
Scalable Distributed DNN Training Using

Commodity GPU Cloud Computing

Nikko Strom

Amazon.com
nikko@amazon.com

Abstract

We introduce a new method for scaling up distributed

Stochastic Gradient Descent (SGD) training of Deep Neural

Networks (DNN). The method solves the well-known

communication bottleneck problem that arises for data-parallel

SGD because compute nodes frequently need to synchronize a

replica of the model. We solve it by purposefully controlling

the rate of weight-update per individual weight, which is in

contrast to the uniform update-rate customarily imposed by the

size of a mini-batch. It is shown empirically that the method

can reduce the amount of communication by three orders of

magnitude while training a typical DNN for acoustic

modelling. This reduction in communication bandwidth

enables efficient scaling to more parallel GPU nodes than any

other method that we are aware of, and it can be achieved with

neither loss in convergence rate nor accuracy in the resulting

DNN. Furthermore, the training can be performed on

commodity cloud infrastructure and networking.

Index Terms: Speech recognition, deep neural networks,

distributed stochastic gradient descent

1. Introduction

Stochastic Gradient Descent (SGD) is the work-horse of Deep

Neural Network (DNN) training. Error Back-Propagation (BP)

combined with SGD is the most popular training technique

across most applications of DNN (cf. [1], [2]). Even as other

techniques are used, such as RBM (e.g. [1]), or 2nd order

methods (e.g. Hessian-Free optimization [3], [4]), SGD is

typically still an important part of the recipe and consumes a

large fraction of the training time. Consequently, much effort

has been expended to improve its efficiency and speed.

Convergence has been shown to improve by weight

conditioning [5], as well as adaptive update formulae such as

AdaGrad [6] and AdaDelta [7]. More fundamentally, it is

common practice to gain significant speed-up from computing

sub-gradients of mini-batches of samples rather than updating

weights after each training sample.

Another source of great reduction in training time was the

introduction of general computation on Graphics Processing

Units (GPU). However, the massive local computational

density afforded by GPUs magnifies the fundamental problem

of data-parallel training on many compute nodes. Consider

that any DNN architecture has a characteristic compute-per-

trainable-weight ratio. For example, the computation required

in the forward and backward pass of a fully connected layer is

proportional to the number of weights. Further, the amount of

communication bandwidth required in a data-parallel training

scheme (e.g. [8]) is nominally proportional to the number of

trainable weights. Therefore, as the speed of computation per

node increases, so does the required bandwidth. This paper is

addressing that fundamental limitation.

It is worth pointing out that the parallel training problem

can also be cast in a model-parallel framework. For sparsely

structured connected layers, such as in Convolutional Neural

Networks (CNN) [2], it is often possible to relatively

efficiently distribute the computation of each layer [8], and for

fully-connected layers, each layer may be processed on a

different node [9]. Model parallelism is particularly attractive

for very large models that do not completely fit in the working

memory of a single GPU [8] [10], and has been most

successful for small, tightly connected clusters of GPU devices

[10] [11] [12]. However, for densely connected networks,

model parallelism is in practice often bounded by the number

of layers in the DNN [9]. Since in this paper we are concerned

with larger scale distributed training on commodity compute

nodes, we focus on data-parallel methods. However, as has

been shown [8] [13], data parallelism can also be combined

with model parallelism.

There have been many notable attempts at scaling up

distributed training across compute nodes [13] [8] [11] [4].

The results are mixed, with greater success for use cases with

higher compute-per-weight ratio, such as Convolutional

Neural Networks (CNN) where parameter tying reduces the

number of free weights, as well as CPU-based systems which

have a lower compute density per node. Arguably the most

challenging cases are fully connected architectures trained on

GPU hardware [13]. State-of-the-art speech recognition

acoustic models have exactly that profile, and this is the task

we use to demonstrate our method in section 3 after first

giving the details of the general method.

2. Method

2.1. Data-parallel distributed SGD

In data-parallel distributed SGD, each compute node has a

local replica of the DNN and computes sub-gradients based on

different partitions of the training data. Sub-gradients are

computed in parallel for different mini-batches of data at each

node (e.g. [8]). The sub-gradients are the basis for updates to

the weights of the DNN and the weight-updates must be

synchronized across all compute nodes. Nominally, weight

updates are the same memory size as the model (i.e., the

trainable weights), which makes it challenging to synchronize

weights after each mini-batch. This has led to exploration of

methods that synchronize less frequently [5] and other

methods for compressing the gradients [13]. At a high level,

our method can be viewed as a generalization of those ideas.

2.2. Two observations

Our first observation, as was also pointed out in [9] (see also

[14]), is that many techniques for speeding up SGD can be

formulated as variants of delaying weight updates. Mini-

batching is an obvious case where the updates of sub-gradients

for individual samples are delayed until the end of the mini-

batch. Momentum and Nesterov accelerated gradients [15] are

other, less obvious, examples of delays. It is also common to

introduce additional delay to mask the communication latency

(e.g., double buffering [13] or asynchronous SGD [16]).

Our second, empirical, observation is that sub-gradients

are very sparse. It is well-known that typically the weights of a

fully connected DNN are sparsely distributed with most

weights close to zero [17] [18], so it is not surprising that sub-

gradients are also sparse. Furthermore, since sub-gradients are

based on a small amount of the training data they are normally

even sparser than the weight distribution. This leads to the

core idea of the method; only a small fraction of the weights

are required to be updated after each mini-batch. Elements of

the gradient that are near zero can safely be delayed much

longer than the typical mini-batch size.

2.3. Compaction and dead reckoning

We can significantly compact sub-gradients by considering

only gradient elements whose absolute values exceed a

threshold. To code the resulting sparse gradient we construct

key-value maps where keys are the indices into the full

gradient and values are the corresponding individual gradient

element. These maps constitute the messages exchanged in the

distributed SGD. Because sub-gradients are very sparse, this

leads to a great bandwidth reduction compared to transmitting

the full gradient matrices.

To reduce memory copy bandwidth between the host and

the GPU device, the compaction of the gradient is most

efficiently done on the device. The operation is not trivially

parallelized on the GPU, but it belongs to a class of problems,

string compaction, that has been studied extensively and well-

known fast implementations exist (e.g. [19]).

It is worth noting that there is no explicit synchronization

of weights. Instead we apply “dead reckoning”, i.e., senders

communicate deltas of individual weights to all other nodes

and receivers apply the deltas to the local replica of the DNN.

For all copies of the DNN to stay synchronized, all nodes must

receive exactly the same deltas and apply them with the same

logic. The deltas may be received in different orders as long as

the update logic is commutative.

2.4. Gradient residual

It is not sufficient to simply forget all gradient element values

below the threshold because different gradient elements have

different dynamic range. Instead, on each compute node, after

each mini-batch, gradient values are aggregated in what we

call the gradient residual. This ensures that weights with small

but biased sub-gradient values are eventually updated, albeit at

a lower update frequency. Only elements of the residual that

exceed the threshold τ are encoded and communicated to peers

and then subtracted from the residual. Effectively, this logic

generalizes the concept of delayed updates and implements a

variable length delay where smaller gradient elements are

delayed more (see pseudo code in Section 2.6).

2.5. Quantization and compression

In a naïve implementation, we would encode each gradient

element as two numbers; an integer element index and the

floating point gradient element. That goes a long way;

however, we can do better by quantizing the gradient and

packing both the quantized gradient and the index in a single

32-bit integer field. A key detail is that the quantization error

is not discarded but added back to the gradient residual (cf.

“error feedback” [13]). Empirically we have found that 1-bit

quantization is sufficient and carries no significant degradation

in neither accuracy nor convergence speed. This somewhat

surprising finding is consistent with [13]. Thus, nodes simply

communicate weight deltas of +τ or –τ, and we are left with 31

bits of address space for the index, which is more than enough

for all our use cases.

Peer-to-peer messages can be further compressed by

entropy coding. The quantized update messages are sorted sets

of integers. It is easy to see that gaps between the integers

have lower entropy than the absolute values. We have found

empirically that Golomb-Rice [20] coding the gaps reduces the

average size per weight update to 10-11 bits, representing an

additional 3x compression. However, entropy compression

incurs a small transmission delay due to the computation

required, and we are not using it in the experiments below.

2.6. Pseudo code

The following pseudo code describes a mini-batch cycle in a

single compute node participating in distributed SGD. This is

the special case of 1-bit quantization.

1. Receive and uncompress any weight

update messages from other compute

nodes and apply them to the local replica

of the DNN

2. Load feature vectors and supervision

targets for a mini-batch

3. Compute a sub-gradient G
(s)

 by Back-

Propagation

4. Aggregate the sub-gradient in the

gradient residual G
(r)
 = G

(r)
+ G

(s)

5. Reset the message map M

6. For each element gi
(r)

 of G
(r)
:

7. If gi
(r)
 > τ then

push the pair {i, +τ} to the message M

Subtract τ from residual: gi
(r)
 = gi

(r)
 – τ

Else if gi
(r)
 < -τ then

push the pair {i, -τ} to the message M

Add τ to the residual: gi
(r)
 = gi

(r)
 + τ

8. Compress M and send to all other compute

nodes

9. Apply M to the local replica of the DNN

Asynchronous SGD (in the sense of “Hogwild” [16]) is simply

achieved if messages are communicated asynchronously.

Empirically we find that asynchronous operation is

significantly faster for scales above 10 compute nodes.

Furthermore, in some cases, such as for sequence-based

BMMI training [21], the batch-size is variable, which makes

synchronous training particularly inefficient. Thus, we have

chosen to focus on asynchronous operation.

3. Experiments

3.1. Hardware and infrastructure

All experiments were carried out on commodity Amazon Web

Services (AWS) cloud infrastructure. The compute nodes are

Elastic Compute Cloud (EC2) G2 instances with an NVIDIA

GRID K520 GPU with 1,536 CUDA cores and 4GB of device

memory. Communication between the compute nodes is

served by standard AWS networking.

External data, i.e., feature vectors and supervision targets,

are stored on AWS Simple Storage Service (S3) and fetched

on-demand by compute nodes.

3.2. The task and data

The general method can be applied to other areas, but here we

demonstrate by the task of acoustic modelling for automatic

speech recognition (ASR). Contemporary state-of-the-art ASR

systems use context dependent hybrid DNN-HMM where the

DNN models the posterior probabilities of phonetic states

given an observation vector (e.g. [1] for details). We use such

a system to evaluate the end-to-end performance in terms of

Word Error Rate (WER).

For training data and supervision targets we use a 1,000

hour subset of transcribed in-house Amazon speech data.

Feature vectors consist of 20 log Mel frequency filter bank

coefficients (for more detail, see for example [1]). The features

of the training set were force-aligned using an existing ASR

system. The speech signal is segmented in frames with 25 ms

analysis window and 10 ms step size, which yields a total of

368 million training feature vectors with supervision targets.

We use a separate 185,000 word test set. For the purpose

of this study we are not concerned with the absolute WER, but

primarily use the test set to verify that the distributed

algorithm does not degrade speech recognition accuracy

relative to a single-node baseline.

3.3. DNN architecture and training recipe

To initialize the DNN, pre-training is performed by supervised

layer-by-layer back-propagation training using a small subset

of the training data [22]. This is very fast and is done by

single-threaded SGD training.

The DNN structure after pre-training is a stack of fully

connected layers. The input layer is a window covering the

center frame and eight frames to the left and right. Each

hidden layer is an affine transform with trainable weights

followed by a sigmoid non-linearity. The output layer is a

trainable affine transform followed by a softmax layer with

outputs for the phonetic classes. There are five hidden layers

resulting in a total of 14.6 million trainable parameters in the

network.

After pre-training the network undergoes 10 epochs of

distributed SGD training. Here we only report results for cross

entropy training, but the method has successfully been applied

to other loss objectives such as segment based BMMI [21].

For learning-rate control, the rate is simply halved after each

epoch. As has been observed in [9], convergence of SGD

training can be sensitive to long combined effective mini-

batch sizes, in particular early in the training. Therefore, after

some initial experimentation, to avoid poor convergence, we

use a smaller mini-batch size and fewer compute nodes in the

first 1/6th of the first epoch (see Table 1). Without this, the

training diverges in the first epoch.

This recipe can be refined in many ways, but we choose

this simple form for the purpose of demonstrating the

distributed SGD method.

Table 1. Training recipe for all experiments. The first

epoch is split with a short first period of 166 hours

with a smaller effective batch size.

Epoch 1 2 3 … 10

Hours of training data 166 834 1000 1000 … 1000

Learning rate 0.008 0.008 0.004 0.002 … 1.5e-5

Local mini-batch size 256 512 1024 1024 … 1024

Number of compute nodes 10 10 5-80 5-80 … 5-80

3.4. Results

3.4.1. Baseline

To produce a baseline result we trained a DNN using only

single-threaded SGD with otherwise the same dimensions,

hyper-parameters, and on the same hardware and

infrastructure. The ASR accuracy achieved by this DNN

serves as the baseline by which we measure relative WER

reduction in all other results below. The total elapsed time for

epoch 1–10 was 102 hours, equivalent to a rate of around

10,000 frames / second. Note that in the following, we always

only report on the last nine epochs 2-10.

3.4.2. Scaling the number of compute nodes

To study the scaling properties of the method, the number of

compute nodes was varied from 5 to 80 in epochs 2–10 (see

Table 2). All other hyper-parameters were constant. The

number of compute nodes in the first epoch was held constant

at 10 (see Table 1). For reference, the elapsed training time of

the first epoch was 84 minutes. As can be seen Table 2 and

Figure 1, the method scales very well up to at least 80 GPU

compute nodes. And perhaps surprisingly, the convergence per

epoch is faster and the asymptotic accuracy is slightly better

for the distributed training. We don’t have a definitive

explanation for this, but more importantly there is no evidence

that the method is detrimental for either convergence speed or

accuracy.

Table 2. Training speed for varying number of

compute nodes in epoch 2-10. The first row shows the

baseline result. The relative WER reduction is

measured relative to the baseline on the test set. The

small variations in WER are not significant.

Nodes Frame
rate/sec

Elapsed
[min.]

Relative
speed

Relative
WER

reduction

1 10,000 5,470 1 0%

5 43,000 1,287 4.3 1.6%

10 88,000 626 8.7 1.5%

20 171,000 323 17 1.6%

40 331,000 167 33 1.6%

80 547,000 101 54 1.8%

Figure 1. Convergence of the baseline and the DNN

trained with 40 parallel hosts. Note that for these two

conditions, epoch 11 and 12 were also trained.

3.4.3. Effect of varying the threshold τ

The results in Table 2 were achieved with τ = 4. To study the

effect of the threshold τ we reran epochs 2-10 with 40 compute

nodes for different values of τ. When the threshold is too high

convergence is affected and thus the accuracy (WER) is

degraded. On the other hand, if the threshold is too low, the

weight update messages become too large and slow down

training due to a communication bottleneck. However, as can

be seen in Table 3, there exists a wide interval of τ that yields

both fast convergence and produces small enough update

messages to ensure optimal training speed.

Table 3. Performance for varying thresholds τ.

Compression ratio is the size of the full gradient

divided by the size of our sparse weight updates.

τ Frames/second
(epoch 2-10)

Update
size/mini-
batch [KB]

Compression
ratio

Elapsed
[minutes]

Relative
WER

reduction

2.0 303,000 210 278 182 1.8%

4.0 331,000 69 846 180 1.6%

6.0 334,000 33 1,770 179 1.1%

9.0 335,000 15 3,893 179 0.2%

12.0 335,000 7.8 7,487 165 -0.5%

15.0 341,000 4.5 12,978 162 -1.9%

3.4.4. Scaling the model size

Scaling up the model size increases both computation and the

size of weight updates, but larger models tend to produce even

sparser weight update distributions resulting in a lower ratio of

communication per computation. To demonstrate, we trained

DNNs with double, and triple the hidden layer size. We also

trained a DNN with eight hidden layers. Results are shown in

Table 4. As expected the WER is significantly better than the

baseline, but more importantly the weight update size does not

grow with the size of hidden layers and it grows slower than

the number of hidden layers. Thus the method is becoming

more efficient as the model size is increased.

Table 4. Performance for different model sizes.

Layer
dimensions

Weights
[million]

Frames
per sec.

Compress
ratio

Elapsed
[minutes]

Relative
WER

reduction

5 hidden layers 14.6 331,000 846 180 1.6%

8 hidden layers 21.7 186,000 998 247 4.2%
5 hidden layers

of 2x size
23.7 213,000 1,436 259 2.8%

5 hidden layers
of 3x size

48.8 109,000 2,871 508 4.1%

3.5. Comparison with previous results

We are not aware of previous results for fully-connected DNN

architectures competitive with the results in Table 2. An early

CPU-based example is [8], where for a 42 million weight ASR

DNN, the speed-up was a modest 2.2x and bottomed out for 8

compute nodes with up to 20 CPU cores each. More recently,

[5] used a different approach to scale up to at least four GPU

nodes, but scaling beyond 16 nodes is not yet demonstrated.

There are several published results for configurations that

limit the degree of parallelism to the number of GPU devices

that can be installed in a single server. Low single digit speed-

ups are reported in [11], [9] and [12].

 The closest comparable results in terms of scaling are for

clusters with Infiniband networking. For example, [10]

demonstrates impressive speed-ups, using up to 64 GPU nodes

for model-parallel CNN training. However, for fully-

connected DNNs, the closest result is [13] where a 10-fold

speedup was demonstrated by a combination of model- and

data-parallelism across 20 GPU nodes.

4. Discussion

For contemporary state-of-the-art model sizes and data sets,

our method practically solves the distributed DNN training

problem; very large models can now be trained in days or

hours rather than months and the method becomes more

efficient as model sizes are increased, which allows it to scale

to larger models in the future. On the other hand, the success

in scaling the number of compute nodes is not completely

limitless.

First, as the number of compute nodes grow, so does the

effective batch size, i.e., the number of samples that are

aggregated in weight updates. Early in the training of a DNN,

longer batch sizes tend to degrade the convergence rate. As

mitigation, hyper-parameters may be tuned, or automatic mini-

batch size selection [13] can be utilized, but ultimately this is a

fundamental trade-off of SGD.

The second limiting factor is the asymptotic peer-to-peer

gradient communication. Above a certain task- and system-

dependent number of compute nodes, training will again

become communication-bound. Potential mitigations might

include hierarchical aggregation of messages [8]. However,

since messages consist of sparse quantized sets, aggregation

does not necessarily substantially reduce the total size.

In these experiments we have chosen the most challenging

configuration with respect to the two limitations. We also used

moderately sized DNNs and we know that the method scales

better for larger models. Therefore, while we are aware of

theoretical limitations, in practice the method may scale to

considerably larger numbers of compute nodes than evidenced

in this report.

5. Conclusions

We have introduced a novel method for data-parallel

distributed SGD training of DNNs. It was shown empirically

that the method scales well to at least 80 GPU instances on

commodity cloud infrastructure with no loss of accuracy or

rate of convergence. This was made possible by reducing the

required communication bandwidth by three orders of

magnitude. In addition, it was shown that the method becomes

increasingly efficient as the model size increases. To our

knowledge, the scale and training speed achieved is the

highest ever reported for fully connected DNN training.

6. References

[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A.
Senior, V. Vanhoucke, P. Nguyen, T. Sainath and B. Kingsbury,

"Deep neural networks for acoustic modeling in speech

recognition," IEEE Signal Processing Magazine, 2012.

[2] Y. LeCun, F.-J. Huang and L. Bottou, "Learning methods for

generic object recognition with invariance to pose and lighting,"

in Proc. of the Computer Vision and Pattern Recognition
Conference, Los Alamitos, CA, 2004.

[3] J. Martens, "Deep learning via Hessian-free optimization," in

Proc. of ICML, 2010.

[4] T. N. Sainath, I.-h. Chung, B. Ramabhadran, M. Picheny, J.

Gunnels, B. Kingsbury, G. Saon, V. Austel and U. Chaudhari,

"Parallel deep neural network training for LVCSR tasks using

Blue Gene/Q," in Proc. of INTERSPEECH, Singapore, 2014.

[5] D. Povey, X. Zhang and S. Khudanpur, "Parallel training of
DNNs with natural gradient and parameter averaging," in Proc.

of ICLR 2015, San Diego, 2015.

[6] J. Duchi, E. Hazan and Y. Singer, "Adaptive subgradient
methods for online learning and stochastic optimization," Journal

of Machine Learning Research, vol. 12, p. 2121–2159, 2011.

[7] M. D. Zeiler, "ADADELTA: An adaptive learning rate method,"
arXiv preprint arXiv:1212.5701, 2012.

[8] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,

M. Z. Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang and A.
Y. Ng., "Large scale distributed deep networks," in Proc. of

Advances in Neural Information Processing Systems, Lake

Tahoe, NV, 2012.

[9] F. Seide, F. Hao, J. Droppo, G. Li and D. Yu, "On

parallelizability of stochastic gradient descent for speech DNNs,"

in Proc. of ICASSP, Florence, Italy, 2014.

[10] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro and N. A,

"Deep learning with COTS HPC systems," in Proc. of the 30th

International Conference on Machine Learning, 2013.

[11] Z. Shanshan, C. Zhang, Z. You, Z. Rong and B. Xu,

"Asynchronous stochastic gradient descent for DNN training," in

Proc. of ICASSP, Vancouver, Canada, 2013.

[12] C. Xie, A. Eversole, G. Li, D. Yu and F. Seide, "Pipelined Back-

Propagation for Context-Dependent Deep Neural Networks," in

Proc. of INTERSPEECH, Portland, OR, 2012.

[13] F. Seide, H. Fu, J. Droppo, G. Li and D. Yu, "1-bit stochastic

gradient descent and its application to data-parallel distributed

training of speech DNNs," in Proc. of INTERSPEECH,
Singapore, 2014.

[14] A. Agarwal and J. J. Duchi, "Distributed delayed stochastic

optimization," in Proc. of Advances in Neural Information
Processing Systems, Granada, Spain, 2011.

[15] Y. Nesterov, "Gradient methods for minimizing composite

objective function," in CORE Discussion Paper 2007/76,
Catholic University of Louvain, 2007.

[16] B. Recht, C. Re, S. Wright and F. Niu, "Hogwild: A lock-free

approach to parallelizing stochastic gradient descent," in Proc. of
Advances in Neural Information Processing Systems, Granada,

Spain, 2011.

[17] N. Ström, "A tonotopic artificial neural network architechture for
phoneme probability estimation," in Proc. of IEEE Workshop on

Speech Recognition and Understanding, Santa Barbara, CA,

1997.

[18] N. Ström, "Sparse connection and pruning in large dynamic

artificial neural networks," in Proc. of EUROSPEECH, Rhodes,

Greece, 1997.

[19] N. Wilt, The cuda handbook: A comprehensive guide to gpu

programming, Pearson Education, 2013.

[20] R. F. Rice and R. Plaunt, "Adaptive Variable-Length Coding for
Efficient Compression of Spacecraft Television Data," IEEE

Transactions on Communication Technology, vol. 16, no. 9,
1971.

[21] K. Veselý, A. Ghoshal, L. Burget and D. Povey, "Sequence-

discriminative training of deep neural networks," in Proc. of
INTERSPEECH, Lyon, France, 2013.

[22] F. Seide, G. Li, X. Chen and D. Yu, "Feature engineering in

context-dependent deep neural networks for conversational
speech transcription," in Proc. of IEEE ASRU, Waikoloa, HI,

2011.

