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This paper develops an approach to the evaluation of Euler
sums that involve harmonic numbers, either linearly or non-
linearly. We give explicit formulae for several classes of Euler
sums in terms of Riemann zeta values. The approach is based
on simple contour integral representations and residue com-
putations.

1. INTRODUCTION

Harmonic numbers and their generalizations are
classically defined by

H,=H" := i 1 H" .= i i
=7 = J

The subject of this paper is Euler sums, which are
the infinite sums whose general term is a product of
harmonic numbers of index n and a power of n!.
It has been discovered in the course of the years
that many Euler sums admit expressions involving
finitely the “zeta values”, that is to say values of

the Riemann zeta function,

at the positive integers. Typical evaluations to be
discussed here are shown at the top of the next
page.

Euler started this line of investigation in the
course of a correspondence with Goldbach begin-
ning in 1742 (see [Berndt 1989, p. 253] for a dis-
cussion) and he was the first to consider the linear
sums,
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Typical evaluations of Euler sums.

Euler, whose investigations were to be later com-
pleted by Nielsen [1906], discovered that the linear
sums have evaluations in terms of zeta values in
the following cases: p=1;p=¢q; p+qodd; p+gq
even but with the pair (p,q) being restricted to a
finite set of so-called “exceptional” configurations
{(2,4),(4,2)}. Of these cases, the one correspond-
ing to p = ¢ is obvious given the symmetry relations

Spa + S0 = C(P)¢(q) +¢(p +q), (1=2)

while the other ones correspond to essentially non-
trivial identities, of which examples (a), (b), (c)
at the top of page 16 are typical. Rather extensive
numerical search for linear relations between linear
Euler sums and polynomials in zeta values [Bailey
et al. 1994] strongly suggest that Euler found all
the possible evaluations of linear sums.

The next objects of interest are the nonlinear
sums, involving products of at least two harmonic
numbers. Let 7 = (m,...,7) be a partition of
integer p into k summands, so that p =m;+---+m;

and m < my < ... < 7. The Euler sum of index
m,q is defined by

00
H () fpme) oL fr(me)
Sn,q — Z n n n :

n4

n=1

the quantity ¢+ +- - -+ 7 being called the weight
and the quantity k being the degree. As usual,
repeated summands in partitions are indicated by
powers, so that for instance

ad 2( ()3 fr(5)
Si2035,4 = St12225,9 = Z (H.) (ZZ ) H,) .
n=1
In the past, a few basic nonlinear sums have been
evaluated thanks to their relations to the Eule-
rian beta integrals or to polylogarithms [de Doelder
1991]. Recently, a detailed numerical search con-
ducted by Bailey, Borwein, and Girgensohn [Bailey
et al. 1994] has revealed the existence of many sur-
prising evaluations like examples (e) and (f) at the
top of page 16. Some of these have since received
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a due proof and for instance the paper [Borwein
et al. 1995] gives explicit formulae for

oo 2
Spoy = Z @

nd
n=1

whenever the weight ¢+ 2 is odd (see example (d)
at the top of page 16), and an explicit reduction to
S, when the weight is even.

The situation regarding explicit evaluations of
Euler sums is at first sight rather puzzling. Some
evaluations appear to generalize and form an infi-
nite class—Ilike Sjz , above—while others seem to
vanish mysteriously as soon as the weight exceeds
a certain threshold. For instance, no finite for-
mula in terms of zeta values is likely to exist for
the cubic sums Sjs , or the quartic sums S+, of
an odd weight exceeding 10, while Sys 4, S14 3 (ex-
amples (e) and (f) at the top of page 16) or even
the septic Si75 do reduce to zeta values [Bailey
et al. 1994]. This suggests the existence of both
“general” classes of evaluations and “exceptional”
evaluations.

A recent approach, exemplified by [Hoffman 1992;
Zagier 1994] sheds a new light on these phenom-
ena. It is based on considering the multiple zeta
functions defined by

) 1

ap) = E —_—

I’ a1 .. a2 ap?
nl n2 e nl

n1<nz<--<ny

C(al,ag,...

where a; + --- + a; is called the weight and [ is
the multiplicity. (We follow here the conventions
of [Zagier 1994; Crandall and Buhler 1994] while
other references, such as [Borwein et al. 1995], de-
fine multiple zetas using the opposite convention,

n1>n2>--->nl,

in summations. The two presentations are trivial
variants of each other, obtained one from the other
by changing the order of the arguments.) Every
Euler sum of weight w and degree k is clearly a Q-
linear combination of multiple zeta values (that is,
values of multiple zeta functions at integer argu-
ments) of weight w and multiplicity at most k + 1.

In other words, multiple zeta values are “atomic”
quantities into which Euler sums decompose. Con-
sequently, a complete model for the linear relations
involving the multiple zeta values would yield a full
decision procedure for determining whether any
particular Euler sum admits a complete evaluation
in terms of (single) zeta values.

A conjecture of Zagier, discussed later, states
that the dimension d,, of the Q-linear space gener-
ated by the 2*~2 multiple zeta values of weight w
increases roughly like 1.32*. In contrast the num-
ber p,, of weight-homogeneous monomials in zeta
values of weight w is much smaller asymptotically,
being only e®V*¥). Thus, a priori, only a small
fraction of quantities expressible in terms of mul-
tiple zetas should reduce to polynomials in (sin-
gle) zeta values. However, initially, the difference
dw — by 18 small and even equal to 0 for some of the
low weights, {3,4,5,6,7,9}. As a consequence, any
Euler sum of odd weight at most 9 must reduce to
zeta values. The multiple zeta model therefore ex-
plains well the presence of exceptional evaluations
of Euler sums that appear in this perspective to be
unavoidable artefacts of low weight.

A characteristic aspect of the multiple zeta model
is that it may predict relations but does not in
general provide explicit formule. This is where we
fit in. Our approach is based on contour integral
representations. It is directed at Euler sums that
are particular “nonatomic” combinations of multi-
ple zeta values, having almost complete symmetry.
When applicable, this approach does not require
inverting collections of linear relations, which may
be rather difficult to do for a whole class of sums as
exemplified by [Borwein et al. 1995; Borwein and
Girgensohn 1996].

Euler sums and multiple zetas have connections
with many branches of mathematics; see especially
[Zagier 1994]. Broadhurst (see [Borwein and Gir-
gensohn 1996]) encountered them in relation with
Feynman diagrams and associated knots in per-
turbative quantum field theory. They also surface
occasionally in combinatorial mathematics: evalu-
ation (a) at the top of page 16 serves to analyze the
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distribution of node degrees in quadtrees [Flajolet
et al. 1995; Labelle and Laforest 1995] while alter-
nating Euler sums make an appearance in the anal-
ysis of lattice reduction algorithms [Daudé et al.
1997].

The basic techniques of this paper, beyond the
Cauchy—Lindel6f contour integrals of Lemma 2.1,
have been worked out in an experimental manner
using the computer algebra system MAPLE. This
system “knows” the expansions of all the special
functions needed here, and it has been used thor-
oughly in order to extract minimal kernels and
summation formulse, of which those shown in the
box on page 24 are typical. Certainly, the inten-
sive computations required by Section 6 (see The-
orem 6.1 and Table 2) could not have been carried
out manually, in view of the number of equations
involved. In return, the summation formulz of this
paper (like those on page 24) could very well be en-
capsulated as templates in a general purpose sum-
mation package. Section 8 points in this direction
and lists several types of sums that can now be
computed mechanically using the approach of this

paper.

2. GENERAL SUMMATIONS

Contour integration is a classical technique for eval-
uating infinite sums by reducing them to a finite
number of residue computations. For instance, the
easy identity

= (=1 27
2 = -1
Znz+1 er —e T

n=1

can be derived transparently from a residue com-
putation of the integral

1 T ds

2im | sinmws s24+1

over a circle centred at the origin and whose radius
is taken arbitrarily large. The residues at the poles
s = +n with n # 0 generate the left-hand side of
the equality, while the poles at s = 0, £¢ yield the
explicit form appearing on the right. (Of course,

many other techniques can be employed to derive
this identity, including Poisson’s summation for-
mula or Mittag-Lefler expansions of trigonometric
functions.)

This summation mechanism is formalized by a
lemma that goes back to Cauchy and is nicely de-
veloped throughout [Lindelof 1905]. We define a
kernel function £(s) by the two requirements: £(s)
is meromorphic in the whole complex plane; £(s)
satisfies £(s) = o(s) over an infinite collection of
circles |z| = p;, with p, — +o0.

Lemma 2.1 (Cauchy, Lindelof). Let £(s) be a kernel
function and let r(s) be a rational function which
is O(s™?) at infinity. Then

>~ Res(r(s)€(5))oma = — 3 Res(r(s)€(s))o=s
ac0 BES
(2-1)
where S is the set of poles of r(s) and O 1is the set
of poles of &(s) that are not poles of r(s). Here
Res(h(s))s=x denotes the residue of h(s) at s = .

Proof. It suffices to apply the residue theorem to

1
iz | T s

where f(oo) denotes integration along large circles,
that is, the limit of integrals f\slzpk' See also the

discussion in [Henrici 1974, §4.9], where a kernel
function is called a summatory function. 0

This formula does have the character of a summa-
tory formula since the set O of poles of an irrational
kernel £(s) (called the “ordinary poles”) is infinite,
while the set S of poles of a rational function r(s)
(the “special poles”) is necessarily finite. We also
define the special residue sum to be the finite sum

RE()r(s)] == > Res(&(5)r(s))s=a-

aeSU{0}

The amalgamation of 0 to the special poles is
just a notational convenience dictated by the fre-
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quent need to isolate 0 in summatory formulee.
Then (2-1) is rephrased as

Z Res(r(5)&£(8))s=a = —R[&(s)r(s)].

acO\{0}

Let [(s — A)"]h(s) denote the coefficient of the
(s — A)" term in the Laurent expansion of h(s) at
s = A. Residues are Laurent coefficients, and as
such they are computable like Taylor coefficients,
since

Res(h(s))omy = [(s = A) ' Jh(s)
= [(s = A" "](s — A)"A(s),

if 7 is the order of the pole of h(s) at s = A. In
other words, the special residue sum is always de-
termined by a few Taylor series expansions taken
at a finite collection of points.

We make here an essential use of kernels involv-
ing the ¢ function. The ¢ function [Whittaker and
Watson 1927] is the logarithmic derivative of the
Gamma function,

P(s) Zilogf’(s):—y—é+i(l_ 1 )

ds n n+s
(2-2)

and it satisfies the complement formula

P(s) —P(—s) = S T ot s,

S

as well as an expansion at s = 0 that involves the
zeta values:

1[)(3)+’y=—%4—((2)3—@(3)52—!—--- . (2-3)

From classical expansions and the properties just
recalled of the v function, one has at an integer n
the expressions listed on the top of the next page.
Each of these functions, or any of its derivatives, is
O(|s|?) on circles of radius n+ 1 (with n a positive
integer) centred at the origin. Consequently, any
polynomial form in

™

T cot s, PO (£s) (2-4)

sinws’

is itself a kernel function with poles at a subset of
the integers. The purpose of this paper is precisely
to investigate the power of such kernels in connec-
tion with summatory formulse and Euler sums.

We shall impose throughout two conditions on
the rational function r(s):

(i) r(s) is O(s?) at infinity,

2-5
(ii) 7(s) has no pole in Z \ {0}. 25

Condition (i) is necessary for absolute convergence
of the sums; condition (ii) is only a minor technical
requirement. A direct use of the kernels of (2—4)
then yields the summatory formulae

3" r(n) = —R[r(s)((—s) + )], (2-6)
Z(r(n) +r(—n)) = —R[r(s)m cot ms], (2-7)
> (1) (n) + r(=n)) = =R | (s)

n=1

™

| @

sin s

of which the last two are classical [Henrici 1974,
§4.9]. The kernels are ¢(—s) + ~, mcot 7s, and
m/sinms, as is apparent from the argument of the
special residue sum. Clearly, equalities (2-7) and
(2-8) become trivial if the rational function r(s)
is odd, and such parity phenomena surface recur-
rently in Euler sums evaluation.

A more interesting kernel is (¢)(—s) +~)?, whose
residues at the positive integers generate harmonic
numbers since

($(=8) +7)* ~ s 4 2H, e,
son (s —mn)? s—n

In that case, under the conditions of (2-5), we find

23 r(n)H, + Y _r'(n)
= —R[r(s)((=s) +7)°], (2-9

as results directly from the singular expansion of
the kernel (see box at the top of page 20). Thus,
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1 o0
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—2) ((2k)(s —n)*!

a (—1)“(7(;“) +25 (1 —2172)¢(2k) (s —n)2k1>

o
V(=) +7 = i —+ Hy o+ i (—DFHFY — ((k+1)) (s — n)*, if n >0
k=
Y(=s)+7 = Hya +§j (HEY = ¢k +1)) (s +n)* itn >0
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¢<(;1_) (1_)!3) il _ln)p (1 + (-1)” ;} (;: 11) (¢@E) + (=1)*HP) (s — n)i> ifn>0,p>1
d)((;_l_)(l_)f) = (- Z; (p;i Jlr Z) (Clp +1i) — HP' ) (5 + n)’ ifn>0,p>1

iftn#0, g€ Z,

Local expansions of basic kernels.

by (2-6)—(2-8) and (2-9), any sum whose general
term is the product of the harmonic number H,
and a rational function r(n) reduces to a finite com-
bination of values of the v function and its deriva-
tives taken at a finite set of points. Instantiating
this treatment to the class of functions r(s) = s79,
with ¢ an integer > 2, produces a formula already
known to Euler.

Theorem 2.2 (Euler). For integer q > 2,

5., =51
n=1 ns
= (L+5)C(a+1) = § D Clk+ 1)C(a — ).
k=1

Proof. A direct consequence of the summatory for-
mula (2-9) and the expansion (2-3). O

Special values are given in example (a) at the top
of page 16.

The treatment just developed of the simplest Fu-
ler sums is typical. For the case when r(s) = s79,
only one residue needs to be determined, and the
residue computation is strictly equivalent to a coef-
ficient extraction. Given that the kernels employed
throughout this paper are polynomials in v and re-
lated trigonometric functions, the expressions ob-
tained are invariably weight-homogeneous convo-
lutions of zeta values. In addition, the degree of
the kernel employed (that is itself suggested by the
nature of each Euler sum considered) dictates the
multiplicity of the convolution formulae that are
obtained by this process.

Alternative Approaches

Following a suggestion by a referee, we briefly dis-
cuss some of the many approaches that have been
developed regarding Euler sums. Partial fraction
expansions of the Euler-Nielsen-Markett type (see
[Nielsen 1906; Markett 1994; Borwein and Girgen-
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sohn 1996]) are instrumental is providing relations.
Identities of low weight can sometimes be proved
by special integral representations and functional
properties of polylogarithms [de Doelder 1991].
Amongst more general methods, we mention or-
thogonality and summatory formulae. A recent pa-
per [Crandall and Buhler 1994] derives the linear
relations of Theorems 2.2 and 3.1 using orthogonal-
ity on the unit circle and the polylogarithmic series
>, e* ™ /n®. This technique is reminiscent of the
Poisson summation formula, but the extension to
Euler sums of higher degree might be difficult given
the scarcity of explicit Fourier transforms involv-
ing nonlinear forms in the -function. A different
type of orthogonality was suggested by a referee
who proposed a Mellin—Perron type of formula,

> ! =1¢(a+0)

nomb

n>m
c+io0o

= [ a0+

T S i s
(for some suitable ¢). Its possible use is however
still unclear to us since the integrand has only 3
poles at s =0, a—1, 1—b, while evaluations of Euler

sums generally involve more than three terms.
Our paper is on the other hand very close to the
Euler-Maclaurin summation formula, especially its
complex version due to Abel and Plana [Henrici

1974, p. 274]:

> s =350+ [ " fla)da

b [T LS,

e vy — 1

This formula is proved [Henrici 1974; Lindel6f 1905]
using the trigonometric kernel 7 cot 7s in the style
of Lemma 2.1. The goal of this paper is precisely
to illustrate the versatility of nonlinear v-kernels
that do not seem to have surfaced in the literature
despite their simplicity and their power as regards
nonlinear Euler sums. An instance of this fact is
the solution of the cubic conjectures of [Bailey et al.

1994] given by Corollary 5.2. Also, in Theorems 4.1
and 5.1 and in the box on page 24, such kernels are
needed since purely trigonometric kernels only give
access to a small subset of Euler sums, a fact con-
firmed by parity considerations as well as by the
classification of kernels given in Section 6.

3. LINEAR EULER SUMS

Nielsen [1906], elaborating on Euler’s work, proved
by a method based on partial fraction expansions
that every linear sum S, , whose weight p + ¢ is
odd is expressible as a polynomial in zeta values.
To give an idea of the method [Nielsen 1906, p. 50],
we show that S;. = 2((3), an equality expressed
in terms of double zetas as ((1,2) = ((3). We have

WA= 5= Y g

0<a<n 0<a<n
B 1 1 1
N n? \a*(n—a) a’*n
0<a<n
= _C(la 2)
1 1 1 1 1
+§$<(rm)+(§—a—+2)+“>’

where the second line results from a partial frac-
tion expansion and the last equality from series re-
arrangements. The last sum telescopes and yields

¢(1,2) = =¢(1,2) + (¢(1,2) +<(3)).

This example is typical. In general the method
provides linear relations between the S, , of the
same weight and quadratic forms in zeta functions,
from which a constructive (but not clearly explicit)
reduction to zeta values can be derived. D. and J.
Borwein and R. Girgensohn [Borwein et al. 1995]
have succeeded in “inverting” the Euler—Nielsen re-
lations by means of combinatorial matrix decom-
positions. We show here how to rederive directly
the explicit evaluations of that paper.
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Theorem 3.1 [Borwein et al. 1995]. For an odd weight
m = p+q, the linear sums are reducible to zeta val-
ues,

< H® (n
y

n=1

2 )
/2l o

+(=1)” ; (mqi’i 1)g(2k)<(m—2k)
SR m—2k—1

+(=1) Z( oy )EERICm=2R),

where ((1) should be interpreted as 0 wherever it
occurs.

Proof. In the context of this paper, the theorem
results from applying the kernel

to the base function r(s) = s79. The only singular-
ities are poles at the integers. At a negative integer
—n the pole is simple and the residue is

(=D"

2n4

(C(p) —H + i)-

np

At a positive integer n, the pole has order p + 1
and the residue is

2ns p
1+(~1) A m—2k—1y ¢(2k)
2n4 ) =(=1) Z( p—2k )nm*%

Finally the residue of the pole of order m + 1 at 0
is found to be

(_21)1; (mq—l ) C(m)

a2 o
EDY (m , ikl l)g(zk)g(m — 2k).

Summing these three contributions yields the state-
ment of the theorem. g

For even weights, a modified form of the identity
holds, but without any linear Euler sum occurring.
This gives back well-known nonlinear relations be-
tween zeta values at even arguments. In this case
of even weight w, there also exist relations between
linear sums. The kernels

2

&i(s) = (W9 (—s)) (3-1)

applied to s~ 7 yield further relations. (For j =1,2,
the general summation formule are given in (Sy)
and (Ss) of the box on page 24.) When specialized
to r(s) = s77, the kernel ¢; yields linear relations
between

Sajttias S2jatts -+ Sttt (3-2)

and polynomials in zeta values that are of a shape

similar to the Euler—Nielsen relations. This gives
the reductions

Sz, o441,
Ss.q = {52,443, St.041
St.q 7 {S2,41455 S,4+3, 6,441}

and so on. Such relations are to be complemented
by the symmetry relations (1-1).

Identity (c) in the box of page 16 is an evalua-
tion that is typical of odd weight identities. For
the exceptional even weights {4,6}, the symmetry
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relations give Sy, and S; 3, whence, by (S,), (Ss)
of page 24, all linear sums,

o0 HT(LZ)
> = k.

= 13(3) + 3(6),
n=1

= ((3)° - 5(6).
n=1

For the next even weights, we obtain relations from
which it results, again in conjunction with the sym-
metry relations, that the sets

{52,6}7 {52,8}7 {52,10}7 {52,12754,10}

are sufficient to express linearly all linear sums of
weights 8,10,12,14 (modulo zeta values). For in-
stance, we have the relations

(2) H(3)
D Z nb +2 Z -

n=1

H® H®)
1y B2 B = )
n=1

+14¢(3)C(7) + 8¢(5)?,

ZC(8) +10¢(3)¢(5),

C H® C HW
7 n _22 n _ 227 (10)

8 6

n=1 n n=1 n

+14¢(3)¢(7) + 10¢(5)°.

Zagier [1994], by means of an analogy with the
theory of modular forms, and Borwein et al. [1995],
by exploiting directly the Euler—Nielsen relations,
have shown that the linear relations of even weight
determine all but |(w — 2)/6] of the linear Euler
sums that are thus considered to be “new” con-
stants.

Note on the choice of kernels. The kernels are rather
directly related to the quantities subject to sum-
mation. As we have seen, the residues of (¢(—s)+
v)? generate the harmonic numbers, so that sums
involving H, should be represented by integrals
involving this kernel, in accordance with (S3) of
page 24. The kernel ¢'(—s)? similarly introduces

H® and H® and thus generates relation (S,) that
involves two types of harmonic numbers. Further-
more, by combining formule for r(s) and r(—s),
the terms involving H(* disappear when r(s) is an
odd function; the use of wcotws as replacement
for one factor of ¢'(—s) precisely has the effect of
achieving such a combination. Thus a sum like
3> H?r(n) becomes reducible when 7(s) is an odd
function. Similar observations dictate the choice of
kernels throughout this paper as is illustrated by
the boxes on pages 24 and 26.

4. QUADRATIC EULER SUMS

Starting from an observation of E. Au-Yeung that

Sia =3 WS gy,

n2

n=1

Borwein et al. [1995] have given a general reduction
of the quadratic sums S;2 , to double sums, which
in turn entails a complete evaluation in terms of
single zeta values for odd weight. These sums are
closely related to derivatives of the Eulerian beta
integral. We show here a direct derivation of the
reductions by means of 1 kernels that provides in
passing general summatory formule for sums in-
volving (H,)?. (See also the box on page 24 and
Section 8.)

Theorem 4.1 [Borwein et al. 1995]. For all weights,
the quadratic sums S,= , reduce to linear sums and
polynomaals in zeta values:

q(g+1)

512,q - SQ,q = qS1,q+1 - 6

Cla+2)+¢(2)¢(g).
Proof. The proof is based on the cubic kernel

§(s) = (¥(=

and the usual residue computation. When applied
to an arbitrary rational function r(s) satisfying
(2-5), it yields the summatory formula (S7) in the
box on page 24. The specialization to r(s) = s79
gives the statement. O

s) +7)°
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(5) > r(n) = —R[r(s)(¥(=s) +7)]
(S2) 227”0(”) = —R[ro(s)m cot ms]

(53) 22 n)H, +y_r'(n) = —R[r(s)(¥(=s) +7)°]

n=1

=2}

(S4) —4ZH,(L3)T(n)+ZZHT(L2) +Z 4¢(3)r(n) + 2¢(2)7" (n) + 1 (n))
= —R[r(s)(¢'(=3))’]
(Ss) 482H7(L5)r(n) — 2421{53%'(71) +4) HPr"(n)

Z —48¢(5)r(n) — 24¢(4)r' (n) — 4CB)r"(n) + 557" (n)) = =R[r(s)(¢"(—5))?]
(S6) zzﬂprl(nnz(l "(n) —2¢(2)r1(n) — “Tf?)) = —R[r1 ()¢ (—8)m cot(s)]
(S;) 3 S —32 H(2)+32Hr Z ) — 3r(n)¢(2))

= —R[r(s)(¥(=3) +7)°]

General summatory formulae resulting from kernels (last column) that are polynomial forms in ¢ functions.
Here r(s), 1o(s), and 71 (s) denote rational functions that satisfy the conditions or (2-5), with additionally ro(s)
even and rq(s) odd. Cubic formula are given in the proof of Theorem 5.1.

In Theorem 4.1, for even weights > 8, only S ;41 N H? H? ,
reduces to zeta values. For odd weights, both S ;41 Z né né 12 (8) =8¢(B3)¢B) +¢(2)¢B)7

and S, , reduce to zeta values, hence a complete n=1 n=1 )
i i & H? 0 HC
e:oah(latl())n. We have, for small odd weight, Z n_;z _ Z nv; _ 473 (10) — 10¢ (3)¢(7) — 5¢ (5)°
Hn ’ n=1 n=1

> =K - ), e
i = = 6¢(7) — C(2)C(5) — E¢C(3)C(4), giQtifglhilSle{éfl(’)g(;\:ving exceptional evaluations for the
S S s ege) o) 5 "

—1¢(3)¢(6) — BC(4)C(5) + 1¢(3)°, ”; (4-1)

> Bl o) - 2y

and for small even weight,

n=1
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A= (_1)p1+p2<(p1)g(p2)<(Q) + (_1)p1<(p1)5p2,q + (_1)p2C(p2)Sp1,q

B= > o) (0 S + Cloa + 0 (a + D)SER)

i+j+2k=p; p2—1
(J+a—1\/p+i—1 ; . .
c= % (T ) (T ) (0 Sy + Sl + i) g+ )R
i+j+2k=p2 !
/] —1
p= ¥ w7 )eerca+d)
J+2k=p1+p2

E = (_1)p1+p2+q (_Splmfﬁ-q — Spaprtg — g(pl)spz,q - g(pQ)Spl,q
(1 + P2+ @) + (1 + @) (Da2) + (P> + @)¢ (1) + C(P1)¢(P2)¢(9))

F=(pit+pta)+(-1)» Y <p2p+: 1)C(p2 + )¢ (2k)
i+2k=p1+q 2

=D Y (plpjrizl)((plﬂ)g(zk)
i+2k=p2+q

Henpe S (PR (PR T i)+ i) (28).

ntistob=g - P11 pz—1

The summands in the evaluation of Theorem 4.2.

The sum 52, is also related to the triple zeta are reducible to linear sums. We have

function ((1,1, q) since
((_1)p1+pz+q + 1)Sp1p2,q

Slz,q - Sq,2 = ZC(L laQ) - C(q + 2) + Sq+1,1a =—A+ 2(_1)2’23 + 2(_1)2710 +2D — E + 2F,

as shown by an elementary computation. Thus, the where the quantities A, B, C, D, E, F are defined in

statement is equivalent to a reduction of ¢(1,1,q) the box above and the sums are over all indices > 0.

to double zetas. The value ¢(0) = —% should be used and {(1) should

General quadratic sums be replaced by 0 whenever it occurs.

A more general reduction results from the kernel Proof. Use the kernel of (4-2). The quantity F

represents
¢(p1_1)(—8) /lp(p2_1)(_s)
7 cot s (4-2) (p1=1)(_ (p2=1)(_
(=1 (p2— 1! ’ —R sq¢( (1)'8) Q/)( (1)'8)71'(30t7rs ,
p — 1)! Py — 1)!
but it involves a parity restriction on the weight ' ’

because of its trigonometric factor. that is estimated as a Taylor coefficient. The other
) quantities represent combined contributions of the
Theorem 4.2. If p; + py + q is even, and p; > 1, poles at s = +n. O

ps > 1, ¢ > 1, the quadratic sums
A similar, and slightly simpler, expression holds

(p1) fy(p2) . . . . .
Z HyVH > when either ¢ =1 or j =1, in which case one should
i replace ¢ (—s) by ¢(—s) + 7.

SPIPZ:‘] =
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Kernel Reduction Order

(Y(=5) +7)* St 1 Reduction, all r (Thm. 2.2)

PPV (—s)7 cot s Sp.q 1 Reduction, odd weight p + ¢ (Thm. 3.1)
() (—s))? S0t Sit1 g4 1 Relations, even weight (Egs. (3-1), (3-2))
(Y(—s) +7)3 Si24—Sa 2 Reduction, any weight

YU (=s)pU=D (=s)mcotms | Sijk = {Sap} 2 Reduction of order, even weight (Thm. 4.2)
(Y(=s) +)* Sis 4 —3S12, 3 Reduction, any weight (Thm. 5.1)

TABLE 1. A summary of kernels and the corresponding reductions.

As is well known, the multiple zeta functions sat-
isfy shuffle relations that generalize the symmetry
relation (1-2). For instance,

¢(a)¢(b,c) = C(a,b,c) + C(atb,c) + (b, a,c)
+¢(b,a+c) +((b,c,a)  (4-3)

for @ > 1 and ¢ > 1, as seen by considering all
ways of interlacing the vector arguments (a) and
(b,c). The conjunction of the theorem and shuf-
fle relations, provides a simple proof of “half” of
the main result of [Borwein and Girgensohn 1996],
according to which all triple zeta values of even
weight are reducible to double zeta values. The
reductions obtained are in addition explicit double
convolutions of simple and double zeta values.

Corollary 4.3 [Borwein and Girgensohn 1996]. For
¢ > 1, triple zeta values ((a,b, c) whose weight a +
b+ c is even are reducible to double zeta values or
equivalently to linear Euler sums.

Proof. It suffices to consider the trivially modified
quadratic sums

. PPN |
1650 = 3 B B,
n=1
= Dijk — Sj,kJri - Si,k+j + C(’L +j + k‘)
= C(Zaja k) + SiJrj,/c + C(]?ka)

Agsume first that 7 > 1; k > 1 is granted. Then,
from the shuffle relations with a = k, b = i, and
¢ =j, we find

C(i, 4, k) = C(k)C(i, §) — C(k+i, 5) — C(i, k+5)
— (C(kyi,5) + (i, K, )
= C(k)C (i, §) — C(k+i, 5) — C(i, k+5)
— (T(, 4, k) — C(i+j, k) — C(i+j+k)).

The dual case when ¢ > 1 is treated by the substi-
tutions a = k, b = j, and ¢ = ¢. If both ¢ and j
equal 1, then the reduction is attained by the com-
putation of S)2 . Il

It is believed that no reduction holds in general for
triple zetas of odd weights [Borwein and Girgen-
sohn 1996]. Actually, starting at (odd) weight 11,
it seems that (5, 3, 3) is independent of single zeta
values. (Such properties can be approached heuris-
tically by means of linear integer dependency algo-
rithms based on lattice reduction or related tech-
niques.) However, for the exceptional odd weights
{5,7,9}, all triple zeta values are now known to
be reducible to polynomials in single zetas: this
is the other “half” of the main result of [Borwein
and Girgensohn 1996] already referred to that we
extend a little bit further in Section 6. An indirect
consequence to be discussed in the next section is
the reduction of the cubic sums Sis , corresponding
to special quadruple zeta values.

5. CUBIC AND HIGHER ORDER EULER SUMS

For higher degree sums, like the cubic

o0

3137(1 = Z (Hn)3,

n4

n=1
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it is natural to consider the kernels (¢)(—s) + v)*
and (1p(—s) + v)3m cot ws. Cross products start to
proliferate but the relations obtained at the previ-
ous steps help reduce many of the sums.

Theorem 5.1. (i) For odd weights, the cubic combi-

nation Sis 4 — 3512, 45 expressible in terms of

zeta values.

(ii) For even weights, both Sis, and Si», are re-
ducible to S5 411 and to polynomials in zeta val-
ues.

Proof. Let r(s),r(s) satisfy the conditions of (2-5),
and suppose additionally that 7 (s) is odd. Then
a direct residue computation gives

—R[((=5)+7)"r(s)]
=4 r(n)((H,)*-3H,H?)+6> r'(n)(H

+§j H®—3¢(2)H,—((3))r(n)

4 Z (H® +¢(2))r' (n)+2H,r" (n)+ 7"'"6(”>
and .
~R[({=5) ) meot(rs)n (4]
:_6Zr1 VH H(2)+32 (Tlin) +r;(n))

+3Z<H<3) ( 1)H —((3)+ #)rl(n)
r"(n)

—Z(3H,g?>+5c(2))r;(n)+anr;'(n)+ L 5

These formulae complement the ones in the box on
page 24.

Instantiating the first identity to r(s) = s 7 with
even ¢ and appealing to relations (S;), (Ss) and
(S7) of page 24 yields the first part of the theo-
rem. The second identity is an explicit version of
the quadratic reductions discussed in the previous
section; it permits to dispose of the sum S, , that

reduces to the linear sums S, ;4 for even weight.
Instantiating it to r(s) = s~¢ with odd ¢ yields the
second part of the theorem. O

For even weight, we thus have an infinite collection
of explicit reductions, including some that were
presented as conjectural in Table 4 of [Bailey et al.
1994]:

- (Hn)3 112H_(2)_4ﬁ (8)

YT = () - 160(3)G(5)
) ) +2¢(2)¢3)7,
= Hn3 1 - H7(L2) 1 4 2
DR AN PEi SR TSRS

—3CMCB)I+3C2)CB)CB)+2C(3)*C(4),

— nlO 22112

—33¢(5)(7) — 35¢ (3) (9) — 1B +3¢@)C0)?
+2C(3)*¢(6)+FC3)C(4)C(5) +3¢ (¢ B)C (D).

Corollary 5.2. The cubic sums Sy, of weights {5,6,
7,9} are reducible to zeta values:

i (Hn)3_§ N Hr(f) __ 1060345 (12)

o ()
D Ttay = POB)HRKE),

S ) sy ac),

> (Hn)34 = 156N —2CB3)C(4)+2¢(2)¢(5),

> s = KO- %0
— £ C3)C(6)+C(3)°+3¢(2)¢(7).
(The forms given are those of [Bailey et al. 1994].)

Proof. We only indicate briefly the chain of reduc-
tions. For weight 6, this results from the evaluation
of Sy 4 in (4-1). For weight 5, the evaluation follows
from Hoffman’s [Hoffman 1992] complete reduction
of multiple zetas in the case of all weights < 6. For
the odd weights {7,9}, the reduction follows from
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the Borwein—Girgensohn result after which triple
zetas are reducible to double and single zetas for
all weights < 10. Alternatively, one may use reduc-
tion by any maximal system of relations presented
in Section 6. |

Higher Degree Euler Sums

Linear Euler sums reduce to zeta values in the case
of an odd weight, while quadratic Euler sums re-
duce to linear sums (double zeta values) in the case
of an even weight. We prove here a result to the
effect that such reductions of order are general.

Theorem 5.3. (i) For odd weight w =1+ j +k + 1,
all cubic sums S;ji; reduce to combinations of
Euler sums of order at most 2.

(ii) More generally, a nonlinear Euler sum

t§%1¢2'“¢r7q

reduces to a combination of sums of lower orders
whenever the weight i1 + 15+ - -+, +q and the
order v are of the same parity.

Proof. We start with the case of cubic sums and
adopt the kernel

- 1
Siao = DTG = DNk = 1)1
x D (=)D (=)D (—s) 7 cot s,

which is applied to r(s) = s

s =m,
1
(i—1)!

implies that the sum of residues at positive integers
is of the form S;j;.; + T, where T is a combination
of quadratic sums. The expansion at s = —m,

1
(1 —1)!
implies that the sum of residues at negative inte-
gers is of the form (—1)#/ k=38, + U, where U
is a combination of quadratic sums. We thus have
a reduction of order whenever the weight is odd.

. The expansion at

P (=s) = HH (1)),

(s—m)’

P (=s) = (1) (HE, — @) + -,

The general case follows along the very same
lines. g

Broadhurst has made a conjecture (see [Borwein
and Girgensohn 1996]) of a shape similar to our
statement but concerning multiple zeta values in-
stead. In the case of quadratic sums, we have at
least seen that the shuffle relations entail a cor-
responding reduction for all triple zeta values. It
does not seem that Broadhurst’s conjecture can be
deduced, even partially, from our theorem.

6. MODELS OF EULER SUM IDENTITIES

Various approaches have been developed for Euler
sums evaluations. We discuss here general methods
and leave aside methods based on definite integrals
and polylogarithms of which De Doelder’s paper
[1991] is typical. Our purpose here is to obtain
complete models for low weights and at the same
time examine the power of various frameworks pro-
posed, including the residue method.

Shuffle Relations

These are relations that generalize the symmetry
relation (shuffle of order 2) of (1-2) and the partic-
ular shuffle of order 3 of (4-3). Consideration of the
product of two multiple zeta functions ((u),((v),
with w,v denoting arbitrary vectors of integers,
gives the relation

C(w)-Cv) = > ((w), (6-1)

wEuUWwvY

where (uww) is the shuffle of vectors u, v, that is,
the set of vectors defined recursively by

(a-u)w (b-v)
=a-(uw(b-v)) U b ((a-u)wv) U (a+b)-(uwwv).

Here the dot operation is the concatenation of vec-
tors (extended to sets in the usual way) and all
operations are taken in the sense of multisets so as
to preserve multiplicities.

Equation (6-1) simply expresses all possible in-
terlacings of indices when a product is expanded by
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distributivity. The shuffle relations are similar to
symmetric function identities studied by Hoffman
[1992] and, as noted by Zagier [1994], they imply
that the linear space spanned by the multiple zeta
values forms a ring.

We denote by 3 the set of linear relations that
arise from shuffles.

Duality

Duality is a surprising property first conjectured in
[Hoffman 1992] and proved in [Zagier 1994] upon a
suggestion of Kontsevich. It is expressed by means
of an encoding by binary vectors of multiple zeta
values: given a vector w = (uy,...,uy), its encoding
is

B(uy, tgy. .. up) = 10" 110"t 10"

where 0F means 0 repeated k times. We then in-
troduce the quantities

H(U) :=¢(8°V0),

that are defined for all binary vectors starting with
a 1 and ending with a 0. Define the reverse-com-
plement of a binary vector U = g,65---¢; as U* =
£,€_1+ €1, where £ =1 — . Then Hoffman’s du-
ality principle states that

H(U)=H(U"). (6-2)
This relation groups the multiple zetas into equal
pairs and, for instance, implies that
¢(2,3,4) = H(101001000) = H(111011010)
=((1,1,2,1,2,2).

The proof sketched in [Zagier 1994] is based on
the multiple integral representation

M= [ [ dutiaan

0<t1 <<t <1

dt

dt
dot = — =
0 t’ 1—t

dlt ==

and on the change of variables u; =1 —t,.

We denote by A the set of linear relations that
arise from duality.

Partial Fraction Expansions

The Euler—Nielsen method, of which an idea was
given at the beginning of Section 3, applies to dou-
ble zetas [Nielsen 1906], and, as established by
Markett [1994] and by Borwein and Girgensohn
[1996], it can be extended to triple zetas. We let Il
and II; denote the linear relations that arise from
this mechanism in the case of zetas of multiplicities
2 and 3.

Residue Relations

We have designed a program in system MAPLE
that computes relations on Euler sums that result
from any kernel that is a polynomial form in )
functions and their derivatives. We denote by R
the set of relations that arise from such kernels ap-
plied to 1/s%; see Section 2 and the box on page 20.
Our program allows the exhaustive investigation
of the relations deriving from the residue method
applied to Euler sums of a fixed given weight. We
have examined the dimension of the spaces of lin-
ear relations that result from any combination of
the rules 3, A, Il,, T3, R for all weights up to 10.
This can be viewed as a supplement to Hoffman’s
investigations who obtained a complete basis of re-
lations between multiple zetas for weights < 6.

First, the linear relations implied by the rules
3, AT, IT3, R take place a priori in the space of
products of multiple zetas with total weight w. The
shuffle relations reduce these products into linear
combinations of multiple zetas of weight w, form-
ing a space whose dimension is 2°~2. There are E,,
distinct Euler sums, where

o0

OOE w 2 1
wZQ w? _1—zH1—zj

Jj=1

=22 4228442 475 +122541927
+3028 4452 +67210 4972 ..,
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and standard estimates on the number of partitions
imply that E, = e?V¥),

We seek reductions of Fuler sums into linear
combinations of monomials in single zeta values
whose number p,, satisfies

- " 1 ¢ 1
z::o,uwz - 1—z21_[11—221'Jrl

Jj=

=142242°4+214+22°4+224327
+328 452245210472 4821241

The growth order of s, is again e?(V®), though
with a smaller exponential rate than F,. These
tyw (presumably Q-linearly independent) monomi-
als span the space of “closed-form” expressions.

Thus, the numbers of multiple zeta forms, Euler
sums, and polyzeta forms satisfy

2972 Fy > .

Therefore, one should not expect on these grounds
all multiple zetas nor even all Euler sums to re-
duce to combinations of zeta monomials. In other
words, closed form is ezceptional for an Euler sum.
Zagier has conducted extensive numerical com-
putations of multiple zeta values of all weights up
to 12 and has examined the apparent Q-linear de-
pendencies that result. Based on these compu-
tations and other algebraic arguments, he conjec-
tures that the dimension d,, is given by the recur-
rence d, =dy_o+dy_3, dy =ds =ds =1, s0

o0 " 1
Zdwz - 1— 22— 23
w=2

=1+4+22 422421 4+22° 42254327
+42° 4524720492 +1227 4.

The growth of d,, is of the approximate form d,, ~
1.32471"v.

Thus, modulo Zagier’s conjecture, the dimension
of the QQ-linear space of multiple zeta values lies
somewhere in between the (large) number 2%~2 of
multiple zetas and the (small) number p,, of closed-

form monomials. What is remarkable, however, is
that there is almost coincidence of d,, and pu,, for
weights < 10, the difference dg — ug = 1 being ac-
counted for by the occurrence of the (probably)
irreducible S, 5. Based on our program, we have
verified the reductions implied by Zagier’s conjec-
ture for all weights up to 9. (We do not claim much
originality for the next result: it is largely a verifi-
cation based on techniques introduced by Hoffman,
Zagier, Markett, Borwein and Girgensohn.)

Theorem 6.1. All multiple zetas of weight < 9 are
reducible to Q-linear combinations of single zeta
monomials with the addition of { Sz} for weight 8.

Proof. Solve the linear systems deriving from the
shuffle relations X, duality A, partial fractions II,
and II;, and residues R. O

Corollary 6.2. All Euler sums of the form Sy, for
weights p+ q € {3,4,5,6,7,9} are expressible poly-
nomially in terms of zeta wvalues. For weight 8,
all such sums are the sum of a polynomial in zeta
values and a rational multiple of S5 ¢.

This corollary provides a justification of identities
discovered experimentally by Bailey et al. [1994].
In passing, the computations underlying Theo-
rem 6.1 allow one to delineate the power of var-
ious reduction principles. First, duality reduces
by about a half the number of independent multi-
ple zetas to be considered since it provides a num-
ber d,, of nontrivial linear equalities that satisfies
8o = 2%73 when w is odd and §,, = 23 — 2w/2-2
when w is even. Next, the shuffle relations reduce
all the products of multiple zetas to linear combi-
nations of multiple zetas. Besides, the shuffle rela-
tions induce linear relations on multiple zetas. For
instance, since ((1,2) = ((3), the products of these
by ((2) once expanded by the shuffle relations yield

€(2,1,2) +2¢(1,2,2) +¢(1,4) — ¢(2,3) — ¢(5) = 0.

The Nielsen relations II, appear to provide |w/2]
independent linear relations of weight w, which is
not much. Also, for odd weight, these relations
are implied by the residue relations R as expressed
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weight w s A | I, I1; R | total | 2v=2 —d,
3 0 1] 1] o | 1 1 (), (M), (R)
4 0 L2 | 1| 2 3 (Tly, A, (T, TTy), (ITs, R), (ITs, R)
5 1 4| 2 3 | 5 6 (I, A), (ITy, A), (R, A), (I3, R)
6 5 6 | 3 6 | 10| 14 14 (I, A), (TTs, A), (R, A)
7 12 | 16| 3 | 10| 17| 29 29 (I3, A)
8 31 | 28 | 4 | 15 | 31| 60 60 (I3, A), (R, A)
9 68 | 64 | 4 | 21 | 45 | 123 123 (I3, A, R)
10 151 | 120 | 5 | 27 | 75 | 248 249 (I3, A), (R, A)

TABLE 2. Rank of relations versus weight. Each set of relations generates a vector space of linear relations on
the multiple zetas. For each weight, we indicate the dimension of this space, which gives a measure of the power

of the relations.

by Theorem 3.1. The Markett relations I3 seem
to induce O(w?) independent linear relations of
weight w. In Table 2, we give the dimension of
the vector space of linear relations induced by the
rule ¥; we also give the dimension of the linear
relations induced by II,, II3, A, and R once lin-
earized by the shuffle relations. The total dimen-
sion of the space of relations we get is indicated in
the next column. It is to be compared with the
value 272 — d,, implied by Zagier’s conjecture. In
the last column we indicate which minimal combi-
nations of relations make it possible to generate all
the known relations (in conjunction with X).

An interesting aspect of the proof of Theorem 6.1
is that residue relations contribute new relations to
the arsenal of currently known methods and permit
to attain the limit described by Zagier’s conjecture
for weights up to 9 inclusive. This is demonstrated
in the last column of Table 2, where it appears
that all 4 relations are necessary to get 123 in-
dependent linear relations of weight 9 (since the
weight is odd II, is implied by R). For instance,
the kernel (1(s) + 7)3@&’(—3) applied to the base
function 1/s° induces a relation that is not a con-
sequence of the linear relations induced by the par-
tial fraction relations together with duality and the
shuffle relations. For weight 10, the last line of Ta-
ble 2 indicates that the relations X, A,Il,,Il3, R
are no longer sufficient to generate all the linear
relations implied by Zagier’s conjecture.

There are two computationally intensive steps in
this verification, the generation of all the residue
relations and the elimination process. Elimination
is required to obtain the dimension of the space of
linear relations generated by the nonlinear shuffle
relations; it has been performed by a Grobner basis
computation.

7. ALTERNATING EULER SUMS

We now turn to the evaluation of alternating Euler
sums by means of contour integrals. Let

n i—1 n i—1
o ::Zi’ 7. ::H£1>:Z¢
7 J

j=1 j=1

denote the alternating harmonic numbers. There
are altogether four types of linear sums:

>© HW® 0 H®)
++ n +—- n—1 n
Spyq - Z nd ’ Sp,q - Z(_l) nd ’
n=1 n=1
L © H%D) . > _— ng)
Spq = Z nt Spq = Z(_l) nd
n=1 n=1

Clearly the S+ are the standard Euler sums de-
fined earlier. Such numbers have been considered
by Euler, Nielsen and many others.

A natural kernel for the sums of type St~ is
a combination of ¢ functions and 7/sinws, since
the latter introduces sign alternation. Some par-
ity constraints must however intervene since poles
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occur at positive and negative integers. The other
results are best stated in terms of the alternating
zeta function,

(o) =30 T — -2,

with ((1) = log2. Alternating harmonic numbers
are introduced by the modified ¢ function,

s = 5 S - () - 1)

k=0

= 1052 +7(2)s ~ {®)s7 + (A)s" — -

This is also known as Nielsen’s § function; it sat-
isfies

d(n) = (~1)"(H, 1 ~log2),
B(s) = (0 (o~ log2) + )

s——n s+n

where n is a positive integer.

The following evaluations are all found in [Sitara-
machandra Rao 1987], which contains an exhaus-
tive discussion of sums Slif together with a thor-
ough bibliography. Here the identities come out as
simple consequences of the process employed ear-
lier for standard Euler sums.

Theorem 7.1 [Sitaramachandra Rao 1987].
(i) For any weight 1+ q,
25,5 =2((q)log2 — q¢(g+1) + 2{(q+1)

q
> C(k)C(g—k+1).
k=1

(i) In the case of a weight 1 + q that is odd,

+
+

287, = (¢+1)¢(g+1) — ¢(g+1)
q/2-1
—2 Y C(2k)¢(g+1-2k),
28, =2(¢(q)+<(q)) log 2— (q+1)¢(g+1)+{ (g+1)
q/2-1

+2 ) C(2k)C(q+1-2k).

Proof. The result falls as a ripe fruit when we use
respectively the kernels
- T

h(s)?, (¥ (=) +7),

In the first case, the sign alternation of the general
term disappears because of the squaring of (s), so
that we get directly S j In the other cases, two
almost identical sums result from the residues at
the positive and negative integers, and the combi-
nation involves a coefficient of (1 + (—1)q), so that

estimates are restricted to the case of ¢ odd. O

(s)m cot Ts.

sin s

Notice finally that the use of the kernel
D(s)(Y(=s) +7)

allows one to relate Sf’ , and Sy irrespective of
the parity of the weights:

Sie +(=1)ST,

qg—1

=C(q)log2 = > (—1)'C(i)¢(g + 1 — ).

i=1

In other words, there is a new variety of constants
defined by

B o Hpy
Hq = Sfr,2q+1 = Z(_l) 1n2q+17
n=1
where
1 ' log®(z) log(1
. / og*(2) log(1+2) |
(29)! Jo z(1+2)

We have from [de Doelder 1991; Sitaramachan-
dra Rao 1987]

Ho = %C(Q) - %IOgQ 2,
pr = —2Lis(3) + 2¢(4) + 5¢(2) log” 2
—Llog"2— I¢(3) log 2,
where Li,(z) = > - 2"n"“ is the polylogarithm.
The constant p, is related to several of Ramanu-
jan’s evaluations as well as to the analysis of lattice
reduction [Daudé et al. 1997] mentioned in the in-
troduction. Higher order u’s are not known to be
related to classical constants.
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Nielsen, following Euler, proved relations sug-
gesting that alternating sums of odd weight should
reduce to polynomials in zeta values augmented
with L = {(1) = log 2. This approach is developed
in [Borwein et al. 1995], where it is shown that the
Euler—Nielsen relations can be inverted (though ex-
plicit formulae are not given).

Shuffle relations analogous to (1-1),

(P)(q)+Cp+q) =S, +S/7,
(P)(@)+Cp+a)=S,,+S,,,

reduce the number of quantities to be investigated.
However, since our interest is in general summa-
tory formulae, we prefer to develop an approach
from scratch.

Theorem 7.2. Let w = p-+q be an odd weight. Then:
M) ((=1)7 = (=1)7) S, F is given by
(=1)"C(p+q) + ((=1)" = 1)¢(p)¢(q)
+2 Y (qﬂ_ )¢(a+)Z(2k)

Jj+2k=p 1
p+i— ix -
varp 3 (M) TR,
i+2k=q
(i) 25,5 is given by

(1= (=1)")¢(p)C(a) + {(p+a)

(T1) 2) (=1)"ro(n)
(Tx) 2) H,r(n)—) (2log2r(n) +r'(n))

(T) QZ(_l)nEnTO(n) - Z(_l)n(?“é(n) + 2log 2ro(n)) — ro(n) =

w2 3 (1) erearien

w21 Y (M ) corizen.
(i) ((=1)» — (=1)7) S, is given by
(= )p+1C(p+Q) ( = (=1)")<¢(p)¢(a)
+2 % ) 4+7)C(2k)
J+2k=p
—2(-1)" (pﬂ ) )'C(p+i)(2k).
z+2k g
Proof. Just use the kernels (p—ll)' PPV (s) sirz:rs’
(p=1) e s) T cot s.
(p 1)! v (s )SlnT{'S (p—l)!d) () t

O

8. EXOTIC SUMS

The use of kernels involving ¢ and its relatives is
not just restricted to Euler sums. We have cho-
sen here a random sample of four types of “exotic”
summatory formulae pointing the way to extensions
of the method and possibly to a new functional-
ity in computer algebra systems regarding several
classes of infinite summations.

—R (1 (s)m cot wsro(s))

n

General summatory formulae for alternating sums. Here 7(s),ro(s) denote rational functions that satisfy the

conditions of (2-5), with additionally ro(s) even.
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1. Consider the family of sums

oo H,)?
Z (2n — 1 2n)(2n + 1))¢°

We claim that A, reduces to a polynomial in zeta
values and log 2 whenever ¢ is odd.

Set r(n) = ((2n — 1)(2n)(2n + 1)) " and take ¢
odd. By Equation (S7) on page 24, we have a first
reduction (modulo values of ¢ functions at 1) to
S H,r'(n) and > H®r(n). The first sum reduces
in all cases; the second sum reduces again since
r(s) is assumed to be odd. An instance is then

2 1 e 1
+(1+%+%) (567)3—,_“

_41n2+(§(3)—4)1n2
— (53¢ +5¢(3)—5¢(2)—12) In2 + ¢ (4)
—1 (2)—312 (2)C( ) — 5C3) + 55¢06).

Several related, but simpler, identities appear in
Chapter 9 of Ramanujan’s notebooks; see [Berndt
1989].

2. Sums related to Catalan’s constant have been
discovered by Ramanujan [Berndt 1989] and fur-
ther explored by Sitaramachandra Rao [1987]. We
offer here the evaluations

D C N I S M D1 TN
Z( ) o+ 1 ; (2n + 1) 2108 2,

n=1
DD =3) o — 5(3)
—~ (2n +1)3 — (2n+1)t 10
— 11—67r3 log 2,

and the well-known
= (_1)n _ 1.3 = (_1)n _ 5 5
; 2n+1)3 327 s ; 2n+1p 1536 1

which derive from the kernel (1)(—s) + )

sinms’
3. The use of kernels involving ¢ = +/—1 in ar-
guments of 1 functions leads to yet another class

of summation formulz. For instance, one has the
highly symmetrical formulas

1 1 2
> i = 2@

m,n>1
> i — 2006 — KW
. 1 1 2
2 Gy~ 8O
1
e = ()T — 36
m;zl mn’(m? + n?)

(with a periodicity of exponents modulo 4) from
the kernel (¢¥(1+is)+7v)(¢¥(—s)+y). Zagier [1994]
has studied a related but “harder” class of sums.

4. Lastly, the summation process exemplified by
the formulas in the boxes of pages 24 and 34 ex-
tends to irrational meromorphic functions provided
they remain small on circles (or other large con-
tours) on which the kernel is itself small. In that
case, one has a relation between two types of infi-
nite sums. For instance, the kernel (7 cotws) ap-
plied to the functions (7 cothms)/s? yields identi-
ties like

= coth 7k . coth 7k
S g, St g

3 180 7 56700
k k
n=1 n=1

which were discovered by Ramanujan [Berndt 1985].
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