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Abstract 

We introduce a new method for scaling up distributed 

Stochastic Gradient Descent (SGD) training of Deep Neural 

Networks (DNN). The method solves the well-known 

communication bottleneck problem that arises for data-parallel 

SGD because compute nodes frequently need to synchronize a 

replica of the model. We solve it by purposefully controlling 

the rate of weight-update per individual weight, which is in 

contrast to the uniform update-rate customarily imposed by the 

size of a mini-batch. It is shown empirically that the method 

can reduce the amount of communication by three orders of 

magnitude while training a typical DNN for acoustic 

modelling. This reduction in communication bandwidth 

enables efficient scaling to more parallel GPU nodes than any 

other method that we are aware of, and it can be achieved with 

neither loss in convergence rate nor accuracy in the resulting 

DNN. Furthermore, the training can be performed on 

commodity cloud infrastructure and networking. 

Index Terms: Speech recognition, deep neural networks, 

distributed stochastic gradient descent 

1. Introduction 

Stochastic Gradient Descent (SGD) is the work-horse of Deep 

Neural Network (DNN) training. Error Back-Propagation (BP) 

combined with SGD is the most popular training technique 

across most applications of DNN (cf. [1], [2]). Even as other 

techniques are used, such as RBM (e.g. [1]), or 2nd order 

methods (e.g. Hessian-Free optimization [3], [4]), SGD is 

typically still an important part of the recipe and consumes a 

large fraction of the training time. Consequently, much effort 

has been expended to improve its efficiency and speed. 

Convergence has been shown to improve by weight 

conditioning [5], as well as adaptive update formulae such as 

AdaGrad [6] and AdaDelta [7]. More fundamentally, it is 

common practice to gain significant speed-up from computing 

sub-gradients of mini-batches of samples rather than updating 

weights after each training sample.  

Another source of great reduction in training time was the 

introduction of general computation on Graphics Processing 

Units (GPU). However, the massive local computational 

density afforded by GPUs magnifies the fundamental problem 

of data-parallel training on many compute nodes. Consider 

that any DNN architecture has a characteristic compute-per-

trainable-weight ratio. For example, the computation required 

in the forward and backward pass of a fully connected layer is 

proportional to the number of weights. Further, the amount of 

communication bandwidth required in a data-parallel training 

scheme (e.g. [8]) is nominally proportional to the number of 

trainable weights. Therefore, as the speed of computation per 

node increases, so does the required bandwidth. This paper is 

addressing that fundamental limitation. 

It is worth pointing out that the parallel training problem 

can also be cast in a model-parallel framework. For sparsely 

structured connected layers, such as in Convolutional Neural 

Networks (CNN) [2], it is often possible to relatively 

efficiently distribute the computation of each layer [8], and for 

fully-connected layers, each layer may be processed on a 

different node [9]. Model parallelism is particularly attractive 

for very large models that do not completely fit in the working 

memory of a single GPU [8] [10], and has been most 

successful for small, tightly connected clusters of GPU devices 

[10] [11] [12]. However, for densely connected networks, 

model parallelism is in practice often bounded by the number 

of layers in the DNN [9]. Since in this paper we are concerned 

with larger scale distributed training on commodity compute 

nodes, we focus on data-parallel methods. However, as has 

been shown [8] [13], data parallelism can also be combined 

with model parallelism. 

There have been many notable attempts at scaling up 

distributed training across compute nodes [13] [8] [11] [4]. 

The results are mixed, with greater success for use cases with 

higher compute-per-weight ratio, such as Convolutional 

Neural Networks (CNN) where parameter tying reduces the 

number of free weights, as well as CPU-based systems which 

have a lower compute density per node. Arguably the most 

challenging cases are fully connected architectures trained on 

GPU hardware [13]. State-of-the-art speech recognition 

acoustic models have exactly that profile, and this is the task 

we use to demonstrate our method in section 3 after first 

giving the details of the general method. 

2. Method 

2.1. Data-parallel distributed SGD 

In data-parallel distributed SGD, each compute node has a 

local replica of the DNN and computes sub-gradients based on 

different partitions of the training data. Sub-gradients are 

computed in parallel for different mini-batches of data at each 

node (e.g. [8]). The sub-gradients are the basis for updates to 

the weights of the DNN and the weight-updates must be 

synchronized across all compute nodes. Nominally, weight 

updates are the same memory size as the model (i.e., the 

trainable weights), which makes it challenging to synchronize 

weights after each mini-batch. This has led to exploration of 

methods that synchronize less frequently [5] and other 

methods for compressing the gradients [13]. At a high level, 

our method can be viewed as a generalization of those ideas.  



2.2. Two observations 

Our first observation, as was also pointed out in [9] (see also 

[14]), is that many techniques for speeding up SGD can be 

formulated as variants of delaying weight updates. Mini-

batching is an obvious case where the updates of sub-gradients 

for individual samples are delayed until the end of the mini-

batch. Momentum and Nesterov accelerated gradients [15] are 

other, less obvious, examples of delays. It is also common to 

introduce additional delay to mask the communication latency 

(e.g., double buffering [13] or asynchronous SGD [16]). 

Our second, empirical, observation is that sub-gradients 

are very sparse. It is well-known that typically the weights of a 

fully connected DNN are sparsely distributed with most 

weights close to zero [17] [18], so it is not surprising that sub-

gradients are also sparse. Furthermore, since sub-gradients are 

based on a small amount of the training data they are normally 

even sparser than the weight distribution. This leads to the 

core idea of the method; only a small fraction of the weights 

are required to be updated after each mini-batch. Elements of 

the gradient that are near zero can safely be delayed much 

longer than the typical mini-batch size.  

2.3. Compaction and dead reckoning 

We can significantly compact sub-gradients by considering 

only gradient elements whose absolute values exceed a 

threshold. To code the resulting sparse gradient we construct 

key-value maps where keys are the indices into the full 

gradient and values are the corresponding individual gradient 

element. These maps constitute the messages exchanged in the 

distributed SGD. Because sub-gradients are very sparse, this 

leads to a great bandwidth reduction compared to transmitting 

the full gradient matrices. 

To reduce memory copy bandwidth between the host and 

the GPU device, the compaction of the gradient is most 

efficiently done on the device. The operation is not trivially 

parallelized on the GPU, but it belongs to a class of problems, 

string compaction, that has been studied extensively and well-

known fast implementations exist (e.g. [19]).  

It is worth noting that there is no explicit synchronization 

of weights. Instead we apply “dead reckoning”, i.e., senders 

communicate deltas of individual weights to all other nodes 

and receivers apply the deltas to the local replica of the DNN. 

For all copies of the DNN to stay synchronized, all nodes must 

receive exactly the same deltas and apply them with the same 

logic. The deltas may be received in different orders as long as 

the update logic is commutative. 

2.4. Gradient residual 

It is not sufficient to simply forget all gradient element values 

below the threshold because different gradient elements have 

different dynamic range. Instead, on each compute node, after 

each mini-batch, gradient values are aggregated in what we 

call the gradient residual. This ensures that weights with small 

but biased sub-gradient values are eventually updated, albeit at 

a lower update frequency. Only elements of the residual that 

exceed the threshold τ are encoded and communicated to peers 

and then subtracted from the residual. Effectively, this logic 

generalizes the concept of delayed updates and implements a 

variable length delay where smaller gradient elements are 

delayed more (see pseudo code in Section 2.6).  

2.5. Quantization and compression  

In a naïve implementation, we would encode each gradient 

element as two numbers; an integer element index and the 

floating point gradient element. That goes a long way; 

however, we can do better by quantizing the gradient and 

packing both the quantized gradient and the index in a single 

32-bit integer field. A key detail is that the quantization error 

is not discarded but added back to the gradient residual (cf. 

“error feedback” [13]). Empirically we have found that 1-bit 

quantization is sufficient and carries no significant degradation 

in neither accuracy nor convergence speed. This somewhat 

surprising finding is consistent with [13]. Thus, nodes simply 

communicate weight deltas of +τ or –τ, and we are left with 31 

bits of address space for the index, which is more than enough 

for all our use cases. 

Peer-to-peer messages can be further compressed by 

entropy coding. The quantized update messages are sorted sets 

of integers. It is easy to see that gaps between the integers 

have lower entropy than the absolute values. We have found 

empirically that Golomb-Rice [20] coding the gaps reduces the 

average size per weight update to 10-11 bits, representing an 

additional 3x compression. However, entropy compression 

incurs a small transmission delay due to the computation 

required, and we are not using it in the experiments below. 

2.6. Pseudo code 

The following pseudo code describes a mini-batch cycle in a 

single compute node participating in distributed SGD. This is 

the special case of 1-bit quantization. 

 
1. Receive and uncompress any weight 

update messages from other compute 

nodes and apply them to the local replica 

of the DNN 

2. Load feature vectors and supervision 

targets for a mini-batch 

3. Compute a sub-gradient G
(s)

 by Back-

Propagation 

4. Aggregate the sub-gradient in the 

gradient residual G
(r)
 = G

(r) 
+ G

(s)
 

5. Reset the message map M 

6. For each element gi
(r)

 of G
(r)
: 

7. If gi
(r)
 > τ then  

push the pair {i, +τ} to the message M 

Subtract τ from residual: gi
(r)
 = gi

(r)
 – τ 

Else if gi
(r)
 < -τ then  

push the pair {i, -τ} to the message M 

Add τ to the residual: gi
(r)
 = gi

(r)
 + τ 

8. Compress M and send to all other compute 

nodes 

9. Apply M to the local replica of the DNN  

 

Asynchronous SGD (in the sense of “Hogwild” [16]) is simply 

achieved if messages are communicated asynchronously. 

Empirically we find that asynchronous operation is 

significantly faster for scales above 10 compute nodes. 

Furthermore, in some cases, such as for sequence-based 

BMMI training [21], the batch-size is variable, which makes 

synchronous training particularly inefficient. Thus, we have 

chosen to focus on asynchronous operation.  



3. Experiments 

3.1. Hardware and infrastructure 

All experiments were carried out on commodity Amazon Web 

Services (AWS) cloud infrastructure. The compute nodes are 

Elastic Compute Cloud (EC2) G2 instances with an NVIDIA 

GRID K520 GPU with 1,536 CUDA cores and 4GB of device 

memory. Communication between the compute nodes is 

served by standard AWS networking.  

External data, i.e., feature vectors and supervision targets, 

are stored on AWS Simple Storage Service (S3) and fetched 

on-demand by compute nodes.  

3.2. The task and data 

The general method can be applied to other areas, but here we 

demonstrate by the task of acoustic modelling for automatic 

speech recognition (ASR). Contemporary state-of-the-art ASR 

systems use context dependent hybrid DNN-HMM where the 

DNN models the posterior probabilities of phonetic states 

given an observation vector (e.g. [1] for details). We use such 

a system to evaluate the end-to-end performance in terms of 

Word Error Rate (WER). 

For training data and supervision targets we use a 1,000 

hour subset of transcribed in-house Amazon speech data. 

Feature vectors consist of 20 log Mel frequency filter bank 

coefficients (for more detail, see for example [1]). The features 

of the training set were force-aligned using an existing ASR 

system. The speech signal is segmented in frames with 25 ms 

analysis window and 10 ms step size, which yields a total of 

368 million training feature vectors with supervision targets.  

We use a separate 185,000 word test set. For the purpose 

of this study we are not concerned with the absolute WER, but 

primarily use the test set to verify that the distributed 

algorithm does not degrade speech recognition accuracy 

relative to a single-node baseline.  

3.3. DNN architecture and training recipe  

To initialize the DNN, pre-training is performed by supervised 

layer-by-layer back-propagation training using a small subset 

of the training data [22]. This is very fast and is done by 

single-threaded SGD training.  

The DNN structure after pre-training is a stack of fully 

connected layers. The input layer is a window covering the 

center frame and eight frames to the left and right. Each 

hidden layer is an affine transform with trainable weights 

followed by a sigmoid non-linearity. The output layer is a 

trainable affine transform followed by a softmax layer with 

outputs for the phonetic classes. There are five hidden layers 

resulting in a total of 14.6 million trainable parameters in the 

network. 

After pre-training the network undergoes 10 epochs of 

distributed SGD training. Here we only report results for cross 

entropy training, but the method has successfully been applied 

to other loss objectives such as segment based BMMI [21]. 

For learning-rate control, the rate is simply halved after each 

epoch. As has been observed in [9], convergence of SGD 

training can be sensitive to long combined effective mini-

batch sizes, in particular early in the training. Therefore, after 

some initial experimentation, to avoid poor convergence, we 

use a smaller mini-batch size and fewer compute nodes in the 

first 1/6th of the first epoch (see Table 1). Without this, the 

training diverges in the first epoch.  

This recipe can be refined in many ways, but we choose 

this simple form for the purpose of demonstrating the 

distributed SGD method. 

Table 1. Training recipe for all experiments. The first 

epoch is split with a short first period of 166 hours 

with a smaller effective batch size.  

Epoch 1 2 3 … 10 

Hours of training data 166 834 1000 1000 … 1000 

Learning rate 0.008 0.008 0.004 0.002 … 1.5e-5 

Local mini-batch size 256 512 1024 1024 … 1024 

Number of compute nodes 10 10 5-80 5-80 … 5-80 

3.4. Results 

3.4.1. Baseline 

To produce a baseline result we trained a DNN using only 

single-threaded SGD with otherwise the same dimensions, 

hyper-parameters, and on the same hardware and 

infrastructure. The ASR accuracy achieved by this DNN 

serves as the baseline by which we measure relative WER 

reduction in all other results below. The total elapsed time for 

epoch 1–10 was 102 hours, equivalent to a rate of around 

10,000 frames / second. Note that in the following, we always 

only report on the last nine epochs 2-10. 

3.4.2. Scaling the number of compute nodes 

To study the scaling properties of the method, the number of 

compute nodes was varied from 5 to 80 in epochs 2–10 (see 

Table 2). All other hyper-parameters were constant. The 

number of compute nodes in the first epoch was held constant 

at 10 (see Table 1). For reference, the elapsed training time of 

the first epoch was 84 minutes. As can be seen Table 2 and 

Figure 1, the method scales very well up to at least 80 GPU 

compute nodes. And perhaps surprisingly, the convergence per 

epoch is faster and the asymptotic accuracy is slightly better 

for the distributed training. We don’t have a definitive 

explanation for this, but more importantly there is no evidence 

that the method is detrimental for either convergence speed or 

accuracy. 

Table 2. Training speed for varying number of 

compute nodes in epoch 2-10. The first row shows the 

baseline result. The relative WER reduction is 

measured relative to the baseline on the test set. The 

small variations in WER are not significant. 

Nodes Frame 
rate/sec 

Elapsed 
[min.] 

Relative 
speed 

Relative 
WER 

reduction 

1 10,000 5,470 1 0% 

5 43,000 1,287 4.3 1.6% 

10 88,000 626 8.7 1.5% 

20 171,000 323 17 1.6% 

40 331,000 167 33 1.6% 

80 547,000 101 54 1.8% 



 

Figure 1. Convergence of the baseline and the DNN 

trained with 40 parallel hosts. Note that for these two 

conditions, epoch 11 and 12 were also trained.  

3.4.3. Effect of varying the threshold τ 

The results in Table 2 were achieved with τ = 4. To study the 

effect of the threshold τ we reran epochs 2-10 with 40 compute 

nodes for different values of τ. When the threshold is too high 

convergence is affected and thus the accuracy (WER) is 

degraded. On the other hand, if the threshold is too low, the 

weight update messages become too large and slow down 

training due to a communication bottleneck. However, as can 

be seen in Table 3, there exists a wide interval of τ that yields 

both fast convergence and produces small enough update 

messages to ensure optimal training speed. 

Table 3. Performance for varying thresholds τ. 

Compression ratio is the size of the full gradient 

divided by the size of our sparse weight updates. 

τ Frames/second  
(epoch 2-10) 

Update 
size/mini-
batch [KB] 

Compression 
ratio 

Elapsed 
[minutes] 

Relative 
WER 

reduction 

2.0 303,000 210 278 182 1.8% 

4.0 331,000 69 846 180 1.6% 

6.0 334,000 33 1,770 179 1.1% 

9.0 335,000 15 3,893 179 0.2% 

12.0 335,000 7.8 7,487 165 -0.5% 

15.0 341,000 4.5 12,978 162 -1.9% 

3.4.4. Scaling the model size 

Scaling up the model size increases both computation and the 

size of weight updates, but larger models tend to produce even 

sparser weight update distributions resulting in a lower ratio of 

communication per computation. To demonstrate, we trained 

DNNs with double, and triple the hidden layer size. We also 

trained a DNN with eight hidden layers. Results are shown in 

Table 4. As expected the WER is significantly better than the 

baseline, but more importantly the weight update size does not 

grow with the size of hidden layers and it grows slower than 

the number of hidden layers. Thus the method is becoming 

more efficient as the model size is increased. 

Table 4. Performance for different model sizes.  

Layer 
dimensions 

Weights 
[million] 

Frames
per sec.  

Compress 
ratio 

Elapsed 
[minutes] 

Relative 
WER 

reduction  

5 hidden layers 14.6 331,000 846 180 1.6% 

8 hidden layers 21.7 186,000 998 247 4.2% 
5 hidden layers 

of 2x size 
23.7 213,000 1,436 259 2.8% 

5 hidden layers 
of 3x size 

48.8 109,000 2,871 508 4.1% 

3.5. Comparison with previous results 

We are not aware of previous results for fully-connected DNN 

architectures competitive with the results in Table 2. An early 

CPU-based example is [8], where for a 42 million weight ASR 

DNN, the speed-up was a modest 2.2x and bottomed out for 8 

compute nodes with up to 20 CPU cores each. More recently, 

[5] used a different approach to scale up to at least four GPU 

nodes, but scaling beyond 16 nodes is not yet demonstrated.  

There are several published results for configurations that 

limit the degree of parallelism to the number of GPU devices 

that can be installed in a single server. Low single digit speed-

ups are reported in [11], [9] and [12].  

 The closest comparable results in terms of scaling are for 

clusters with Infiniband networking. For example, [10] 

demonstrates impressive speed-ups, using up to 64 GPU nodes 

for model-parallel CNN training. However, for fully-

connected DNNs, the closest result is [13] where a 10-fold 

speedup was demonstrated by a combination of model- and 

data-parallelism across 20 GPU nodes.  

4. Discussion 

For contemporary state-of-the-art model sizes and data sets, 

our method practically solves the distributed DNN training 

problem; very large models can now be trained in days or 

hours rather than months and the method becomes more 

efficient as model sizes are increased, which allows it to scale 

to larger models in the future. On the other hand, the success 

in scaling the number of compute nodes is not completely 

limitless. 

First, as the number of compute nodes grow, so does the 

effective batch size, i.e., the number of samples that are 

aggregated in weight updates. Early in the training of a DNN, 

longer batch sizes tend to degrade the convergence rate. As 

mitigation, hyper-parameters may be tuned, or automatic mini-

batch size selection [13] can be utilized, but ultimately this is a 

fundamental trade-off of SGD. 

The second limiting factor is the asymptotic peer-to-peer 

gradient communication. Above a certain task- and system-

dependent number of compute nodes, training will again 

become communication-bound. Potential mitigations might 

include hierarchical aggregation of messages [8]. However, 

since messages consist of sparse quantized sets, aggregation 

does not necessarily substantially reduce the total size.  

In these experiments we have chosen the most challenging 

configuration with respect to the two limitations. We also used 

moderately sized DNNs and we know that the method scales 

better for larger models. Therefore, while we are aware of 

theoretical limitations, in practice the method may scale to 

considerably larger numbers of compute nodes than evidenced 

in this report. 

5. Conclusions 

We have introduced a novel method for data-parallel 

distributed SGD training of DNNs. It was shown empirically 

that the method scales well to at least 80 GPU instances on 

commodity cloud infrastructure with no loss of accuracy or 

rate of convergence. This was made possible by reducing the 

required communication bandwidth by three orders of 

magnitude. In addition, it was shown that the method becomes 

increasingly efficient as the model size increases. To our 

knowledge, the scale and training speed achieved is the 

highest ever reported for fully connected DNN training. 
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