reetr”

Sunday, October 21, 12

AC ficranchics
® 6 O
Guardian System Actor

Sunday, October 21, 12

AC ficranchics
® 6 O
Guardian System Actor

) |

|

|

Sunday, October 21, 12

Guardian System Actor

ACTAR®

l I
-
I /

Sunday, October 21, 12

ESOLUTION

U o (e

Guardian System Actor
October 21, 12

ESOLUTION

U o (e

i /Greeter |

Guardian System Actor

Sunday, October 21, 12

OLUTION

NAMEEE

Guardian System Actor

Sunday, October 21, 12

OLUTION

NAMEEE

Guardian System Actor

Sunday, October 21, 12

NAMEEE

1

|

/Greeter

-

OLUTION

Guardian System Actor

Sunday, October 21, 12

FIND ACTORS

val actorRef = system.actorFor("/user/Greeter/A")

val parent = context.actorFor("..")

val sibling = context.actorFor("../B")

val selection = system.actorSelection("/user/Greeter/*")

Sunday, October 21, 12

ERLANG-«fyls (lcfore

In Scala Actors, Erl ang- sfye receive/react is the default

lasues

o /m/o/emenfahon more expensive than Akka's 9/oba/
message handler

o Queue mode/ can /GOd o message /oi/e-up

o Most real-world actor programs written in Er/cmg

(pI’ObOb y)

L Er/ang sfy/e can simp/ify com/o/ex messaging profoco/s

— g TRy T e proeen

- AKKA 2.0 INTRODUCES A stash TRAIT FoR THIS

Sunday, October 21, 12

React va. Qfoﬁd&wnffovp

Er/omg sfy/e react of Scala actors makes it easy to express
cerfain messaging /orofoco/s f/vrough nested reacts:

actor {
react {
case “open” =>
var done = false
loopWhile (!done) { react {

case “read” => ...
case “close” => done = true

Pl

Sunday, October 21, 12

AKKAGecome (- Stash

(Jyngf%e stash’ fornode/ﬂw?pmanousexanmaewaxyan
Akka actor's g/oba/ event /oop:

class ActorWithProtocol extends Actor with Stash {
def receive = {

case =>
recend ol UnStaShA-I.-I.() Change actor's Restore previous
deched | cOntext.become { message hander nzssage el
messages to case " vo=>
l”mﬂf”h case " " => unstashAl1(); context.unbecome()
eaves stas
empty case msg => stash() =
case msg => StClSh() Move message to
} stash to process later

¥

Sunday, October 21, 12

CONCLUSION

SCALA IS A GROWABLE LANGUAGE

invaluable for esfob/ishing actors as one of its
/orinci/o/e concurrency models

EMBRACING UNIQUE SCALA FEATURES

supports ao’oph’on in Scala community (but can /orovio/e

Java API)
TIGHT INTEGRATION

with execution environment ensures sca/abi/ify
and high performomce

FIND OUT MORE
Akka: http//akkaio Futures in Scala 2.10: http.//docs.scala-lang.org
The Typesafe Stack: http//www.typesafe.com/stack/

Sunday, October 21, 12

http://akka.io
http://akka.io
http://docs.scala-lang.org
http://docs.scala-lang.org
http://www.typesafe.com/stack/
http://www.typesafe.com/stack/

CREDITS

H

VIKTOR KL ARG /R %@gﬁ

TYPESAFE

W4 PHILIPP HALLER HEATHER MILLER |REl

TYPESAFE EPFL

ALEX PROKOPEC ROLAND KUHN n

EPFL TYPESAFE WPRGS

VOJIN JOVANOVIC

EPFL

HAVOC PENNINGTON [gme

TYPESAFE

Sunday, October 21, 12

QUESTIONS'

