
ACTOR

PHILIPP HALLER

Integration of the

mainstream
MODELinto

tech

Sunday, October 21, 12

What is Mainstream?

Sunday, October 21, 12

One answer:

What is Mainstream?

Sunday, October 21, 12

One answer:

What is Mainstream?
pLATFORM/EXECUTION MODEL:

JIT compiled bytecode
Threading based on OS processes or native
POSIX threads

Sunday, October 21, 12

One answer:

What is Mainstream?

Static typing

pLATFORM/EXECUTION MODEL:
JIT compiled bytecode
Threading based on OS processes or native
POSIX threads

Sunday, October 21, 12

One answer:

What is Mainstream?

Static typing

THE JVM + SCALA
In our case

pLATFORM/EXECUTION MODEL:
JIT compiled bytecode
Threading based on OS processes or native
POSIX threads

Sunday, October 21, 12

scala

Sunday, October 21, 12

scalaWhat is it?

Sunday, October 21, 12

scalaWhat is it?
Object-oriented
Functional
agile, lightweight syntax
safe, performantwith strong static typing

Sunday, October 21, 12

scalaWhere does it come from?

Sunday, October 21, 12

scalaWhere does it come from?
1996-2000

2003-2006

Pizza, GJ, Java generics, javac

The Scala “Experiment”

Sunday, October 21, 12

Who’s Using Scala?

Sunday, October 21, 12

Scala Actors

val shop = actor {
 while (true) {
 receive {
 case Order(item) =>
 val order = handleOrder(item, sender)
 sender ! Ack(order)
 case Cancel(order) =>
 cancelOrder(order)
 sender ! Cancelled(order)
 }
 }
}

In the stdlib from early-on, (since Scala 2.1.7)
longtime core concurrency lib

Very close to Erlang’s actor-like processes
Erlang-like

Sunday, October 21, 12

Scala ActorsEarly Goals

Sunday, October 21, 12

Scala ActorsEarly Goals
Unclear which concurrency paradigm will “win”

Library-based Design

Scalability: enable flexible concurrency libraries

Sunday, October 21, 12

Scala ActorsEarly Goals
Unclear which concurrency paradigm will “win”

Library-based Design

Scalability: enable flexible concurrency libraries

“Competitive” programming interface
Embrace the host language

Sunday, October 21, 12

Scala ActorsEarly Goals
Unclear which concurrency paradigm will “win”

Library-based Design

Scalability: enable flexible concurrency libraries

“Competitive” programming interface
Embrace the host language

Event-based actors much more lightweight
Lightweight execution Environment

Integration with JVM threads

Sunday, October 21, 12

Event-Based

loop {
 react {
 case Order(item) => ...
 case Cancel(order) => ...
 }
}

Actors
Introduce an event-based react operation
which takes a continuation closure:

idea:

Actor detached from a thread while waiting to receive a message
Scales to much larger numbers of actors

Uses work-stealing thread pool for message processing

Sunday, October 21, 12

Integrating Events
Threads
&

Actors support both event-based react and blocking
operations

Event-based & blocking

Thread pool resizing
Managed Blocking

Message send and receive also available on regular,
non-actor threads of the JVM

SEND/RECEIVE ANYWHERE

Philipp Haller, Martin Odersky: Scala Actors: Unifying thread-based and event-based programming. Theor. Comput. Sci, 2009 (citations: 110)

Sunday, October 21, 12

Scala Actors:Experience

Sunday, October 21, 12

Scala Actors:Experience
Library-based Design works well

Sunday, October 21, 12

Scala Actors:Experience
Library-based Design works well

Through work-stealing thread pool
Scalability

Proven in production!For example, at Twitter during Obama inauguration

Sunday, October 21, 12

Scala Actors:Experience
Library-based Design works well

By many commercial users
Adoption

Through work-stealing thread pool
Scalability

Proven in production!For example, at Twitter during Obama inauguration

Sunday, October 21, 12

Scala Actors:Experience
Library-based Design works well

By many commercial users
Adoption

Only a handful of known issues even after years of low
maintenance

Robust!

Through work-stealing thread pool
Scalability

Proven in production!For example, at Twitter during Obama inauguration

Sunday, October 21, 12

Scala Actors:Challenges

Sunday, October 21, 12

Scala Actors:Challenges
Actors are objects => direct access to its methods/state
possible unless precautions are taken

Isolation

Exchange of mutable messages by reference

Sunday, October 21, 12

Scala Actors:Challenges
Actors are objects => direct access to its methods/state
possible unless precautions are taken

Isolation

Exchange of mutable messages by reference

Restarting an actor is impractical, since it requires updating
all references to that same logical actor in the entire system

Fault Tolerance

Sunday, October 21, 12

Scala Actors:Challenges
Actors are objects => direct access to its methods/state
possible unless precautions are taken

Isolation

Exchange of mutable messages by reference

Restarting an actor is impractical, since it requires updating
all references to that same logical actor in the entire system

Fault Tolerance

Remoting only rudimentary

Sunday, October 21, 12

Scala Actors:Challenges
Actors are objects => direct access to its methods/state
possible unless precautions are taken

Isolation

Exchange of mutable messages by reference

Restarting an actor is impractical, since it requires updating
all references to that same logical actor in the entire system

Fault Tolerance

Remoting only rudimentary

Erlang’s queue model can lead to message pile-up, linear
performance degradation

Message pile-up

Sunday, October 21, 12

iSOLATIONthrough Uniqueness

Sunday, October 21, 12

iSOLATIONthrough Uniqueness
Avoiding data races when exchanging mutable objects

No need for full ownership types

Sunday, October 21, 12

iSOLATIONthrough Uniqueness
Avoiding data races when exchanging mutable objects

No need for full ownership types

fOUNDATIONS AND SOUNDNESS PROOF:
Philipp Haller, Martin Odersky. Capabilities for uniqueness and borrowing. ECOOP 2010

Sunday, October 21, 12

iSOLATIONthrough Uniqueness
Avoiding data races when exchanging mutable objects

No need for full ownership types

fOUNDATIONS AND SOUNDNESS PROOF:
Philipp Haller, Martin Odersky. Capabilities for uniqueness and borrowing. ECOOP 2010

actor {
 val buf: ArrayBuffer[Int] @unique =
 new ArrayBuffer[Int](3)
 buf ++= Array(0, 1, 2)
 someActor ! buf
}

actor {
 val buf: ArrayBuffer[Int] @unique =
 new ArrayBuffer[Int](3)
 buf ++= Array(0, 1, 2)
 someActor ! buf
 println(buf.remove(0))
}

using the prototype of a Scala compiler plug-in:eXAMPLE:

ok! illegal!
Sunday, October 21, 12

High performance
Extensive Remoting capabilities

• Support for third party remote transports

• Flexible configuration

Pragmatic solutions to challenges
Short release cycles

• Until 2.10.0 only infrequent releases of Scala
distribution

Early goals not enough, need also:
Requirements of Industry

Sunday, October 21, 12

Akka
Enter:

Sunday, October 21, 12

Akka:
Actors Reloaded

Main Differences:
Distinction between actors and ActorRefs to avoid direct access to actor instances
Actor-global event loop replaces blocking-style react
Unhandled messages not kept in mailbox

Sunday, October 21, 12

Akka:
Actors Reloaded

Benefits
Simpler implementation

Higher performance

Simplified fault-tolerance (actor restarts made easy)

ActorRefs enable transparent remoting

Sunday, October 21, 12

’s Actor API
Similar to scala.actors API
example:

class Shop extends Actor {
 def receive = {
 case Order(item) =>
 val order = handleOrder(item, sender)
 sender ! Ack(order)
 case Cancel(order) =>
 cancelOrder(order)
 sender ! Cancelled(order)
 }
}

val shop: ActorRef = system.actorOf(Props[Shop])

Akka

Sunday, October 21, 12

Partial Functions

trait Function1[-A, +B] {
 def apply(x: A): B
}

trait PartialFunction[-A, +B]
 extends Function1[A, B] {
 def isDefinedAt(x: A): Boolean
 ...
}

type Definitions:

Block with
pattern matching

cases
partial function=

Sunday, October 21, 12

receive returns global message handler

handler activated when message can be removed from
mailbox

will never leave a message in the mailbox

if no pattern matches removed message, an event is
published to the enclosing container (“actor system”),
signaling an unhandled message

works well with case class instances: matching on receiver’s
side

use of partial functions as message handlers as well as case
classes for message types introduced by Scala Actors

Partial FunctionsUsing

Sunday, October 21, 12

Sending Messages

Other constructs adopted from Scala Actors:

a forward msg, sender ! msg

a ? msg asynchronously sends msg to a and
immediately returns a future (a !! msg in
scala.actors)

Like Scala Actors, Akka adopts the principal
message send operator from Erlang:

a ! msg asynchronously sends msg to a

A future is a placeholder for a response that
may eventually be received

Sunday, October 21, 12

future&promise

scala.concurrent.

Sunday, October 21, 12

can be thought of as a single
concurrency Model

Futures&Promises

Future promise

Sunday, October 21, 12

can be thought of as a single
concurrency Model

Futures&Promises

Future

READ-MANY

promise

write-once

Sunday, October 21, 12

can be thought of as a single
concurrency Model

Futures&Promises

Future

READ-MANY

promise

write-once

Start async computation ✔
important ops

Assign result value
✔ Wait for result ✔ Obtain associated future object

✔

Sunday, October 21, 12

a promise p of type Promise[T]
can be completed in two ways...

Success&Failure

val result: T = ...
p.success(result)

Success

val exc = new Exception(“something went wrong”)
p.failure(exc)

Failure

Sunday, October 21, 12

Async&NonBlocking

Sunday, October 21, 12

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Sunday, October 21, 12

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Callbacks
Register callback which is invoked
(asynchronously) when future is completed

Async computations never block
(except for managed blocking)

Sunday, October 21, 12

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Callbacks
Register callback which is invoked
(asynchronously) when future is completed

Async computations never block
(except for managed blocking)

user doesn’t have to explicitly manage

callbacks. higher-order functions instead!

Sunday, October 21, 12

Futures&Promises
Thread1 Thread2 Thread3

example

Sunday, October 21, 12

Futures&Promises

Promise

val p = Promise[Int]() // Thread 1

Thread1 Thread2 Thread3

(create promise)

example

Sunday, October 21, 12

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

Thread1 Thread2 Thread3

(create promise)
(get reference to future)

example

Sunday, October 21, 12

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

(create promise)
(get reference to future)
(register callback)

example

Sunday, October 21, 12

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

p.success(42) // Thread 1

4242

(create promise)
(get reference to future)
(register callback)

(write to promise)

example

Sunday, October 21, 12

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

p.success(42) // Thread 1

4242 Successful!

Console

(create promise)
(get reference to future)
(register callback)

(write to promise)

(execute callback)
// Thread

example

note: onSuccess callback executed even if f has

already been completed at time of registration

Sunday, October 21, 12

Combinators

val purchase: Future[Int] = rateQuote map {
 quote => connection.buy(amount, quote)
}

val postBySmith: Future[Post] =
 post.filter(_.author == “Smith”)

Composability thru higher-order funcs
standard monadic combinators

def map[S](f: T => S): Future[S]

def filter(pred: T => Boolean): Future[T]

Sunday, October 21, 12

Combinators

val purchase: Future[Int] = rateQuote map {
 quote => connection.buy(amount, quote)
}

val postBySmith: Future[Post] =
 post.filter(_.author == “Smith”)

Composability thru higher-order funcs
standard monadic combinators

def map[S](f: T => S): Future[S]

def filter(pred: T => Boolean): Future[T]

If filter fails: postBySmith completed with NoSuchElementException

If map fails: purchase is completed with unhandled exception

Sunday, October 21, 12

Future
the implementation

def map[S](f: T => S): Future[S] = {
 val p = Promise[S]()

 onComplete {
 case result =>
 try {
 result match {
 case Success(r) => p success f(r)
 case Failure(t) => p failure t
 }
 } catch {
 case t: Throwable => p failure t
 }
 }
 p.future
}

Many operations implemented in terms of promises
simplified example

Sunday, October 21, 12

Future
the implementationREAL

def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S] = {
 val p = Promise[S]()

 onComplete {
 case result =>
 try {
 result match {
 case Success(r) => p success f(r)
 case f: Failure[_] => p complete f.asInstanceOf[Failure[S]]
 }
 } catch {
 case NonFatal(t) => p failure t
 }
 }

 p.future
}

The real implementation (a) adds an implicit ExecutionContext, (b)
avoids extra object creations, and (c) catches only non-fatal exceptions:

Sunday, October 21, 12

context
Execution

scala.concurrent.

Sunday, October 21, 12

are needed by:
Threadpools...

futures

Actors

parallel collections

for executing callbacks and
function arguments

for executing message handlers,
scheduled tasks, etc.

for executing data-parallel operations

Sunday, October 21, 12

contexts
Execution

Scala 2.10 introduces

Sunday, October 21, 12

contexts
Execution

Scala 2.10 introduces

provide global threadpool as platform service to be shared by all parallel frameworks

Goal

Sunday, October 21, 12

contexts
Execution

Scala 2.10 introduces

provide global threadpool as platform service to be shared by all parallel frameworks

Goal

scala.concurrent package provides global ExecutionContext

Default ExecutionContext backed by the most recent fork join pool
(collaboration with Doug Lea, SUNY Oswego)

Sunday, October 21, 12

Implicit Execution Ctxs
def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

def onSuccess[U](pf: PartialFunction[T, U])
 (implicit executor: ExecutionContext): Unit

Asynchronous computations are executed on an
ExecutionContext which is provided implicitly.

Implicit parameters enable fine-grained selection of the
ExecutionContext:

implicit val context: ExecutionContext = customExecutionContext
val fut2 = fut1.filter(pred)
 .map(fun)

Sunday, October 21, 12

Implicit Execution Ctxs
def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

def onSuccess[U](pf: PartialFunction[T, U])
 (implicit executor: ExecutionContext): Unit

Asynchronous computations are executed on an
ExecutionContext which is provided implicitly.

Implicit parameters enable fine-grained selection of the
ExecutionContext:

implicit val context: ExecutionContext = customExecutionContext
val fut2 = fut1.filter(pred)
 .map(fun)

implicit ExecutionContexts allow sharing ecs

between frameworks

Enables flexible selection of execution policy

Sunday, October 21, 12

ThreadPoolExecutor

Sunday, October 21, 12

JoinPoolFork

Sunday, October 21, 12

After some tweaks...

+millions messages per second!
Sunday, October 21, 12

FAULT
Tolerance

What about

?

Sunday, October 21, 12

Akka embraces...
let it crash
fault tolerance

Sunday, October 21, 12

Automatic SupervisionParental

// from within an actor
val child = context.actorOf(Props[MyActor], “A”)

Transparent and automatic fault
handling by design.

Sunday, October 21, 12

Actorscan form hierarchies...
Guardian System Actor

Sunday, October 21, 12

Actorscan form hierarchies...
Guardian System Actor

system.actorOf(Props[Greeter], “Greeter”)

Sunday, October 21, 12

Actorscan form hierarchies...

Greeter

Guardian System Actor

system.actorOf(Props[Greeter], “Greeter”)

Sunday, October 21, 12

Actorscan form hierarchies...

Greeter

Guardian System Actor

context.actorOf(Props[A], “A”)

Sunday, October 21, 12

Actorscan form hierarchies...

A

Greeter

Guardian System Actor

context.actorOf(Props[A], “A”)

Sunday, October 21, 12

Actorscan form hierarchies...

A

B

CurserGreeter

C

B
E

A

D

C

Guardian System Actor

Sunday, October 21, 12

Name resolutionlike a file system...
Guardian System Actor

A

B

CurserGreeter

C

B
E

A

D

C

Sunday, October 21, 12

Name resolutionlike a file system...
Guardian System Actor

A

B

CurserGreeter

C

B
E

A

D

C

/Greeter

Sunday, October 21, 12

Name resolutionlike a file system...
Guardian System Actor

A

B

CurserGreeter

C

B
E

A

D

C

/Greeter

/Greeter/A

Sunday, October 21, 12

Name resolutionlike a file system...
Guardian System Actor

A

B

CurserGreeter

C

B
E

A

D

C

/Greeter

/Greeter/A

/Greeter/A/B

Sunday, October 21, 12

Name resolutionlike a file system...
Guardian System Actor

A

B

CurserGreeter

C

B
E

A

D

C

/Greeter

/Greeter/A

/Greeter/A/B

/Greeter/A/D

Sunday, October 21, 12

Find actors

val actorRef = system.actorFor("/user/Greeter/A")

val parent = context.actorFor("..")

val sibling = context.actorFor("../B")

val selection = system.actorSelection("/user/Greeter/*")

Sunday, October 21, 12

• Implementation more expensive than Akka’s global
message handler

• Queue model can lead to message pile-up

• Most real-world actor programs written in Erlang
(probably)

• Erlang style can simplify complex messaging protocols

-style ActorsErlang
In Scala Actors, Erlang-style receive/react is the default

But...

Issues

Akka 2.0 introduces A Stash TRAIT for this

Sunday, October 21, 12

Erlang-style react of Scala actors makes it easy to express
certain messaging protocols through nested reacts:

actor {
 react {
 case “open” =>
 var done = false
 loopWhile (!done) { react {
 case “read” => ...
 case “close” => done = true
 } }
 }
}

React vs. Global Event Loop

Sunday, October 21, 12

Using the “stash” to model the previous example using an
Akka actor’s global event loop:

class ActorWithProtocol extends Actor with Stash {
 def receive = {
 case "open" =>
 unstashAll()
 context.become {
 case "read" => // do reading...
 case "close" => unstashAll(); context.unbecome()
 case msg => stash() }
 case msg => stash()
 }
}

AkkaBecome Stash&

Change actor’s
message handler

Restore previous
message handler

Move message to
stash to process later

Prepend all
stashed

messages to
mailbox;

leaves stash
empty

Sunday, October 21, 12

Conclusion

supports adoption in Scala community (but can provide
Java API)

invaluable for establishing actors as one of its
principle concurrency models

with execution environment ensures scalability
and high performance

Scala is a growable language

Embracing unique scala features

Tight Integration

Find out more
Akka: http://akka.io Futures in Scala 2.10: http://docs.scala-lang.org

The Typesafe Stack: http://www.typesafe.com/stack/
Sunday, October 21, 12

http://akka.io
http://akka.io
http://docs.scala-lang.org
http://docs.scala-lang.org
http://www.typesafe.com/stack/
http://www.typesafe.com/stack/

Credits

PHILIPP HALLER

ALEX PROKOPEC

VOJIN JOVANOVIC

VIKTOR KLANG JONAS BONÉR

HEATHER MILLER

ROLAND KUHN

DOUG LEA

TYPESAFE

TYPESAFE

EPFL

EPFL

EPFL

TYPESAFE

SUNY

TYPESAFE

HAVOC PENNINGTON
TYPESAFE

Sunday, October 21, 12

questions?
Sunday, October 21, 12

