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Representation of integers as terms of a
linear recurrence with maximal index

JAMES P. JONES1 and PÉTER KISS2

Abstract. For sequences Hn(a,b) of positive integers, defined by H0=a, H1=b and

Hn=Hn−1+Hn−2, we investigate the problem: for a given positive integer N find positive

integers a and b such that N=Hn(a,b) and n is as large as possible. Denoting by R(N)=r

the largest integer, for which N=Hr(a,b) for some a and b, we give bounds for R(N) and

a polynomial time algorithm for computing it. Some properties of R(N) are also proved.

Introduction

Let Hn(a, b) be a sequence of positive integers defined by H0 = a,
H1 = b and Hn = Hn−1 + Hn−2 where a and b are arbitrary positive
integers (the parameters). The sequence Hn(a, b) occurs in a problem of
Cohn [1]: Given a positive integer N , find positive integers a and b such
that N = Hn(a, b) and n is as large as possible.

Cohn [1] actually formulated the problem slightly differently, replacing
‘n is as large as possible’ by ‘a+b is as small as possible’. However this makes
little difference. We shall consider the problem as stated above.

Let R = R(N) be the largest integer R such that N = HR(a, b) for some
a, b ≥ 1. The function R is well defined. For any N ≥ 1, there exist integers
a, b and n such that N = Hn(a, b), 1 ≤ a, 1 ≤ b. Since N = H1(1, N), we
can let n = 1, a = 1 and b = N . If 2 ≤ N , we can also let a = 1, b = N − 1
and n = 2 so N = H2(1, N − 1). Thus there always exist integers n, a and
b such that N = Hn(a, b), 1 ≤ a and 1 ≤ b.

It is also easy to see that there exist a, b and r such that N = Hr(a, b),
1 ≤ a, 1 ≤ b and r is maximal. If N = Hr(a, b), 1 ≤ a and 1 ≤ b, then
r ≤ Hr(a, b). Hence for all such r, a and b, r ≤ N . Thus all possible values
of r are bounded above by N . In fact this argument shows that R(N) ≤ N
for all N .

1
Research supported by National Science and Research Council of Canada Grant No. OGP

0004525.
2

Research supported by Foundation for Hungarian Higher Education and Research and

Hungarian OTKA Foundation Grant No. T 16975 and 020295.



22 James P. Jones and Péter Kiss

The first few values of R are given by R(1) = 1, R(2) = 2, R(3) = 3,
R(4) = 3, R(5) = 4, R(6) = 3, R(7) = 4, R(8) = 5, R(9) = 4, R(10) = 4,
R(11) = 5, R(12) = 4 and R(13) = 6. Note that the function R is not
increasing. That is, N ≤ M does not imply R(N) ≤ R(M).

Since R(N) is well defined, Cohn’s problem becomes one of giving an
algorithm to compute R(N). In this paper we shall give a simple algorithm
which solves this problem. We shall also show that this algorithm is polyno-
mial time, that is the time to find R(N) is less than a polynomial in ln(N).
We also prove some theorems about the number of N such that R(N) = r
and about the number of pairs (a, b) such that Hr(a, b) = N . First we need
some lemmas.

1. Representation of N in the form N = Hr(a, b) with r maximal

We use ⌊x⌋ to denote the floor of x, (integer part of x). ⌈x⌉ denotes
the ceiling of x, ⌈x⌉ = −⌊−x⌋. Fn denotes the nth Fibonacci number, where
F0 = 0, F1 = 1 and Fi+2 = Fi + Fi+1. Ln denotes the nth Lucas number,
defined by L0 = 2, L1 = 1 and Li+2 = Li + Li+1. We define H

−n(a, b) by
H

−n(a, b) = (−1)n+1Hn(−a, b − a).
Below we shall use many elementary identities and inequalities such as

Ln+1 = 2Fn + Fn+1, Ln + 1 ≤ Fn+2 for 1 ≤ n and Fn+1 < Ln, for 2 ≤ n.
We shall also need the following well known identity due to Horadam [3].

Lemma 1.1. For all integers n, a and b, Hn(a, b) = aFn−1 + bFn.

Proof. By induction on n using Fi+2 = Fi + Fi+1. The result can also
be seen to hold for negative n since H

−n(a, b) = (−1)n(aFn+1 − bFn).

Lemma 1.2. Hn(a, b) = Hn(a + Fn, b−Fn−1) and Hn(a, b) = Hn(a−
Fn, b + Fn−1).

Lemma 1.3. For all integers n, k, a and b, we have

Hn(a, b) = Hn−1(b, a + b).(i)

Hn(a, b) = Hn−k(Hk(a, b),Hk+1(a, b)),(ii)

Hn(a, b) = Hn+1(b − a, a).(iii)

Hn(a, b) = Hn+k(H
−k(a, b),H1−k(a, b)).(iv)

Proof. They follow from the definitions.

Lemma 1.4. If N = Hr(a, b), 1 ≤ a, 1 ≤ b and R(N) = r, then b ≤ a.

Proof. Suppose R(n) = r and N = Hr(a, b). If a < b, then by Lemma
1.3 we would have N = Hr(a, b) = Hr+1(b − a, a) so that r + 1 ≤ R(N),
contradicting r = R(N).
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Earlier we saw that n = 1 is realizable as a value of n such that N =
Hn(a, b) for a ≥ 1, b ≥ 1. In the next lemma we shall show that all values
of n ≤ R(N) are realizable as values of n such that N = Hn(a, b). We shall
call this the Intermediate Value Lemma (IVL).

Lemma 1.5. (I.V.L.) If n ≤ R(N), then there exist a, b such that
N = Hn(a, b), 1 ≤ a and 1 ≤ b.

Proof. Suppose r = R(N) and n ≤ r. There exist a ≥ 1, b ≥ 1
such that N = Hr(a, b). Let k = r − n. Then 0 ≤ k. By Lemma 1.3
(ii), N = Hr(a, b) = Hr−k(Hk(a, b),Hk+1(a, b)) = Hn(Hk(a, b),Hk+1(a, b))
where 1 ≤ Hk(a, b) and 1 ≤ Hk+1(a, b), since 0 ≤ k and a, b ≥ 1.

Lemma 1.6. If n ≥ 1 then R(Fn+1) = n.

Proof. Let r = R(Fn+1). Since Fn+1 = Fn−1 + Fn = Hn(1, 1), n ≤ r.
Conversely, Fn+1 = Hr(a, b) = aFr−1 + bFr ≥ Fr−1 + Fr = Fr+1. Hence
n ≥ r. Therefore n = r.

Lemma 1.7. If n ≥ 2, then R(Ln+1) = n + 1.

Proof. Here we need the inequality Ln+1+1 ≤ Fn+3. Let r = R(Ln+1).
Since Ln may be defined by L0 = 2, L1 = 1 and Ln+2 = Ln + Ln+1, we
have Ln = Hn(2, 1) and so Ln+1 = Hn+1(2, 1). Hence n+1 ≤ r. Conversely,
Ln+1 = Hr(a, b) = aFr−1 + bFr ≥ Fr−1 + Fr = Fr+1. Hence Fr+1 ≤ Ln+1.
Therefore Fr+1 + 1 ≤ Ln+1 + 1 ≤ Fn+3 and so Fr+1 < Fn+3. Therefore
r + 1 < n + 3. Hence r < n + 2. Therefore r ≤ n + 1. So r = n + 1 and
R(Ln+1) = n + 1.

Lemma 1.8. If N < Fn+1, then R(N) < n.

Proof. Let R(N) = r. Then there exist a, b ≥ 1 such that N = Hr(a, b).
Hence we have Fn+1 > N = Hr(a, b) = aFr−1 + bFr ≥ Fr−1 + Fr = Fr+1.
Thus Fn+1 > Fr+1. Hence we have n+1 > r+1 so that n > r. In otherwords
n > R(N).

Corollary 1.9. If 1 ≤ n and N ≤ Fn+1Fn+2, then R(N) ≤ 2n.

Proof. If 1 ≤ n, then Fn+2 < Ln+1. Hence Fn+1Fn+2 < Fn+1Ln+1 =
F2n+2. Therefore N < F2n+2. Hence by Lemma 1.8, R(N) < 2n+1. There-
fore R(N) ≤ 2n.

Lemma 1.10. Let A be an arbitrary positive integer and suppose 0 ≤
n. Then

n = R(AFn+1) if A ≤ Fn,(i)

n < R(AFn+1) if Fn < A.(ii)
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Proof. AFn+1 = A(Fn−1 + Fn) = AFn−1 + AFn = Hn(A,A) implies
n ≤ R(AFn+1). For (i) suppose A ≤ Fn and n + 1 ≤ R(AFn+1). By the
Intermediate Value Lemma there exist c ≥ 1 and d ≥ 1 such that AFn+1 =
cFn + dFn+1. Then Fn+1 | cFn and (Fn, Fn+1) = 1 imply Fn+1 | c. Hence
Fn+1 ≤ c so that d = 0. Hence R(AFn+1) = n. For (ii) suppose Fn < A.
Then there exist b and t such that A = tFn + b, 1 ≤ b and 1 ≤ t. Let a =
tFn+1. Then AFn+1 = (tFn+1)Fn + bFn+1 = Hn+1(tFn+1b) = Hn+1(a, b),
1 ≤ a and 1 ≤ b. Hence n + 1 ≤ R(AFn+1) so that n < R(AFn+1).

Corollary 1.10. For all n ≥ 0, R(FnFn+1) = n.

Lemma 1.11. If FnFn+1 < N , then n < R(N).

Proof. Suppose FnFn+1 < N . We shall show that n + 1 ≤ R(N) by
finding a and b such that N = Hn+1(a, b) = aFn + bFn+1, 1 ≤ a and
1 ≤ b. Let b be the least positive solution to the congruence N ≡ bFn+1

(mod Fn), (taking b = Fn, if Fn | N , so that b ≥ 1). We claim

(1.12) bFn+1 + Fn ≤ N.

This inequality (1.12) will be proved by considering two cases:
Case 1. N ≡ 0 (mod Fn). Then b = Fn. Since Fn | N and FnFn+1 <

N , we have Fn(Fn+1 + 1) ≤ N . So we have Fn+1b + Fn = Fn+1Fn + Fn =
Fn(Fn+1 + 1) ≤ N , and so (1.12) holds.

Case 2. N 6≡ 0 (mod Fn). Then 1 ≤ b < Fn, so b ≤ Fn − 1. Therefore
bFn+1 + Fn ≤ (Fn − 1)Fn+1 + Fn = FnFn+1 + (Fn − Fn+1) ≤ FnFn+1 < N
and so again (1.12) holds.

Now that (1.12) is established, let a = (N − bFn+1)/Fn. Then a is an
integer, N = aFn + bFn+1 = Hn+1(a, b) and (1.12), implies 1 ≤ a.

Corollary 1.13. If 1 < n and F2n ≤ N , then n < R(N).

Proof. By Lemma 1.11. If 1 < n, then Fn+1 < Ln and FnFn+1 <
FnLn = F2n ≤ N .

Lemma 1.14. If 1 ≤ N , then R(N) ≤ (⌊1 + 2.128 · ln(N))⌋.
Proof. Let r = R(N). The inequality holds for N = 1, since R(1) = 1.

Suppose N ≥ 2. Then 2 ≤ r. Let k = r + 1. Then 3 ≤ k so that we can use
the inequality

(1.15) (8/5)k−2 < Fk (3 ≤ k).

(This inequality, which is well known, is easy to prove by induction on
k ≥ 3, using the fact that if x = 8/5, then x2 < x+ 1). Using the inequality
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with k = r + 1, by Lemma 1.8 we get (8/5)r−1 < Fr+1 ≤ N . Taking logs
of both sides we have (r − 1) ln(8/5) ≤ ln(N). Hence we have r − 1 ≤
ln(N)/ ln(8/5) < ln(N)/(47/100) < ln(N) · 2.128, proving the lemma.

Lemma 1.16. If 1 ≤ N , then ⌈1.5 + .893 · ln(N)⌉ ≤ R(N).

Proof. Let r = R(N). Lemma 1.11 implies N ≤ FrFr+1. If N ≤ 6, the
inequality can be checked by cases. Suppose 7 ≤ N . Then 4 ≤ r. We will
use the following elementary inequality which is easy to prove using the fact
that x2 > x + 1 for x = 7/4.

(1.17) Fk < (7/4)k−2 (3 < k).

Using the inequality twice, with k = r and k = r + 1, we get

(1.18) N ≤ FrFr+1 < (7/4)r−2(7/4)r−1 = (7/4)2r−3.

Taking logs of both sides, ln(N) < (2r− 3) ln(7/4). Hence ln(N)/ ln(7/4) <
2(r − 1.5). Therefore 2−1 · ln(N)/ ln(7/4) < r − 1.5. Consequently 1.5 +
2−1 · ln(N)/ ln(7/4) < r. Hence ⌈1.5 + 2−1 · ln(N)/ ln(7/4)⌉ ≤ r. Therefore
⌈1.5 + .893 · ln(N)⌉ ≤ r.

Corollary 1.19. For N ≥ 1,

⌈1.5 + .893 · ln(N)⌉ ≤ R(N) ≤ ⌊1 + 2.128 · ln(N)⌋.

Proof. By Lemma 1.14 and Lemma 1.15.

Corollary 1.20. If R(N) = r, then Fr+1 ≤ N ≤ FrFr+1.

Proof. Suppose R(N) = r. By Lemma 1.8, Fr+1 ≤ N . By Lemma 1.11,
N ≤ FrFr+1.

The equation N = Hr(a, b) sometimes has two solutions (a, b) in pos-
itive integers with r = R(N). E.g. if N = 6, then R(6) = 3, 6 = H3(2, 2)
and 6 = H3(4, 1).

Definition 1.21. N is called a double number if there exist a, b, c, d ≥ 1
such that N = Hr(a, b) = Hr(c, d), a 6= c or b 6= d, (equivalently if a 6= c
and b 6= d), where r = R(N). If N is not a double number, then N is called
a single number.

Examples 1.22. Some representations of N in the form N = Hr(a, b)
with R = R(N):
N = 1, R = 1, a = 1, b = 1,
N = 10, R = 4, a = 2, b = 2,
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N = 100, R = 7, a = 6, b = 4,
N = 1, 000, R = 12, a = 8, b = 2,
N = 10, 000, R = 12, a = 80, b = 20,
N = 100, 000, R = 14, a = 269, b = 99,
N = 1, 000, 000, R = 19, a = 154, b = 144,
N = 10, 000, 000, R = 19, a = 1540, b = 1440,
N = 100, 000, 000, R = 23, a = 5143, b = 311,
N = 1, 000, 000, 000, R = 23, a = 51430, b = 3110.

N = 1, 000, 000, 000 happens to be an example of a double number. For
we have N = Hr(c, d) also for c = 22773 and d = 20821, besides a = 51430
and b = 3110. Other examples of double numbers are 15 = H4(6, 1) =
H4(3, 3) and 32 = H5(9, 1) = H5(4, 4).

In the next section we shall prove that the equation N = Hr(a, b) never
has three solutions (a, b) in positive integers with r = R(N). (Of course it
may have other solutions when r < R(N). E.g. for N = 6 and r = 3 we have
6 = H2(1, 5) = H2(2, 4) = H2(3, 3) where 2 < r.) Thus there is no concept
of a triple number.

2. An algorithm for R(N)

In this section we shall show that there exists an algorithm for comput-
ing R(N). In fact we shall prove that there is a polynomial-time algorithm
for computing R(N). We give a procedure which finds, given N , the value
of R(N) and also a and b. Since the number of steps in the procedure will
be less then a polynomial in ln(N), the number of bit operations needed to
compute R(N) will be less than a polynomial in ln(N).

Suppose N is given. To compute R(N), begin with any sufficiently large
value of r, satisfying r ≥ R(N). For example by Corollary 1.19 we can take
r = ⌊1 + 2.128 · ln(N)⌋. Then proceed as follows.

Step 1: Find a positive solution b to the congruence

(2.1) N ≡ bFr (mod Fr−1), (1 ≤ b).

This congruence is solvable in natural numbers since (Fr, Fr−1) = 1. Hence
there is a solution b in the range 1 ≤ b ≤ Fr−1. Take the least such b in this
range.

Step 2: Check whether

(2.2) bFr < N.

If this is the case, put a = (N − bFr)/Fr−1. Then a is an integer by (2.1).
Also we have N = aFr−1 + bFr and condition (2.2) implies 1 ≤ a. In this
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case the algorithm terminates and R(N) = r. If (2.2) does not hold, then we
decrease r by 1 and return to Step 1. We iterate steps 1 and 2, decreasing
r until (2.2) holds. Since initially R(N) ≤ ⌊1 + 2.128 · ln(N)⌋ ≤ r, the
algorithm must terminate after at most ⌊1 + 2.128 · ln(N)⌋ iterations.

We claim that this computation is polynomial time. Certainly the num-
ber of operations needed at each step is less than or equal to a polynomial
in ln(N). Calculation of Fr requires time exponential in ln(r), i.e. propor-
tional to a polynomial in r. However r is less than or equal to a polynomial
in ln(N), since Fr ≤ N . So this is polynomial time.

In addition to finding r, the algorithm also finds (a, b) such that Hr(a, b)
= N . The pair (a, b) is not uniquely dependent upon N . There is sometimes a
second pair (c, d) such that Hr(c, d) = N . As sketched above the algorithm
finds the pair (a, b) with least b. It can easily be extended also to find
the second pair (c, d), when that exists. After (a, b) has been found, let
d = b + Fr−1 and c = a − Fr. Then N = Hr(c, d) by Lemma 1.2. d is
positive. If dFr < N , then c will also be positive and (c, d) will be a second
pair. If not, then there is no second pair, i.e. N is a single.

The algorithm can be simplified to yield a more explicit formula for
r = R(N) and explicit formulas for a, b, c and d. For this we shall use an old
identity of Lucas [4]:

(2.3) F 2
r−1 − Fr−2 · Fr = (−1)r.

Multiplying both sides of (2.3) by (−1)rN and rearranging terms we get

(2.4) (−1)rFr−1N · Fr−1 − (−1)rFr−2N · Fr = N.

Equation (2.4) provides a solution to the linear diophantine equation
aFr−1 + bFr = N . It shows that AFr−1 + BFr = N will hold if we put
A = Ar(N) and B = Br(N), where

(2.5) Ar(N) = (−1)rFr−1N and Br(N) = −(−1)rFr−2N.

Thus a = Ar(N) and b = Br(N) is a particular solution of the equation
aFr−1 + bFr = N . Since (Fr, Fr+1) = 1, from a particular solution we may
obtain all solutions (a, b) by

(2.6) a = Ar(N) − tFr, b = Br(N) + tFr−1, (t = 0,±1,±2,±3, . . .).

Then by Lemma 1.1 Hr(a, b) = N for all integers t. Now define gr(N) and
hr(N) by

gr(N) =
(−1)rFr−2N + 1

Fr−1
(2.7)

and
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hr(N) =
(−1)rFr−1N − 1

Fr

.(2.8)

Then gr(N) and hr(N) are reals. For a and b as in (2.6), we have 1 ≤ a
iff t ≤ hr(N) and 1 ≤ b iff gr(N) ≤ t. Hence (a, b) is a positive solution of
aFr−1 + bFr = N iff

(2.9) gr(N) ≤ t ≤ hr(N).

Since t is integer valued, condition (2.9) is equivalent to

(2.10) gr(N) ≤ ⌈gr(N)⌉ ≤ t ≤ ⌊hr(N)⌋ ≤ hr(N).

Condition (2.9) is in turn equivalent to ⌈gr(N)⌉ ≤ hr(N) and also to
gr(N) ≤ ⌊hr(N)⌋.

From (2.3), (2.7) and (2.8), it is easy to see that

(2.11) hr(N) − gr(N) =
N − Fr+1

Fr−1Fr

.

The functions gr(N) and hr(N) give us a new algorithm to compute R(N).
We have

Theorem 2.12. Suppose N > 1. Then R(N) is the largest integer
r > 1 such that

(2.12)

⌈

(−1)rFr−2N + 1

Fr−1

⌉

≤
⌊

(−1)rFr−1N − 1

Fr

⌋

.

Furthermore, the set of r > 1 satisfying (2.12) is the set {2, 3, . . . , R(N)}.
Hence (2.12) can be used as an algorithm to calculate R(N).

Proof. By Lemma 1.8, if r ≤ R(N), then Fr+1 < N and hence by
(2.11), gr(N) ≤ hr(N). Thus

(2.13) r ≤ R(N) ⇒ gr(N) ≤ hr(N).

By (2.9) and the IVL, for all r ≤ R(N), there exist t (gr(N) ≤ t ≤ hr(N)),
and this implies ⌈gr(N)⌉ ≤ ⌊hr(N)⌋. On the other hand, by (2.9), when
R(N) < r, there is no integer t such that gr(N) ≤ t ≤ hr(N) and so we
have not ⌈gr(N)⌉ ≤ ⌊hr(N)⌋.

This shows that the set of r > 1 satisfying (2.12) is an interval.
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This approach to R(N), thru gr(N) and hr(N), also gives a new algo-
rithm to decide whether N is a single or a double. From (2.9) and (2.10) we
have

N is a single iff ⌈gr(N)⌉ = ⌊hr(N)⌋.(2.14)

Also

N is a double iff ⌈gr(N)⌉ < ⌊hr(N)⌋.(2.15)

From (2.5), (2.6), (2.7) and (2.8) we can obtain explicit formulas for a, b, c
and d:

a = Ar(N) − ⌈gr(N)⌉Fr and b = Br(N) + ⌈gr(N)⌉Fr−1,(2.16)

c = Ar(N) − ⌊hr(N)⌋Fr and d = Br(N) + ⌊hr(N)⌋Fr−1.(2.17)

If N is a single, c = a and d = b. If N is a double, c = a−Fr and d = b+Fr−1.
Thus when r = R(N), formulas (2.16) and (2.17) can be used as definitions
of a, b, c and d. The ratio on the right side of (2.11) is not always less than 2
however, even when r = R(N). In this case, when r = R(N), we have only
the weak inequality

(2.18) R(N) ≤ r =⇒ N − Fr+1

Fr−1Fr

< α + 1.

Here α = (1 +
√

5)/2 = 1.61803 . . . so that α + 1 = 2.61803 . . . . The idea of
the proof is the following: From Lemma 1.11 we see that R(N) ≤ r implies
N ≤ FrFr+1. Then (FrFr+1 − Fr−1)Fr−1Fr < α + 1 can be shown using
F 2

r < αF1Fr−1 + Fr+1.
Next we shall prove that there are no triples. The following lemmas will

be used.

Lemma 2.19. If 1 < r, then FrFr+1 < (1 + 2Fr+1)Fr−1 + Fr.

Proof. If 1 < r, then Fr < 1 + 2Fr−1. Hence

FrFr+1 < (1 + 2Fr−1)Fr+1 = Fr+1 + 2Fr−1 · Fr+1

= Fr−1 + 2Fr−1 · Fr+1 + Fr = (1 + 2Fr+1)Fr−1 + Fr.

Lemma 2.20. Suppose 1 < N , N = Hr(a, b), R(N) = r and 1 ≤ b.
Then a ≤ 2Fr.

Proof. Let r = R(N) and N = Hr(a, b). Since 1 < N and r = R(N),
we have 1 < r. We claim

(2.21) a < b + 2Fr+1.
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If not, then b + 2Fr+1 ≤ a. Since 1 ≤ b and N = Hr(a, b), by Lemma 2.19
and Lemma 1.11 we have

N = aFr−1+bFr ≥ (b+2Fr+1)Fr−1+bFr ≥ (1+2Fr+1)Fr−1+Fr > FrFr+1.

But this contradicts Lemma 1.11 which says that N ≤ FrFr+1, since r =
R(N). Hence (2.21) holds. Now it is easy to see that

N = aFr−1 + bFr = (b + 2Fr+1 − a)Fr + (a − 2Fr)Fr+1.

Supposing 2Fr < a and using (2.21), we get the contradiction R(N) ≥ r+1.
So a ≤ 2Fr.

Theorem 2.22. If R(N) = r, then the equation N = Hr(a, b) has at
most two solutions in positive integers a, b. There are no triples.

Proof. Suppose the equation N = Hr(a, b) has three solutions in pos-
itive integers, say (a, b), (c, d) and a third solution (x, y). Then c = a − Fr,
d = b+Fr−1, x = a−2Fr and y = b+2Fr−1. But by Lemma 2.20, a ≤ 2Fr.
Hence x ≤ 0, a contradiction.

From Theorem 2.22, if r = R(N), then ⌊hr(N)⌋ ≤ ⌈gr(N)⌉+1. And so
in (2.15), when ⌈gr(N)⌉ < ⌊hr(N)⌋, we have ⌈gr(N)⌉ + 1 = ⌊hr(N)⌋.

Following FnFn+1 there is a very long interval consisting entirely of
singlels.

Suppose R(N) = r. Recall from Corollary 1.20 that if R(N) = r, then
N must lie in the interval Fr+1 ≤ N ≤ FrFr+1. We can show that most N
in this interval are singles.

Theorem 2.23. If FnFn+1 < N < FnFn+1 + F 2
n + Fn+2, then N is a

single.

We won’t prove this result, (Theorem 2.23.). However it will be clear
how to do so after we have proved Lemma 3.1 in the next section.

Taking a limit as n → ∞, one finds that the interval [FnFn+1, FnFn+1+
F 2

n + Fn+2] occupies some 38% of the interval [FnFn+1, Fn+1Fn+2]. (β2 =
(

(1 −
√

5)/2
)2

= (−.61803)2 = .381966 . . .) Thus on average more than 28%
of N are singles. Actually, in the next section, we shall prove that 92.7% of
N are singles.

3. The number of N such that R(N) = r

In this section we consider the problem of the number of N such that
R(N) = r. Here r is a fixed positive integer. The number of such N must
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be finite. By Lemma 1.11, the number of such N must be less than or equal
to FrFr+1. We shall give an exact formula for this number. First we need
some lemmas.

Lemma 3.1. Suppose R(N) = r and a, b, c, d are as defined in (2.16)
and (2.17). Then N = Hr(a, b) = Hr(c, d). If N is a single, then c = a, d = b,

(i) 1 ≤ b ≤ a ≤ Fr and 1 ≤ b ≤ Fr−1.

If N is a double, then we have c = a − Fr, d = b + Fr−1, b ≤ a,

(ii) Fr−1 < d ≤ c ≤ Fr, Fr+1 < a ≤ 2Fr and 1 ≤ b ≤ Fr−2.

Proof. Suppose a, b, c and d are as above and N > 1. Let r = R(N).
Then N = Hr(a, b) = Hr(c, d). Suppose first N is a single. By (2.16) and
(2.17), c = a, d = b, 1 ≤ a and 1 ≤ b. By Lemma 1.2, N = Hr(a, b) =
Hr(a+Fr, b−Fr−1). Hence b ≤ Fr−1, else N would be a double. By Lemma
1.4, b ≤ a. By Lemma 1.2 we know N = Hr(a, b) = Hr(a − Fr, b + Fr−1).
Hence a ≤ Fr, else N would be a double. Therefore (i) holds.

Next suppose N is a double. Then by (2.15), (2.16) and (2.17), c =
a−Fr, d = b+Fr−1, 1 ≤ a, b, c, d. By Lemma 2.20, a ≤ 2Fr. Since c = a−Fr,
this implies c ≤ Fr. By Lemma 1.4, since N = Hr(c, d), d ≤ c. Hence d ≤ Fr.
Since d ≤ Fr and d = b+Fr−1, b+Fr−1 ≤ Fr, so that b ≤ Fr−Fr−1 = Fr−2,
i.e. b ≤ Fr−2. Since 0 < b and d = b + Fr−1, Fr−1 < d. Since Fr−1 < d
and d ≤ c, Fr−1 < c. Since a = c + Fr, this implies that Fr+1 < a. Hence
statement (ii) holds.

Lemma 3.2. If R(N) = r, then there exist unique positive integers x
and y satisfying

(3.2) N = Hr(x, y) and 1 ≤ y ≤ x ≤ Fr.

Proof. By Lemma 3.1. If N is a single, then we can let x = a and
y = b. If N is a double, then we can let x = c and y = d and we will have
≤ y ≤ x ≤ Fr. x and y are unique by Theorem 2.22, to the effect that
N = Hr(x, y) has at most two solutions. Every N is either a single or a
double. Note that if N is a double, then x = a and y = b won’t satisfy
1 ≤ y ≤ x ≤ Fr since Fr+1 < a.

Lemma 3.3. Suppose R(N) = r. Then all solutions (x, y) of N =
Hr(x, y) in positive integers satisfy either

1 ≤ y ≤ x ≤ Fr(3.3.1)

or
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Fr+1 < x ≤ 2Fr, 1 ≤ y ≤ Fr−2 and y ≤ x.(3.3.2)

But not both.

Proof. By Theorem 2.22, N is either a double or a single. Hence there
are only two cases to consider. If N is a single, then (x, y) = (a, b) and
condition (3.3.1) holds by Lemma 3.1. (i). If N is a double, then (x, y) =
(a, b) or (x, y) = (c, d). In the first case, by Lemma 3.1 (ii) (3.3.2) holds. In
the sceond case, by Lemma 3.1 (ii) (3.3.1) holds.

Lemma 3.4. Suppose R(N) = r. Then all solutions of N = Hr(x, y)
in positive integers (x, y) satisfy the conditions x ≤ 2Fr and y ≤ Fr.

Proof. By Lemma 3.3, either (3.3.1) holds or (3.3.2) holds. (3.3.1)
implies x ≤ Fr ≤ 2Fr and y ≤ Fr. (3.3.2) implies x ≤ 2Fr and y ≤ Fr−2 ≤
Fr. Hence x ≤ 2Fr and y ≤ Fr.

Lemma 3.5. If 0 < k, then for all positive integers a and b,

0 < Hk(a, b) < Hk+1(a, b).

Proof. From the definition it follows that Hn(a, b) is a strictly increas-
ing sequence of positive integers.

Theorem 3.6. There exist integers x and y such that

(3.6) N = Hn(x, y) and 1 ≤ y ≤ x ≤ Fn

iff n = R(N). Furthermore x and y are unique.

Proof. To prove the first part of the theorem suppose R(N) = n. Then
by Lemma 3.2 there exist unique integers x and y suct that N = Hn(x, y)
and 1 ≤ y ≤ x ≤ Fn, i.e. (3.6). To prove the second part suppose x and
y are integers satisfying (3.6). Then n > 0. Let R(N) = r. Then n ≤ r.
Let k = r − n. By definition of R(N) there are positive integers a and b
such that N = Hr(a, b). By Lemma 1.3 (ii), since n = r − k, we have N =
Hr(a, b) = Hn(Hk(a, b), Hk+1(a, b)) so that N = Hn(Hk(a, b),Hk+1(a, b)).

Thus x = Hk(a, b) and y = Hk+1(a, b) are particular solutions to the
linear diophantine equation N = xFn−1 + yFn. Since (Fn, Fn+1) = 1, all
solutions to the equation are given by

x = Hk(a, b) − tFn and y = Hk+1(a, b) + tFn−1,

where t is an integer. Since y ≤ x, we have for some t the inequality
Hk+1(a, b) + tFn−1 ≤ Hk(a, b) − tFn. This implies

t ≤ (Hk(a, b) − Hk+1(a, b))/Fn+1,

so that
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t ≤ Hk(a, b) − Hk+1(a, b).

Since x ≤ Fn, we also have the inequality Hk(a, b)−tFn ≤ Fn, which implies

Hk(a, b)/Fn ≤ t + 1.

If 0 < k, then by Lemma 3.5 we have t < 0 and 0 < t+1 so that −1 < t < 0.
This is a contradiction since t is an integer. Hence k = 0. Thus r = n and
hence R(N) = n.

Remark. Condition (3.6) cannot be replaced by the weaker condition
N = Hn(x, y) and 1 ≤ y ≤ x, This condition is not strong enough to imply
n = R(N). For example if N = 96, then R(N) = 6 but N = H5(17, 9) and
9 ≤ 17. Also N = H5(12, 12) and 12 ≤ 12.

Theorem 3.7. Let r be fixed nonnegative integer. Then the number
of N such that R(N) = r is exactly

Fr (Fr + 1)

2
.

Proof. Let r be fixed nonnegative integer. We will use Theorem 3.6 to
count the number of N such that R(N) = r. We will count pairs (x, y) such
that 1 ≤ y ≤ x ≤ Fr. For each such pair, we put N = Hr(x, y). For each N
there is only one pair (x, y) satisfying N = Hr(x, y) and 1 ≤ y ≤ x ≤ Fr,
by Theorem 2.6. How many pairs (x, y) are there such that 1 ≤ x ≤ Fr?
For each such x, there are x choices of y such that 1 ≤ y ≤ x. Hence the
number of N such that R(N) = r is given by the sum

Fr
∑

x=1

x =
Fr (Fr + 1)

2
.

Example 3.7. The number of N such that R(N) = 5 is F5(F5+1)/2 =
5 · 6/2 = 15. By Corollary 1.20, these 15 N all lie in the interval 8 = F6 ≤
N ≤ F5F6 = 40. They are the 15 values N = 8, 11, 14, 16, 17, 19, 20, 22, 24,
25, 27, 30, 32, 35 and 40.

4. Double numbers

In this section we first prove that there are infinitely many double
numbers. Then we give a combinatorial formula for the number of double
numbers N having a fixed value of R. Last we give an asymptotic estimate
for the number of double numbers up to FnFn+1.
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Lemma 4.1. For all n > 2, FnFn+1 is a double number.

Proof. Suppose 2 < n. Recall that by Corollary 1.10, R(FnFn+1) = n.
We have FnFn+1 = Fn (Fn−1 + Fn) = FnFn−1 + FnFn = Hn(Fn, Fn). On
the other hand,

FnFn+1 = (Fn + Fn)Fn−1 + (Fn − Fn−1)Fn

= Hn(2Fn, Fn − Fn−1) = Hn(2Fn, Fn−2).

0 < Fn−2 since n > 2. The two representations of FnFn+1 are distinct since
Fn 6= Fn−2.

Lemma 4.2. For n > 4, if N = Fn(Fn+1 − 1), then R(N) = n and N
is a double number.

Proof. By an argument similar to that in the proof of Lemma 4.1 it is
easy to see that

(4.2) N = Hn(Fn, Fn − 1) = Hn(2Fn, Fn−2 − 1).

To prove that R(N) = n we will use the IVL. Obviously n ≤ R(N). Suppose
that n + 1 ≤ R(n). Then by the IVL there exist a ≥ 1 and b ≥ 1 such that
N = Hn+1(a, b). Hence Fn(Fn+1 − 1) = aFn + bFn+1. Then Fn | b, since
(Fn, Fn+1) = 1. Let b = eFn, where 1 ≤ e. Then we have a+(e−1)Fn+1 < 0,
a contradiction. Thus R(N) = n.

We give next a formula for the number of double numbers N with a
fixed R value r. For this it is necessary first to characterise double numbers.
From section 2 we have the following result.

Lemma 4.3. Suppose R(N) = r. Then N is a double number iff

⌈

(−1)rFr−2N + 1

Fr−1
+ 1

⌉

=

⌊

(−1)rFr−1N − 1

Fr

⌋

.

Proof. See the remark following Theorem 2.22 that N is a double iff
⌈gr(N)⌉ + 1 = ⌊hr(N)⌋.

Theorem 4.4. N is a double number and R(N) = r iff there exist
unique positive integers x and y such that

(4.4) N = Hr(x, y) and Fr−1 < y ≤ x ≤ Fr.

Proof. For the proof of one part of the theorem, suppose N is a double
number and R(N) = r. By Lemma 3.1, there exist positive integers c and
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d such that N = Hr(c, d) and Fr−1 < d ≤ c ≤ Fr. Let x = c and y = d.
Then (4.4) holds. Also since the condition Fr−1 < y ≤ x ≤ Fr implies
1 < y ≤ x ≤ Fr, x and y are unique by Lemma 3.1. For the proof of the
second part, suppose (4.4) for some positive integers x and y. Then since
1 ≤ r, 1 ≤ y ≤ x ≤ Fr. Hence R(N) = r by Theorem 3.6. N cannot be a
single since in that case, by Lemma 3.1, we would have x = a, y = b and
b ≤ Fr−1. Hence N is a double.

Note that if (x, y) satisfies Fr−1 < y ≤ x ≤ Fr, then (x + Fr, y −Fr−1)
satisfies Fr+1 < x ≤ 2Fr and 1 ≤ y ≤ Fr−2. Also if (x, y) satisfies Fr+1 <
x ≤ 2Fr and 1 ≤ y ≤ Fr−2, then (x − Fr, y + Fr−1) satisfies Fr−1 < y ≤
x ≤ Fr. So one could also prove a version of Theorem 4.4, with condition
(4.4) replaced by

N = Hr(x, y), Fr+1 < x ≤ 2Fr and 1 ≤ y ≤ Fr−2.

Theorem 4.5. Let r ≥ 3. The number of N such that N is a double
number and R(N) = r is exactly

Fr−2 (Fr−2 + 1)

2
.

Proof. Suppose r is a fixed positive integer. To count the number of
double numbers N such that R(N) = r we will use representation (4.4) of
Theorem 4.4. We can determine the number of double numbers N such that
R(N) = r by counting pairs of integers (x, y) such that Fr−1 < y ≤ x ≤ Fr.
For each such pair (x, y) we can let N = Hr(x, y) since N depends uniquely
on (x, y). How many pairs of integers (x, y) are there such that Fr−1 < y ≤
x ≤ Fr? Since Fr −Fr−1 = Fr−2, there are Fr−2, there are Fr−2 choices for
x such that Fr−1 < x ≤ Fr. For each choice of x, there are x choices for y
such that Fr−1 < y ≤ x. Therefore the numbers N such that R(N) = r is
given by the sum

Fr−2
∑

x=1

x =
Fr−2 (Fr−2 + 1)

2
.

Example. The number of N such that N is a double and R(N) = 6 is
F4(F4 +1)/2 = 3 · 4/2 = 6. By Corollary 1.20 and Theorem 2.23 with n = 5
these N lie in the interval 18 = 5 · 8 + 52 + 13 = F5F6 + F 2

5 + F1 ≤ N ≤
F6F7 = 8 · 13 = 104. They are N = 78, 83, 88, 91, 96 and 104.

Lemma 4.6. For all double numbers N,N ≤ FnFn+1 iff R(N) ≤ n.

Proof. The first part of the lemma is the contrapositive of Lemma
1.11, if R(N) ≤ n then N ≤ FnFn+1. For the proof of the second part
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suppose N is a double and N ≤ FnFn+1. Let r = R(N). We will show
that r ≤ n. Suppose not. Suppose n < r. Let N = Hr(a, b) where a and b
are as in (2.16). By Lemma 3.1 (ii), since N is a double, Fr+1 < a. Hence
N = Hr(a, b) = aFr−1 + bFr ≥ Fr+1Fr−1 + Fr > Fn+2Fn ≥ Fn · Fn+1

contradicting N ≤ FnFn+1. Therefore r ≤ n.

Theorem 4.7. For n ≥ 1, the number of double numbers N ≤ FnFn+1

is equal to
Fn−1Fn−2 + Fn − 1

2
.

Proof. By Lemma 4.6 and Theorem 4.5, the number of double numbers
N ≤ FnFn+1 is

n
∑

r=3

Fr−2(Fr−2 + 1)

2
=

1

2

n
∑

r=3

(F 2
r−2 + Fr−2)

=
1

2

(

n−2
∑

i=1

F 2
i +

n−2
∑

i=1

Fi

)

=
1

2
(Fn−2Fn−1 + Fn − 1) .

What proportion of integers N are double numbers? We shall show that
on average approximately 7.3% of numbers are doubles. We shall show this
by proving that for n sufficiently large, approximately β4/2 of the numbers
N up to FnFn+1 are doubles. Here β = (1 −

√
5)/2 = −61803 . . . so that

β4/2 = .072949016 . . . .

Theorem 4.8. The probability that N is a double number is asymp-
totic to β4/2.

Proof. Let α = (1 +
√

5)/2 and β = (1 −
√

5)/2. Then αβ = −1.
It is known that Fn is asymptotic to αn/

√
5, i.e. that lim Fn/αn ≈ 1/

√
5.

By Lemma 4.6 and Theorem 4.7, the number of double numbers N up to
FnFn+1, divided by the number of N up to FnFn+1 is equal to

(Fn−1Fn−2 + Fn − 1)/2FnFn+1 ≈ Fn−1Fn−2/2FnFn+1

≈
(

(αn−1/
√

5)(αn−2/
√

5)
)

/
(

2(αn/
√

5)(αn+1/
√

5)
)

= αn−1αn−2/2αnαn+1 = 1/2α4 = β4/2.
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