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Abstract 

Flajolet, Ph., P. Grabner, P. Kirschenhofer, H. Prodinger and R.F. Tichy, Mellin transforms and 

asymptotics: digital sums, Theoretical Computer Science 123 (1994) 291-314. 

Arithmetic functions related to number representation systems exhibit various periodicity phe- 

nomena. For instance, a well-known theorem of Delange expresses the total number of ones in the 

binary representations of the first n integers in terms of a periodic fractal function 

We show that such periodicity phenomena can be analyzed rather systematically using classical 

tools from analytic number theory, namely the Mellin-Perron formulae. This approach yields 

naturally the Fourier series involved in the expansions of a variety of digital sums related to number 

representation systems. 
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1. Introduction 

Let S(n) represent the total number of l-digits in the binary representations of the 

integers 1,2, . . . , n- 1. It is not hard to see that 

S(n)=:nlogz n+o(nlogn), (1.1) 

since, asymptotically, the binary representations contain roughly as many O’s as 1’s. 

The Trollope-Delange formula is rather surprising. It expresses S(n) by an exact 

formula [9] 

S(n) =$Fi log, n + nF,(log, n), (1.2) 

where F,(u), a fiactal function, is a continuous, periodic, nowhere differentiable 

function; F,(U) has an explicit Fourier expansion that involves the Riemann zeta 

function, its Fourier coefficient of order k, k#O, being 

2rrik 
for X,$ =- 

log2’ 

The argument given by Delange relies on a combinatorial decomposition of binary 

representations of integers, followed by a computation of the Fourier coefficients of 

the fractal function. Our approach, instead, is more direct and in line with classical 

methods from analytic number theory. It is based on an integral representation (see 

Equation (3.2)); here, 

which itself is closely related to Mellin transforms and the classical Perron formula. In 

this context, the periodicity present in S(n) simply arises, by the residue theorem, from 

poles of the integrand at the regularly spaced points s=2rrik/log2. 

In other words, as is customary in the standard analytic number theory (e.g., the 

prime number theorem), fluctuations in a number-theoretic function appear to be 

directly related to singularities of an associated Dirichlet series. 

The Mellin-Perron formulae are reviewed briefly in Section 2. In general, they 

provide asymptotic rather than exact summation formulae. An additional argument is 

then needed in order to establish an exact representation like (1.1). Similar exact 

formulae are established for the standard sum-of-digit function (Section 3), for the 

more general case of the number of blocks in binary representations and Gray codes 

(Section 4) and for a function related to the Cantor set (Section 5), 

h c 2”’ =I 3’1, 
(i 1 i 

where the exponents ei are strictly increasing. 
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Sections 6 and 7 deal primarily with asymptotic summation formulae. Section 6 is 

concerned with the asymptotic evaluation of the function 

n-1 

Q(n)= c 2”Ck’, 
k=O 

(1.3) 

where v(k) denotes the binary sum-of-digits function. The value a(n) is also equal to 

the number of odd binomial coefficients in the first n rows of Pascal’s triangle. 

Stolarsky [29] earlier gave upper and lower bounds for this expression. Applying the 

Mellin-Perron formula and a pseudo-Tauberian argument, the Fourier coefficients of 

the corresponding fractal function are computed. (Estimates were also given by 

Harborth [19] and in the q-ary case by Stein [28].) It is found that @(N)/NP is 

a periodic function of log, N, with p =log, 3, see Fig. 1 for a graphical rendering. 

Section 7 is concerned with the asymptotic evaluation of 

n-1 

S,(n)= c (-1)“‘3k’, 
k=O 

a function obviously related to the distribution of l-digits in multiples of three which 

was first studied by Newman [25]. Coquet [8] established a Delange-type theorem for 

this case. 

The asymptotic formulae obtained in connection with Q(n) and S,(n) when 

matched against exact formulae obtained by direct combinatorial reasoning, lead to 

new Fourier expansions. This mixed combinatorial-analytic process constitutes 

0.96 

;,I!’ 
16 64 256 1024 

4 
Fig. 1. The representation of @(n)in” plotted against n in a logarithmic scale; @(n) represents the number of 

odd binomial coefficients in the first n rows of Pascal’s triangle and is also defined by Equation (1.3); 

p = log, 3. 
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another source for summation formulae with explicit Fourier coefficients developed in 

Sections 6 and 7. 

Exact summation formulae related to number representations arise at various 

places in elementary (combinatorial) number theory as well as in the average case 

analysis of algorithms. 

As general references in number theory, we refer to Stolarsky’s survey [29] and to 

[22]. An especially important paper by the spectrum of its analysis techniques is [S]. 

It concerns the Rudin-Shapiro sequence r(n), which gives the parity of the number of 

blocks 11 in the binary representation of n. 

The summation formulae considered here are closely related to number-theoretic 

functions arising in the context of iterated substitutions and the so-called automatic 

sequences (see Allouche’s paper for a survey Cl]), which constitute a natural frame- 

work in which several of our analyses could have been cast. In that framework 

Dumont and Thomas [11] have used elementary methods to derive, for linear func- 

tionals of iterated substitution sequences, a whole class of asymptotic forms of the type 

nB(logO n)YF(logO n) + o(na(logO n)?), 

involving some fluctuating function F. Allouche and Cohen have shown that 

Dirichlet-generating functions associated with automatic sequences have meromor- 

phic continuations (see [l], p. 2611 and [2]). Techniques developed in this paper 

could then be used in order to provide alternative derivations of some of the results of 

Dumont and Thomas. 

The present work is also related to the notion of regular sequences, a generalization 

of automatic sequences, that was introduced by Allouche and Shallit [3]. In fact, the 

sequences under study here fall into that category. In this context, some of our results 

are complemented by the recent work of Cateland [7], who established precisely the 

nondifferentiability properties for several of our periodic functions (like the ones for 

Gray code or block occurrences). 

In the area of the average case analysis ofalgorithms, combinatorial sums involving 

number-theoretic functions often present themselves. Delange’s formula was em- 

ployed in order to analyze register allocation strategies, or, equivalently, the order of 

random channel networks in [15]. It was later extended to some nonstandard digital 

representations of integers, like Gray code [14], for the purpose of analyzing sorting 

networks, as well as to occurrences of blocks of digits in standard q-ary representa- 

tions [20] and subblock occurrences in Gray code representation [21] or to Newman 

sequence related to the binary representations of multiples of three [S]. (In a recent 

paper [17], Delange’s result was even further generalized to digit expansions with 

respect to linear recurrences.) 

Finally, the subject of this paper is also close to the classical divide-and-conquer 

recurrences that are common in theoretical computer science and of which a typical 

form is 
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Fig. 2. Pascal’s triangle modulo 2. The odd numbers are represented by black squares, the even numbers by 

white squares. 

with {e,} a usually simple sequence and { fn} the sequence to be analyzed. In a recent 

work, Flajolet and Golin [13] treat several instances that appear in a diversity of 

recursive divide-and-conquer algorithms like mergesort, heapsort, Karatsuba multi- 

plication, or maxima finding in multidimensional space. 

Graphics. As an illustration of the fractal phenomena at stake, we have displayed in 

Fig. 1 the ratio @(N)/NP plotted against N in a logarithmic scale. When considering 

successive intervals [2k- ‘, 2k], we see the function @(N)/Np which gets refined in 

a stepwise manner. The figure clearly illustrates the fractal nature of the graph. Fig. 2 

shows Pascal’s triangle reduced modulo2. The figure reveals another aspect of the 

fractal structure underlying the problem. (Performing an easy transformation, one 

obtains the famous Sierpinski triangle [12], a popular source for similar graphics 

being [31].) 

2. Mellin-Perron formulae 

For completeness, we give a brief outline of the Perron formula by relating it to the 

Mellin transform. The resulting summation formulae are classical, so we content 

ourselves with a sketchy description of the analysis involved. 

The major reference for Mellin transforms is Doetsch’s book [lo]. Mellin summa- 

tion is briefly surveyed in [16], which is directed towards applications in the average 

case analysis of algorithms, while in the context of integrals (rather than sums), 

a useful reference is [32, Chapter III]. The classical Perron formula is discussed at 

length in Apostol’s book [4], and a higher-order version is, for instance, given by 

Schwarz (see [27, Chapter IV]). 
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Letf(x) be a function defined over [0, + co). Its Mellin transformf*(s) = .&! [f(x); s] 

is defined by 

f*(s)= 
s 

=f(x)x”-’ dx. 
0 

By linearity and the resealing property, we have 

(2.1) 

(2.2) 
k 

The condition is for s to belong to a “fundamental strip” defined by the property that 

the integral givingf*(s) and the sum &/lk,&’ are both absolutely convergent. 

Similar to the Laplace transform, there is an inversion theorem (cf. [lo]). When 

applied to (2.2) it provides 

(2.3) 

with c in the fundamental strip. 

Formula (2.3) could be called Mellin’s summation formula. It is especially useful 

when the integral can be computed by residues, and in that case each residue 

contributes a term in an asymptotic expansion of F(x). 

This formula lends itself to various number-theoretic applications, most notably 

proofs of the prime number theorem. Introduce the step function H,(x) defined by 

Ho(x) = 
1 if xE[O, 11, 

0 ifx>l, 

together with the functions H,(x) = (1 -x)“H,(x). In the interesting case where pk = k, 

we obtain from (2.3) formulae of the Perron type that provide integral representations 

for the iterated summations of arithmetic functions in terms of their Dirichlet gener- 

ating function. 

Theorem 2.1. Let c>O lie in the half-plane qf‘absolute convergence of xk/Ikk-‘. Then 

for any m 3 1, we have 

For m=O, 

lQk<n 

Formula (2.4) is obtained from (2.3) by setting x = n- ‘,f‘(x) = H,(x) and observing 

that H,*(s)=m!(s(s+ l)...(s+m))-‘. For m=O the formula has to be modified slightly 

by taking a principal value for the sum, since H,(x) is discontinuous at x = I. See also 

[4, p. 2451 for a direct proof of the case m = 0. 
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For instance, if we use Ak E 1 and m = 1, we get 

ds 
<(s)nS ~ 

s(s+ 1)’ 
(2.5) 

Shifting the line of integration to the left and taking residues into account, we obtain 

s 

- 1/4+ix 

o= 
ds 

[(s)nS ~ (2.6) 
-l/4-im s(s+ 1)’ 

Identity (2.6) is the basis for the existence of several exact rather than plainly 

asymptotic summation formulae. 

3. Sum-of-digits functions 

We apply the Mellin-Perron technique described in the preceding section to derive 

a new proof of Delange’s theorem. 

Theorem 3.1 (Delange [9]). The sum-of-digits function S(n) satis$es 

S(n)=+Ilog, n+nF,(log, ?I), 

where F,(u) is representable by the Fourier series F,,(~)=~~,~f~e~‘~~” and 

log,rt 1 3 

h=2-P-- 2log2 4’ 

x=-L i(G) 

log2 Xk(Xk+ 1) 
for ~~=ff$, k#O. 

Proof. Let u2(k) be the exponent of 2 in the prime decomposition of k and v(k) the 

number of l-digits in the binary representation of k. We have v(k)- v(k- I)= 1 -vz(k), 

so that S(n) resembles a double summation of u2(k). Furthermore, it is well-known that 

(3.1) 

Thus, from (2.4), with ;lk=ti2(k) and m= 1, we get the basic integral representation 

n(n-1) 12 
S(n)=7-- 

27ri s 

2+inrli(s)n” ds 

2-i= p-1 S(S+l)’ 
(3.2) 

The integrand in (3.2) has a simple pole at s = 1, a double pole at s = 0 and simple poles 

at s=xL. Shifting the line of integration’ to s(s) =-d and taking residues into 

1 Technically, we integrate along a rectangle with upper and lower sides passing through 

k (2N + 1)irrjlog 2, respectively, and let N -3~. Because of growth properties of the zeta function, the 
contribution along the horizontal segments vanishes. This also proves directly that the sum of residues at 

the complex points (which gives the Fourier series) converges. 
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account, we get 

S(n)=-l_nlog, n+nFO(log, n)-nR(n), (3.3) 

where the Fourier series akin to F,, 

occurs as the sum of residues of the integrand at the imaginary poles s=xk. The 

remainder term is 

(3.4) 

so that it only remains to prove that R(n)-0 when n is an integer. The integral 

converges since I[(--$ + it) 14 1 t 13’4 (cf. [30]). 

Using the expansion 

1 
_~-l_2~_p_23~_ . . . 
2”-1 

in (3.4), which is legitimate since now ‘S(s) < 0, we find that R(n) is a sum of terms of the 

form 

1 

s 

- 1/4+ia; 

- 

2d _ 1,4_ico 
i(s)(2kn)s &)9 

and each of these terms is 0 by virtue of (2.6). 0 

It is clear from the discussion above that an exact formula for a sum-of-digits 

function is obtained each time a similar Dirichlet generating function is introduced. 

Let us illustrate this point by the integral representation for the sum-of-digits function 

associated with Gray code representations. 

The Gray code representation of the integers starts like 

O,l,ll, 10,110,111,101,100,1100,1101, . . . . 

its characteristic is that the representations of n and n + 1 differ in exactly one binary 

position, and it is constructed in a simple manner by reflections based on powers of 

two (for a definition, see, e.g., [14]). Let y(k) be the number of l-digits in the Gray code 

representation of k, and 6, = y(k) - y(k- 1). It is easy to see that C!jZk =&, and the 

pattern for odd values is d2k + 1 = (-l)k. Thus, the Dirichlet generating function 6(s) of 

{Sk> is given by 

2”L(s) 
6(4=2’-- with L(s)= z 

(-l)k 

k=Oj2k+ 
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Thus, by (2.4), the summatory function G(n)=&<,, y(k) admits the integral 

representation 

G(n)=& s 2+icc 2”L(s) Izs ds 

*-ice 2”-1 s(s+) . 
(3.5) 

Theorem 3.2 (Flajolet and Ramshaw [14]). The summation function G(n) of sum- 

of-digits .function of Gray code satis$es 

G(n)=$nlog2 n+nF,(log, n), 

where F,(u) is representable by the Fourier series 

F,(u)=2log,r ; -;-loglx+-- 
0 

1 

log 2 c 
L(Xk) e2kniu 

ksz\jOi Xk(Xk+ l) 

Proof. Starting with the representation (3.Q the proof runs along the same lines as for 

the sum-of-digits function; this theorem is also a corollary of Theorem 4.1 proved in 

Section 4. 0 

Remark 3.3. The functions F0 and F1 are continuous but nowhere diffierentiable. 

4. Subblock occurrences and the Gray code 

In this section we want to demonstrate that the idea used in the previous section for 

the analysis of the sum-of-digits function is also well-suited to establish a much more 

general result on occurrences of patterns in the binary representation of integers. 

The main terms of Theorem 4.1 were already found by Kirschenhofer in [20], but 

only an estimate of the remainder term was given. The remainder term has also 

been investigated independently by Cateland [7] using elementary methods of the 

Delange type. 

Theorem 4.1. Let (n; w) denote the number of occurrences of the O-l-string w as 

a contiguous subblock in the binary representation of the integer n. (If w starts with 0, we 
also count occurrences that overhang to the left of the most significant digit of n; we only 

exclude strings w consisting2 solely of 0’s.) Then the mean number of occurrences, 

(l/n)&<,@; W), is given by 

i ksn (k; w)=!$$+H,(log, n)+a, 
n 

‘A formula for this case exists but is difficult to formulate. 
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where /w 1 denotes the length of the string w, H,(u) is a continuous periodic function of 

period 1 with Fourier expansion H,(u)=CLE~ hkeZkniu, 

ho = log, 
U(O.42) 

I-((O.w),+2_‘“1) 

hk=b(%k:(o.W)2)-i(;(X.(0.1t’)2+2-’W’) 

(log 2)Xk(Xk + 1) ’ 

[(z, a) is the Hurwitz c-function, (x)~ denotes the real number with binary representation 

x and E,(n) is a dyadic rational with denominator 2 IwI which is described explicitly in 

(4.9). 

Proof. As in Section 3 we start with summation by parts to find 

kTn (k; w)= 1 A,(k)@-k), 
ken 

(4.1) 

where A,(k) =(k; w)-(k- 1; w). The differences A,(k) obey the following recurrence 

relation: If n=2l”lk+r is even, we have 

1 if (w)~ = r, 

-1 if (w),=r-1, 

0 otherwise. 

If n = 2’“‘k + r is odd, we simply have 

(4.2) 

! 
1 if (~)~=r, 

A,(n) = -1 if (w)z=r-l, (4.3) 

0 otherwise. 

From the recurrences (4.2) and (4.3) it easily follows that the Dirichlet series A,(s) of 

the differences A,(n) satisfies 

l 
(2’“‘k+(w)z+ 1)“’ 

so that 

where 

(4.4) 

is the Hurwitz i-function [30] and (0.~)~ denotes the rational number (~)~2-‘~‘. 
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From (4.1) and (4.4) we find using Perron’s formula for m= 1: 

1 
- 

n c (k:w)=& 
k<n 

Shifting the contour of integration to the left, we observe that the first-order poles of 

the Hurwitz [-functions at s= 1 cancel since both have residue 1, so the main 

contribution comes from the second-order pole s=O. The residue is 

c2 
C~log,n+---+cC, 

log 2 ( 
;+I-& , 

> 

with 

c, =((O,(O.w),)-i(O,(O.w), $2_‘“‘)=2 
_ 

(4.5) 

IW 

since [ (0, a) = f - a and 

c2 = (‘(0, (O.w)2) - [‘(O, (O.w)2 + 2 - ‘“1) = log 
r((O.42) 

I-((O.w),+2_‘“‘)’ 

since 1’(0,a)=logr(a)-tlog(2rr) [30]. 

Thus, the main term and the mean k,, of the fluctuating term are established. The 

other Fourier coefficients hk are easily derived from the residues at the simple poles 

Xk = 2rrikflog 2, k #O. 
We still have to analyze the remainder term 

Rn=& s - 1/4+iu 

_1,4_is ~(I(s;(0.w)2)-m(o.w)2+2-‘W’))(2r~;~~+I) 

= - 1 R;k,: 

where 

s -1/4+ic 

XL=& 1!4_im ~(i(s,(0,M:)2)-r(S,(0.1L.)2+Z-‘w’))o’ds. 
s(s + 1) 

(4.6) 

After shifting the contour back to the right, we find, by taking into account the 

residues at s = 0, 

where 

(4.7) 

1 if k = (w)~ mod 2’“‘, 

;lk= - 1 if k-(w), + 1 mod 2’“‘, 

0 otherwise. 
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The sum in (4.7) can be computed explicitly to give 

R;= I 
2’“‘-l-r 1 

p4+ 1 n if r=(2n- 1 mod2”“‘)>(~)~, 

-1-r 1 ~- 
2lwl+l n if r=(2n-1 mod21”l)<(w),. 

(4.8) 

From (4.8) we see that R&,, will be zero for k > 1 w I - 1, so that, in fact, (4.6) reduces to 

L(n) Iwl-2 
-=- c R;J+ .^ 

,l k=O 

and this completes the proof. 0 

Theorem 4.1 and formula (4.9) have a number of consequences of interest. In 

particular, they contain, as special cases, the results on binary representations and 

Gray code. 

(4.9) 

Corollary 4.2 (Delange [9]). If [WI= 1 and w is the l-digit, i.e. in the case of the 
sum-of-digits function, we have E,,,(n)=O, as stated already in Theorem 3.1. 

Corollary 4.3. If /w I= 2, the remainder terms E,(n) are as given by the scheme 

Eel(n) El&) E,,(n) 

n even 0 0 0 

n odd -4 a $ 

Corollary 4.4 (Flajolet and Ramshaw [14]). The mean value ofthe sum ofdigits in the 
Gray code of n is given by 

log2 n 
2 + Fl (log2 a), 

where F1 = H,, + HI0 is as described in Theorem 3.2. 

Proof. An alternative proof of Theorem 3.2 runs as follows. The kth bit in the Gray 

code GC(n) of n is given by the sum modulo 2 of the kth and (k+ 1)th digit in the 

binary representation of n. Thus, the number of l’s in GC(n) is just (n; Ol)+(n; lo), 

where we have to count the one occurrence of 01 overhanging to the left of the most 

significant 1 in the binary representation of n. 
It follows that the mean is given by 

2 log2 n 
~+H,,(log2n)+Hlo(log~n)+~ ~ 

E,l(n)+Ed4 
n 

log2 n 
= 2 + F1 (log2 n), 

which also relates FI to HoI and HIo. Cl 
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Remark 4.5. All results in Sections 3 and 4 are easily generalized to base-q representa- 

tions. As an application of the special instance q = 4, we get an alternative proof of 

a result due to Osbaldestin and Shiu [26] concerning the number of integers <n that 

are representable as a sum of three squares. 

5. Triadic binary numbers 

Let h(n) be the number that results from interpreting in base 3 the binary repres- 

entation of n, i.e., 

h $ 2’X =F 3’i, 
( 1 

where the exponents ei are strictly increasing. It is known that h(1) < h(2) < ... <h(n) is 

the “minimal” sequence of II positive integers not containing an arithmetic progres- 

sion. The sequence is also an analog of Cantor’s triadic set. An exact formula for the 

summation function H of h is established in the following theorem. 

Theorem 5.1. For the summation function H(n)=C,,, h(k), we have 

H(n)=nP+1F3(log,n)-$r, 

where p = log, 3 and F3(u) is the Fourier series 

1 
F3(u)=- c t(P+Xk) 

e2rriku 

3 l@!z2 ks* (P+xk)(P+xk+ l)’ 

with Xk = 2rcikllog 2. 

Proof. Using h(n) - h(n - 1) = ~(3”*(“) + l), we obtain 

m h(n)-h(n-1) 1 Oc 3”““’ 1 

’ ns n=1 
=z ;1 7+2 i(s) 

Applying the Mellin-Perron summation formula (2.4) with c = 3 and shifting the line 

of integration yields 
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The remainder integral is 0 by the same argument as for the sum-of-digits function, 

and the proof is complete. 0 

Remark 5.2. The base 3, obviously, can be replaced by an arbitrary number r* > 1 and 

R # 2. The corresponding exact formula is 

k;n k(k) = 
1 

np + ‘F,(log, n) - 2(r-1) n, 

where F, has a Fourier expansion similar to F3 and p = log, LX 

Remark 5.3. The function y defined by h(n) = @g(log, n) is periodic with period 1 but 

not continuous. 

6. Odd numbers in Pascal’s triangle 

In this section we establish an exact formula for the summation function 

Q(n)= C 2”‘k’. 
04k<n 

As pointed out in the introduction, Q(n) is the number of odd binomial coefficients in 

the first n rows of Pascal’s triangle. 

Application of MellinPerron techniques requires convergence of the complex 

integral of Theorem 2.1. For an m-fold summation, the “kernel” in the integral 

involves l/(s(s+ l)...(s+m- l)), which decreases at infinity like IsI-“‘. Thus, higher 

summations lead to better-converging (inverse Mellin) integrals. 

For the problem of Q(n), we thus start with the double summation function 

Y(N)= C (@(Cl), 
ldn<N 

where Mellin-Perron is easy to apply since the Fourier expansion converges 

absolutely. (We have to subtract 1, because the summation in (2.4) starts at II= 1.) The 

formula that we get in this way is asymptotic. 

Theorem 6.1. The arithmetic function Y(N) satisjies the asymptotic estimate 

Y(N)=N p+‘G(log, N)+O(N’+‘), p=log, 3 

for arbitrary E > 0, where G is a continuous periodic function with period 1. G admits an 

absolutely convergent Fourier expansion 

G(u)= 1 gke2”iku, 
ksL 

with 

gk=bg2 Pk(Pk+ 1) ’ 
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where pk = p + 2krrillog 2 and 

Ws)=$Joz ((l-e-‘)(fJ (1+2e~'z'.))-l)t~-1dt. (6.1) 

In order to come back to the Fourier expansion of F, we need an external argument 

to convert the expansion of Y(N) into an expansion for Q(n). One ingredient is 

a direct combinatorial proof of existence for the fluctuating part of Q(n); this induces 

the correspondng periodicities for Y(N), and by identification, we indirectly derive the 

Fourier expansion relative to Q(n). (This process is in a way a pseudo-Tauberian 

argument!) 

Theorem 6.2. The summatory function @(n) satisjies the exact formula 

Q(n) = nPF(log, n), 

where p =log, 3 and F is a continuous,function qf period 1. The Fourier coefJicients of 

F(u) are given by 

and, in particular, the mean value of F (u) is approximately 

JO ~0.86360499639907960496050336 130809499 

F(u) is represented by its Fourier series in the sense of standard (C’, 1) Cesciro averages. 

Observe that from [19] it is already known that 

0.812<:(n)< 1. 

Proof of Theorem 6.1. Let 

CC 2YC”) 
A(s)= c F (6.4) 

n=1 

be the Dirichlet generating function of 2”(“). Since Y (N ) is a double summation of 2v(k’, 

we have an integral representation by means of the iterated Mellin-Perron formula 

(2.4). We get 

P(N)=& s 3+ioa ds 
A(s)N” __ 

3-ix s(s+ 1)’ 
(6.5) 

where the abscissa ‘%(s) = 3 has been chosen, since A(3) converges absolutely. We need 

to locate the singularities of A(s). From the recurrences 

v(2k+ l)=v(k)+ 1 and v(2k)=v(k) 
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we get 

k=OmodZ kslmod2 

=; A(s) + 2 - 2B(s), 

with 

w= f zvCk) 
k=l 

Using summation by parts and Stolarsky’s elementary estimate (cf. [29]) 

1 @(4<3 
-<np 3 
3 

we know that B(s) converges for %(s)>p- 1, and by 

(6.6) 

(6.7) 

(6.8) 

A(s) has abscissa of convergence equal to p. This expression also provides us with the 

analytic continuation of .4(s) for %(s)>p - 1. We see that A(s) is meromorphic with 

simple poles at the points Pk = p + 27cik/log 2. 

In order to shift the contour of integration in (6.5) to the left, we need that A(s) does 

not grow too large along vertical lines. For s = o + it, with c > 1 and 1 t( > D/$, we 

have 

1 1-(1-2&)‘~ Gmin(2,:). 

Thus, we obtain 

Shifting the line of integration to !R(s)=l+s<p, noting that ~A(l+~+it)~~~tl’-~ 

and taking the residues at the poles Pk into account, we get 

s 1 +c+im ds 
A(s)N” - 

s(s + 1) 
+NP+’ ~ 

c 
2 1 --B(pk) NXk, 

1 +z-ice ksH log2 Pk(Pk+ l) 

Estimating the integral trivially we derive the asymptotic formula for Y(N). 
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So far, B(s) is defined in terms of the sequence (2”k’) itself. An integral representa- 

tion derives from an ordinary generating function, setting 

q(t)= f 2v(k4-kt= fi (1+2e-“‘). 

Consider the Mellin transform of (1 -e-‘)cp(2t)- 1; by Formula (2.2) (with pk = k, 

f(t)=e-‘), we get the integral representation for B(s). Thus, the proof of Theorem 6.1 

is completed. 0 

In order to get information on the number-theoretic function Q(n) itself, we first 

refine Stolarsky’s elementary approach. 

Proposition 6.3. There exists an exact summation formula 

Q(n) = #F(log, n), 

with F continuous and periodic with period 1. 

(6.9) 

Proof. From [29] there is an alternative formula 

@(n=!l 2”)=jl 2’-‘3’1, 

with decreasing exponents ei. Pulling out the main term, we get 

~(~1~ 3~1 i 2i- 13el-e,, 
i=l 

where e, =Llog, n]. 
We now define a real function $(x) on the interval [1,2] as follows. Let 

xc f 2-G, 
j=O 

with O=do<d,<... Then we set 

I&X)= f 2j3-dj. 
j=O 

(6.10) 

(6.11) 

(6.12) 

Note that $ is well defined since the dyadic rationals are written in their infinite 

representation. Next, we show the continuity of $. As the representation of dyadic 

irrationals is unique, the continuity at these points follows immediately, since (because 

of dj 3j) the expansion (6.11) converges faster than a geometric series with quotient 

3. For the proof of continuity at dyadic rationals, we have to show 

$ ( ,jo 2-“J)=* (j; 2-dj+,=$+i 2-l), 
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which follows immediately by direct computation, 

that $ satisfies a Lipschitz-Holder condition 

IIc/(~)-~(Y)ld~l~-Ylp-l. 

Using the function $ we can write 

Note that $(l) = 1 and $(2) = 3 and 

(6.13) 

since rr/2L’Ogz ‘1 is nothing but n “scaled” in binary to the interval [ 1,2). Formula (6.12) 

thus transforms into 

Q(n) = nPF ( { 1% n> ), 

where 

F(u)=3-“$(2”) 

is defined over the interval [0, l] and {x} =x-Lx ] denotes the fractional part. F can 

be extended into a periodic function since F (0) = F (1). The proof of Proposition 6.3 is 

completed. 0 

For the computation of the Fourier coefficients of F, we make use of Theorem 6.1 

and the following simple pseudo-Tauberian argument. 

Proposition 6.4. Let f be a continuous function, periodic with period 1, and let z be 

a complex number with ‘93(z) > 0. Then there exists a continuously dlrerentiable function 

g of period 1 such that 

~,,~~n’r(loglii)=g(log2N)+o(l) (6.14) 

s 1 

g(u)du= 
0 

$ 
c 

; .f(u) du. (6.15) 

Proof. We set 

g(u)=log2.~~’ 2”+1)lf(t)dt+log2.2-“+1)“S’2’r+1)’~(~)dt. (6.16) 
0 0 

Obviously, g is continuously differentiable and (6.15) follows by a straightforward 

application of integration by parts. Further, we note that g(O)=g(l). 

In order to prove (6.14), we proceed as follows: 

1 Llogl N] - 1 

=-- 
NT+ 1 
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=$T p L;2NJ sP+ l) 1 <5<, x’f(log2 x)Ax 
c 0 

1 
+N*+’ -2L’“=N’(r+1) c x’f(log,x)dx, 

1 ,rx<y 

where x = n/2P, y = N/2Llog2 N1 and x runs through all dyadic rationals with denomin- 

ator 2p and Ax = 2-p, p=O, . . . ,Llog, NJ. Now, we interpret the sums over x as 

Riemann sums. Thus, we have with remainder terms E(P) tending to 0 (for p-co) 

+Y 
-_(r+ 1) (S’ ’ x’f(log,x)dx+e(Llog, NJ) 

I 

p=o 

We note that only E( Llog, NJ ) depends on y. Since the convergence of Riemann sums 

is uniform with respect to the upper limit y, the remainder term tends to 0. Thus, the 

proof of Proposition 6.4 is complete. 0 

Proof of Theorem 6.2. We can now conclude and determine the Fourier coefficients fk 

of the fractal function F in Theorem 6.2. We set r = pk in Proposition 6.4 and apply 

(6.15) to get 

f;= 

s 

1 

F(u)e~2’ik”dU=(Pk+ 1) 
0 s 

1 

G(u)e 2rriku du=(Q,+ l)gk. 
0 

Inserting the value of gk yields 

2 l-B(pk) 
fk=--- 

log2 Pk 

Using IB( Pk)l ti k2 -LJ we obtain the Lz-convergence of the Fourier expansion of F. 
Also, since we know that F(u) is continuous, its Fourier series converges in the mean 

by Fejer’s theorem [23]. (More information on the convergence of the Fourier series 

would have to depend on a more detailed knowledge of the analytical behavior of the 

function B.) This completes the proof of Theorem 6.2. 0 

7. The Newman-Coquet function 

In this section we investigate the function 

S,(n)= c (-1)“‘3k’. 
k<n 

(7.1) 
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The motivation for the study of this function goes back to Newman [25], who noted 

that examination of the multiples of three, 3,6,9,12,15,18,21,24,27,. . written in the 

base two, 

11,110,1001,1100,1111,10010,10101,11000,11011)...) 

shows a definite preponderance of those containing an even number of one-digits over 

those containing an odd number. Newman proved that this strange behavior persists 

forever. Coquet [8] gave an exact formula by Delange-type computations. Our 

method uses this result and allows us to compute the Fourier coefficients (especially 

the mean value) of the related fractal function. 

Theorem 7.1. The summation function S, satisjies the exact formula 

where $ is a continuous nowhere diferentiable function of period 1, q is given by 

i 

0 
r(n)= (_ l)v(3n-1) 

if n is even 

if n is odd 

and cc=log 3/log4. The Fourier expansion $(u)=Cksz $ke2kniu is given by 

+(2+(-1)k~)fi(ak)-f2(C(k)), 

where c(k = tl+ krri/log 2 and 

1 
___ 

fo(s)=3r(s) o s 
m (F(e-‘)+F([e-‘)+F(~2e-‘)-3)(1-e-”2)ts-1& 

j;(s)=& 1: (F(e-‘)+[2F(je-‘)+<F(~2e-‘))(1-e-”2)t”P1 dt 

(F(e-‘)+[F(ie-‘)+[2F([2e-t))(l -e-ti2)tS-’ dt 

with c = e2nii3 and 

F(z)= fj (l-zzk). 
k=O 

In particular, a rough estimate of the mean value $. is 

+ko= 1.409220347784529821450289525994. 

(7.2) 
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Observe that the extreme values of $(u) are already known from Coquet’s work [S]: 

l.l547O<$(u)< 1.60196. 

Sketch of the proof. The proof runs along the same lines as that of proof of Theorem 

6.1; the only difference is that the computation of the Dirichlet generating function is 

slightly more involved than in Section 6. We first prove an asymptotic formula for the 

double summation function 

T(N)= 1 (S3(4-1). 

l$n<N 

For this purpose we need some information on the function 

Using the function F, given by (7.2) that satisfies F(z) = (1 -z) F (z’), and setting 

E~(z)=~(F(z)+F(~z)+F(~~z)), 

~1(4=~(F(4+1~F(b)+iF(i~4), 

~~(s)=+(F(z)+~F(~z)+~~F(~~z)), 

we obtain the functional equations 

Eo(z)=E-o(z2)-z~l(z2), 

El(z)=E2(z2)-zzo(z2), (7.3) 

E2(z)=z-1(z2)-zz2(z2). 

Consider now the companion Dirichlet series tk, for k= 1,2, defined in a way 

similar to to, where summation runs through the other residue classes mod3, 

By Mellin transforms again, Equation (2.2), we derive the alternative expressions, 

Co(s)=& 
s 
n (Eo(e-')- l)tsml dt, 

0 

1 x 
i;k(d = ~ 

s T(s) 0 

Ek(e-‘)ts- ’ dt for k= 1, 2. 

(7.4) 

The image of the collection of functional equations (7.3) is then the system of 

equations 

(1-2-“)(0(s) +2-“cI(s) = 2 -“A ($9 

2_“5o(s) +51(s) -2-“t2(4 =2-“&(s) - 1, (7.5) 

-2-“t,(s) +(1+2-“)52(s) =2-“/*(s), 



where the functions fk are given by 

for k= 1,2. 

These functions are defined for ‘R(s)>0 and satisfy jfj(a+it)j <It/‘-” for O<a< 1, 

which can be shown using the same arguments as in Section 6. 

Solving (7.5) yields 

40(s) = ?,(4!_3) (4”+2”-(2s+ u~~(~)+(~s+~s-w~(+.L(s)). (7.6) 

This equation provides us with the analytic continuation of to and shows that all 

poles of this function have to satisfy the equation 4”=3. 

After these preparations we can write using (2.4) 

r(N)=; s Z+imz 
3”(,(s)N” ds 

2-im s(s+ 1)’ 
(7.7) 

Shifting the line of integration to the left and taking residues into account yields 

T(N)=w+’ c *k -e2knilogaN+~(~1+~), 

kcL c(k + ’ 
(7.8) 

where the term O(N ’ +‘) is obtained by trivial estimation of the integral from e - iw to 

E + icxj over the same integrand as in (7.7). 

Now using the exact formula due to Coquet and the adapted version of Proposition 

6.4 yields the Fourier expansion of the function $. 0 

Remark 7.2. The method employed above can also be used to gather information on 

the summation functions 

& (- l)“(=+ I’, k;fl (- lYSk’ 

and other functions of this type. 

Remark 7.3. Throughout this paper the numerical estimates of the mean-value 

constants were derived from infinite functional equations satisfied by the correspond- 

ing Dirichlet series. Such functional equations relate a Dirichlet series o(s) to its 

values w(s + l), o(s + 2), etc. Since o(s + m) is easily evaluated numerically for a large 

enough integer m (the series then reduces essentially to its first few terms), the 

functional equation can then be used to compute backwards the values of o(s + m - l), 

w(s+ m-2), etc, till o(s). Related infinite functional equations are given in [2]. 
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The principles of such infinite functional equations are well known in the case of the 

Riemann zeta functions (see [24, pp. 273-2761). Take, for instance, the problem of 

evaluating A(s) and B(s) defined in Section 6: 

A(s)= 2 2”“’ and B(s)= 5 2vck) L_- 1 

k=l k” k=l (2k)” > (2k+l)” 

First .4(s) is related to B(s) by separating odd and even terms, then using the 

recurrence equations satisfied by the coefficients, which leads to the equation obtained 

earlier, immediately before (6.6): 

A(s)=; A(s)+2-2B(s). 

Now, B(s) can be rewritten as 

B(s)=yz *- I l 
k=l (24 (1 +(2k)-‘) 1 

Using the binomial expansion of (1+(2k)-‘)-“, and regrouping terms, we get 

This is an infinite functional equation for A(s), since B(s) is itself linearly related 

to A(s). 

In this way, all our constants can be evaluated to about 50 digits of accuracy in just 

a few billion elementary operations - a matter of minutes - using computer algebra 

systems. (Our computations were completed under the Maple system.) 

8. Conclusion 

Arithmetic sequences related to binary representation systems have often been 

studied by means of real variable methods. We have shown here that the classical 

methods of analytic number theory can be used instead in a variety of cases. The 

results obtained in this way are a priori asymptotic. They can be converted into exact 

formulae either when the associated Dirichlet series are of a simple enough form (sums 

of digits, block occurrences) or when they can be combined with direct elementary 

methods (odd binomial coefficients, triadic numbers). Fluctuations are then obtained 

directly as Fourier series. 

The analysis of divide-and-conquer recurrences by related techniques is pursued in 

a companion paper [13], which further exemplifies the usefulness of complex analytic 

methods in this range of problems. 
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