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Application of a Fuzzy Controller in a Warm 
Water Plant* 

W. J. M. KICKERTt~ and H. R. VAN NAUTA L E M K E t  

A new method of designing a controller, based on a vague kind of information and 
using fuzzy set theory, shows promising results in a case study. 

Seminary--In many cases a human operator is far more 
successful in controlling a complex industrial process than a 
controller designed by modern control techniques. The 
method of expressing the strategy of a human operator using 
fuzzy set theory has already been proposed elsewhere. In this 
study this method is applied to the control of a warm water 
plant. Fuzzy algorithms based on linguistic rules describing 
the operator's control strategy are applied to control this 
plant. Several types of such algorithms are implemented and 
compared. 

1. INTRODUCTION 

Fuzzy set theory is a theory about vagueness, 
uncertainty and enables us to use nonprecise, 
ill-defined concepts and yet to work with these in 
a mathematically strict sense[l]. Automatic 
Control theory has developed in the last decades 
from an empirically oriented technique into a 
strongly mathematically based technique, requir- 
ing precision, well defined concepts and exact 
data. Nevertheless vagueness and subjectivity 
still play a role as is pointed out further on. 

In the forties the introduction of frequency 
characteristics and diagrams (Nyquist, Bode, 
Nichols) to investigate the stability of a system 
created an elegant and mathematically exact 
tool. 

The design criteria however remain vague and 
subjective. No precise answer can be given as to 
what gain and phase margin, maximum relative 
error etc. have to be chosen to achieve a 'good' 
system performance. The large spread of these 
criteria to be found with several authors, 
dependant on their personal views and experi- 
ence in their field of application, is thus not 
surprising. Hence the introduction of different 
criteria like that of Ziegler, Nichols and others. 
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The root locus method of Evans in the fifties 
suffers from this same ambiguity as no exact 
values for the relative and absolute damping 
factors exist for most practical situations. The 
introduction of the integral error criteria was 
undoubtedly a step forwards in the exact 
determination of an optimal system, but in fact 
the vagueness here has been shifted to the choice 
of a particular criterion. The use of more 
complex performance criteria enables the incor- 
poration of several desired factors in the 
optimisation. The decision as to which factors 
have to be accounted for and to what extent, is 
still subjective. Thus, notwithstanding the crea- 
tion of numerous mathematical control techni- 
ques, the final decision about the 'goodness' of a 
system's behaviour remains a personal, subjec- 
tive task. Under the surface of modern con- 
trol techniques subjectively, vagueness--un- 
consciously-st i l l  does play a role. Further- 
more, in non-engineering systems, the co-called 
'soft systems', subjective matters are almost 
always predominant. A theory of vagueness 
could be very useful here [2]. 

Apart from this kind of general rationale of the 
incorporation of vagueness in system's design, 
there is a much more practical reason for the 
particular kind of fuzzy control system used in 
this research. Complex industrial plants such as 
chemical reaction processes often are difficult to 
control automatically. In some cases plant 
models can be derived from the underlying 
physical or chemical properties of the process. 
Usually this requires very elaborate calculations. 
Even under various approximations, the final 
model is difficult, of high order, nonlinear, time 
varying etc. In many cases the real process 
differs from this model in such a way that no 
more than the structure of the model can be 
determined..Parameter estimation methods to 
obtain a purely mathematically described be- 
havioristic model may also be complex, time 
consuming and therefore costly. When non- 
linearity, time variance and stochastic distur- 
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bances are important, modelling methods be- 
come still more complicated. Control theory 
however relies on modelling as a vital step in the 
design process. 

On the other hand it is interesting to note that 
in many cases the control of a process by a 
human operator is more successful than any such 
automatic control. Hence it seems worthwhile to 
investigate the control policy of the operator. As 
the strategy he uses is vague and qualitatively 
described, the use of fuzzy set theory in such an 
investigation is self evident. This was also the 
rationale behind the 'fuzzy logic controller' 
recently reported by Mamdani and Assilian[3]. 
In their control application of fuzzy set theory, 
they achieved a successful control of a small 
boiler-steam engine combination, even better 
than a conventional DDC controller. The present 
work follows the same idea of using fuzzy rules 
as a control algorithm. 

A warm water plant which was difficult to 
control because of nonlinearity and variability, 
has been controlled by a fuzzy algorithm based 
on the experience of a human operator. From a 
set of linguistic rules which describes the 
operator's control strategy a control algorithm is 
constructed where fuzzy sets define the words 
used. Several types of such an algorithm are 
implemented and compared in behaviour as well 
as in structure. An alternative algorithm-- 
mathematically equivalent to the other--is prop- 
osed to speed up the computation [4]. 

2. THE FUZZY LINGUISTIC CONTROL 

The development of the theory of fuzzy sets 
and algorithms[5] makes it possible to build a 
control algorithm based on a very general kind of 
inexact information, namely information expres- 
sed in natural language. This linguistic informa- 
tion may be obtained from an experienced 
human process operator. This is done by asking 
the operator to describe the control strategy he 
uses, the way he reacts in a certain situation. 
Thus the operator may be able to express his 
control strategy as a set of linguistic decision 
rules of the form 

if "increase in temperature is big" then "de- 
crease pressure a lot", else, if "increase in 
temperature is low" then "decrease pressure a 
little", else, etc. 

Clearly such expressions can be described as 
fuzzy sets on the universes of discourse "in- 
crease in temperature" and "decrease of pres- 
sure", respectively. Thus by defining the approp- 
riate fuzzy sets and translating the rules as fuzzy 
implications of the form: if A then B, as 

functions of those fuzzy sets (A and B), the 
human control strategy can be converted into a 
control algorithm and implemented on a compu- 
ter as outlined below. Note that the appendix 
presents the precise mathematical derivation of 
the fuzzy control algorithm. Here a less formal 
outline of the method will be given. 

The basis of the whole approach is the fuzzy 
implication (rule) 

if A then B 

where A and B are fuzzy sets, like "high temper- 
ature", "small pressure", on the universes of 
discourse input and output respectively. Consid- 
ering this rule as a kind of equivalent of a system 
mapping, the next question is: what will the 
output be to a certain input A '? In other words, 
given the rule: if A then B, and the input A' ,  
what will be the output B '?  An expression there- 
fore is derived using the compositional rule of 
inference[5] in the appendix. 

The next stage is the observation that the 
control algorithm clearly is composed of several 
rules; in different situations the human operator 
will apply different actions. The algorithm will 
have a form like 

if A, then B,, else, if A2 then B2, e l se . . .  

This set of rules will be evaluated by identifying 
the 'else' connective as the union operator be- 
tween fuzzy sets. The rules can be evaluated 
seperately and the results are combined using the 
max operator. Thus given a certain input A' 
resulting in an output of the first rule: B',, of the 
second rule: B[, etc., the resulting overall fuzzy 
output B' will be 

B' = max (B',, B~ . . . .  ) 

The extension of this single-input-single-output 
type to a more complex form of system having 
e.g. two inputs and one output with rules like 

if A then (if B then C) 

is a straightforward one. The same approach still 
applies as indicated in the Appendix. 

In the particular kind of application of this 
system concept to a process controller the input 
to the controller--temperature error--and the 
output of the controller--process input: flow-- 
were both non fuzzy but deterministic quantities. 
The approach to cope with a non fuzzy input is 
explained in the appendix in two different ways 
leading to the same result. The result of evaluat- 
ing the fuzzy algorithm for a particular deter- 
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ministic input is still a fuzzy output set ranging 
over the whole possible set of outputs. In order 
to obtain one deterministic output value from 
this fuzzy output set a decision procedure has to 
be adopted to make a choice as to which particu- 
lar (non fuzzy) value is a good representative of 
the fuzzy set. The simple decision procedure 
applied here is to take that output value at which 
the membership function is maximal as de- 
scribed in the Appendix. 

2.1 T h e  p r o c e s s  
This fuzzy system concept has been applied to 

design a controller for the temperature of a warm 
water plant, built on a laboratory scale. Figure 1 
shows a schematic diagram of the plant. The 
warm water tank is divided into several compart- 
ments. The cold water stream enters the tank 
with a variable flow F2, passes the compart- 
ments in sequence and leaves the tank in the last 
compartment. This water is heated by a heat 
exchange unit in which hot water, at about 900C, 
flows with a variable flow FI .  The aim is to 
control the temperature of the water in one of the 
compartments for different temperatures and 
steady state values of the flow F2 by adjusting 
the dynamic values of FI  and F2. In this applica- 
tion the temperature of the water leaving the 
heating compartment has been controlled to 
minimize time delay problems. Usually a con- 
stant amount of liquid, i.e. water, of a certain 
temperature is required from the process, so the 
flow F2 has to be kept constant during steady 
state. Only during a change to another desired 
temperature can the flow F2 be changed. The 
main control variable however, is the flow F i  of 
the hot water. 

Earlier investigations of the process had 
shown that this process had difficult control 
properties, arising from nonlinearities, asymet- 
ric behaviour for heating and cooling, noise and 
dead time. Also the ambient temperature influ- 
enced the process behaviour. To get a compara- 
tive idea of the performance of the fuzzy 
controllers an ordinary Pl-controller has been 
implemented as well. This PI-controller has been 
optimally adjusted for an experimentally fitted 
model consisting of two equal time constants and 
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tfme delay; with a time delay = 10 sec, the time 
constants = 40 sec. The optimal values of the 
integral gain Kj and the proportional gain Kp for 
three different integral error criteria, the ITAE, 
IAE and the ISE and a step function input of ten 
degrees centigrade, of this digital PI-controller 
are shown in Table 1. 

TABLE I. OPTIMAL K, AND Kp VALUES FOR A DIGITAL PI- 
CONTROLLER (SAMPLE TIME I SEC) 

K I 

ITAE ISE IAE 

0 . 0 1 8  0 . 0 1 9  0 . 0 2 0  

1 . 3 5  3 . 0 2  1 . 9 4  

One of the main difficulties of this controller 
was its need of adjustments to operate over a 
wide range of desired temperatures. It is clear 
that a more sophisticated controller, e.g. with a 
stochastic, adaptive model, than just a PI type 
could have a better performance. Hence the 
comparison bctweeen the PI control and "fuzzy 
control" should be regarded as only a rough 
indication of relative performance. 

2.2 T h e  a l g o r i t h m  

The described fuzzy controller resulted in the 
following algorithm: 

Every rule i associates a fuzzy flow (fl) subset 
to a fuzzy temperature (t) subset, represented by 
their membership functions: 

/~,(t)-~v,(fl) i = 1,2,3 . . . . .  I 

The actual action applied, ~0, can be computed 
from the measured temperature to as follows. 

The membership values at the temperature to 
are determined for each rule 

g,(to), tt2(to) . . . . .  g, (to) 

The implied fuzzy subsets for the flow fl have a 
membership function A that can be calculated 
for each rule as 

A, Ot) = rain [~,(to); v,(]l)] i = ! ,  2 . . . . .  I 

The overall fuzzy subset for flow is obtained by 
taking the union 

X0t) = max min [~,(to); v,0t)] | 

i = 1 , 2  . . . . .  I 

The result is a fuzzy subset which ranges over all 



304 W . J . M .  KICKERT and H. R. VAN NAUTA LEMKE 

values of the flow. As the action is taken at the 
maximum value of the membership function of 
this fuzzy  subset, it can be determined directly 
by taking that value of the flow fl0, for  which the 
following holds 

Atflo) = max max min [g,(to); v~ ~q)] 

i=I,2 ..... I 

3. THE FUZZY CONTROLLERS 

3.1 The fuzzy sets 
The fuzzy  sets used in this application all had a 

continuous form. An uniform structure of the 
membership function for all fuzzy sets was 
chosen, namely the continuous function 

/.t (x) = (1 + (a(x - C))b) -' 

as shown in Fig. 2. This choice has the advantage 
that the desired shape of the fuzzy set can be 
adapted by just three parameters:  c alters the 
point of minimum fuzziness (g = l), a the 
spread and b the contrast .  Because the decision 
procedure  would become too t ime-consuming in 
the continuous case, the fuzzy  output sets were 

02 
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FIG. 2. Form of  the membership  functions used. 

TASLE 2. DRFINrrlONS OF THE FUZZY SETS USED FOR DIFFERENT STRATEGIES (SEE TEXT) 

NAME 

not  smal l  

smal l  

ve ry  smel l  

s l i g h t l y  smal l  

smal l  

medium smal l  

e x t r e m e l y  smal l  

smel l  

medium 

b ig  

very big 

ve ry  smell 

nea r  s t .  s t a t e  

ve ry  nea r  s t .  s t a t e  

small 

medium 

big 

very  b i g  

ve ry  smal l  

SUPPORT SET 

d x  

dx 

dx 

FI 

FI 

F I '  

F I '  

dFl 

dF1 

dF1 

F2 

F2 

MEMBERSHIP FUNCTION 

I - ( l + 0 . 5 x )  - I  

( l+0 .5x)  -1 

(l+x4) - I  

( l+0 .5x)  - I  f o r  x ~ I e l s e  0.5 

( 1 + ( 3 ( x - I ) ) 2 )  - I  

( 1 + ( 3 ( x - 0 . 5 ) ) 2 )  - I  

(1+(3x)2)  - I  

( l+ (3dx)2 )  -1 

( 1 + ( 3 ( d x - 0 . 5 ) ) 2 )  - I  

( l + ( d x - 2 ) 2 )  - I  

(1+2(F1-12)2)  - I  

( l+2FI2)  - ]  

( 1 + ( 3 ( F 1 ' - 1 ) ) 2 )  -1 

( 1 + ( 3 ( F 1 ' - 0 . 5 ) ) 2 )  -1 

( 1 + ( 2 ( d F I - 0 . 2 ) ) 2 )  - I  

( l + ( 2 ( d F l - I ) ) 2 )  - I  

( l + ( d F I - 3 ) 2 )  - I  

(I+2(F2-18)2) -I 

(I+2(F2-I)2) -I 

x: temperature error,  dx:  change in error.  F 1: warm water flow, d F  1: change in F I ,  F2:  cold 
water f l o w .  
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calculated at finite quantized intervals of the 
support set, the flow. The definitions of the fuzzy 
sets used are shown in Table 2. F1 is quantized in 
12 levels, d F l  in 15 and F2  in 18. 

3.2 Heuristic structure 
Whereas in [3] just one fuzzy control al- 

gorithm has been successfully applied to a real 
dynamic process, in this research three types of 
fuzzy algorithms have been tested. Instead of 
asserting one fixed structure of the human 
operator's control heuristics, namely that a pro- 
cess operator generally uses error and rate of 
change of error to calculate a change in the value 
of the process input, several different heuristics 
have been applied. The motive for this was the 
fact that one part of the control--keeping the 
temperature accurately at a desired value--  
turned out to be difficult for a human controller. 
It was extremely difficult to avoid oscillations 
around the setpoint. Hence three strategies for 
this 'steady state' control have been tested: 

(1) the operator uses error and rate of change 
of error to affect a change of flow (the process 
input). 

(2) the operator only uses the error as infor- 
mation and compensates by changing the flow. 

(3) the operator uses error and adjusts the 
flow above or below neutral position. 

In this third strategy the controller was supposed 
to know what absolute value of the flow (FI )  was 
the steady state position, hence a static flow- 
temperature characteristic was assumed to be 
known. A summary of these three different 
strategies is given in Table 3. 
Because the aim of the control was not only to 
keep the temperature accurately at a desired 
value, but also to perform step changes in temp- 
erature as fast as possible, the set point change 
strategy should obviously have a kind of bang- 
bang character, both for flows F I  and F2 where 
the latter is only used during the transient as 
stated earlier. 

3.2 The rule~ 
The first strategy resulted in the following set 

of rules 

if x 'not small' then F 1 'very big' 
then F2 'very small' 

if x 'small' then F I  'very small' 
then F2 at steady state 

ifx 'very small' then F2 at steady state 
then if increase of x 'small' then decrease of F 1 
'small' 
then if increase of x 'medium' then decrease of 
F1 'medium' 
then if increase of x 'big' then decrease of F 1 
'big' 

These five rules control a temperature below 
setpoint while it is increasing. Apart from the 
second rule a symmetric set of rules was applied 
in the other cases. 

The second strategy was realized by the fol- 
lowing rules 

if x 'not small' then F I 'very big' 
then F2 'very small' 

if x 'slightly small' then F1 'very small' 
then F2 at steady state 

if x 'small' then increase of F1 'big' 
then F2 at steady state 

if x 'medium small' then increase of F I 'medium' 
then F2 at steady state 

if x 'extremely small' then increase of F 1 'small' 
then F2 at steady state 

The additional refinement of the 'small' region 
required an appropriate modification of the pre- 
vious fuzzy set 'small' as indicated in Table 2. 

The third strategy which has been applied 
consisted of the following set of rules 

if x 'not small' then F I  'very big' 
then F2  'very small' 

if x 'small' then F i  'near steady state' 
then F2 at steady state 

if x 'very small' then F !  'very near steady state' 
then F2 at steady state 

S t r a t e g y  1 

strategy 2 

strategy 3 

TABLE3. CONTROLHEURISTICS 

O b s e r v a t i o n  Act ion  

e r r o r  and 

change in  e r r o r  

e r r o r  

e r r o r  

change in  f low FI 

change in  f low Yl 

f low FI 

( s t a t i c  va lue  known ) 
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Because the static flow-temperature characteris- 
tic was very sensitive to the environment, the 
algorithm was set up to enable alterations of this 
characteristic during running time. 

3.4 Results 
The overall results of these three types of 

controllers have been summarized in Table 4 and 
compared with a PI type controller mentioned 
above. In view of the bang-bang rules it is not 
surprising that the systems with the fuzzy con- 
trollers all show much faster step responses than 
the classical PI type control system, i.e. for a 
step of 10°C about 0.3 rain against 0.7 rain for the 
PI controller. However the first two controllers 
behaved like the human operator in that their 
accuracy was poor, 1.5°C oscillations around the 
setpoint against 0.4 ° for the PI controller. The 
warm water process with the third type fuzzy 
controller showed the best performance. It com- 
bined the same high speed step response as the 
other fuzzy controllers, 0.3 min, with nearly the 
same accuracy as that of the PI controller, 0.5 ° 
variations. 

3.5 Discussion 
Although the last fuzzy controller showed the 

best results, additional information about the 
'neutral' steady state flow position had to be 
used. The introduction of this steady state infor- 
mation has the disadvantage that the controller 
has to be readjusted for each different desired 
temperature value. The sensitivity of these set- 
tings to changing surroundings is another prob- 
lem. The fact t ha t  the actual readjustment of 
these settings during running time was per- 
formed by the human operator indicates that a 
vague guess of this steady state flow value might 
be sufficient. However in some processes a guess 
of such steady state characteristics may be diffi- 
cult. A small integral action may ease the above 
mentioned problem. 

An intuitive way of explaining the differences 
in behaviour of these three fuzzy controllers 
could be to relate their structure to those of 
conventional controllers. Looking only at the 
'steady state' rules, it can be observed that the 
inputs and output of the first type fuzzy control- 

ler are similar to those of a PI type incremental 
control algorithm. The input-output quantities of 
the second type are those of a purely I type 
incremental algorithm and finally the third type 
has an input and output identical to those of a P 
type controller using a positional algorithm, as 
indicated in Table 3. It should be emphasized 
that this supposed analogy lacks any rigid basis. 
The sort of combined bang-bang and 'PI' nature 
makes an explanation of the results from only 
this second point of view even more doubtful. 
Clearly more detailed study on such an analogy 
should therefore be done, as it is currently, 
before its conclusions are used to assess the 
accuracy and stability. 

One observation which can definitely be made 
is that this kind of fuzzy control is very well 
suited for an easy implementation of a time 
optimal control. The calculation of a switching 
line for the bang-bang control of a noisy time 
delay system is difficult and the simplicity of this 
fuzzy bang-bang control is therefore an impor- 
tant advantage. 

3.6 Further remark 
It is possible to speed up this fuzzy algorithm 

by using an alternative approach: decide at the 
beginning to which fuzzy temperature subset the 
temperature measurement belongs. This is in- 
terpreted as that fuzzy subset where the meas- 
ured point has the highest membership grade. 
This decision gives thus the rule number (io) at 
which 

p.~(to) = m a x  p., (to) 
i 

Having determined this rule number, the approp- 
riate calculations are carried out for this rule 
only. The action is then taken at that flow//0 at 
which 

A (fie) = max min [ ~ ( t o ) ;  vi.(fl)]. 

This method not only saves a considerable 
amount of computing time but also has a kind of 
intuitive appeal. Its mathematical equivalence to 
the previous method can also be shown[4]. 

TABLE 4. PERFORMANCE OF DIFFERENT CONTROLLERS ON A STEP RESPONSE OF 10°C 

C o n t r o l l e r  

c l a s s i c a l  PI type 

f i r s t  fuzzy type 

second fuzzy  type 

t h i r d  fuzzy type 

Rise Time 

(minute) 

0.7 rain 

0.3 rain 

O. 3 rain 

0.3 rain 

Overshoot  

(centigrade) 

1.5 ° 

less than var. 

Temp. Var iaCions  

( cent igrade)  

0.4 ° 

1.5 ° 

1.5 ° 

0.5 ° 
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4. CONCLUSIONS 

A comparison has been made between the 
response of the system for three different fuzzy 
controllers and for DDC controllers of a non 
fuzzy nature. The DDC controllers had a PI 
action; the setting of this action was optimised 
according to the ISE-, IAE- and ITAE-criteria on 
a linearised model. 

All the fuzzy controllers showed a faster step 
response of the system than was possible with 
the DDC-controllers. However, it was more diffi- 
cult to get accurate control of the temperature as 
indicated in Table 4. The simplest fuzzy control- 
ler, the third type, showed the best performance 
and combined a high speed response with the 
same accuracy as that of the optimal DDC- 
controller. The other two fuzzy controllers 
showed a tendency to oscillate around the steady 
state value. 

It has been shown that the three different types 
of fuzzy controllers show some similarities with 
proportional and integral actions. Although the 
results of this preliminary research on fuzzy 
control are promising, the accuracy and stability 
problem needs to be investigated more deeply. 
This kind of fuzzy control is essentially non- 
linear. It is the way the particular control al- 
gorithm is derived which is the novelty and 
major contribution of this method based on 
fuzzy set theory. The easy way of implementing 
the experience of a human operator in the 
controller makes the application of fuzzy linguis- 
tic rules attractive for those processes that are 
already controlled by operators. This is particu- 
larly true in cases where automatic control fol- 
lowing the usual methods requires time consum- 
ing and complex modelling and control methoes. 
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APPENDIX: FUZZY SYSTEMS 
A fuzzy subset A of a universe of discourse (support set) X 

is characterised by a membership function /.LA (X). This func- 
tion assigns to each element x E X a number ~ ix) in the 

closed interval [0, I], which represents the grade of member- 
ship of x in A [5l. Three basic operators used in fuzzy set 
theory are defined as follows 

Ca) The union of the fuzzy subsets A and B of the universe 
of discourse X is a fuzzy subset, denoted A U B, with a 
membership function defined by 

t t , u . ( x ) = m a x l t t A t x ) ; g , ( x ) l  x ~ X 

The union corresponds to the connective 'OR'. 
(b) The intersection of the fuzzy subsets A and B is a 

fuzzy subset, denoted A f~ B, with a membership function 
defined by 

tzA,,s(x) = min ltz,(x);  o.s(x)! x ~ X 

The intersection corresponds to the connective 'AND'. 
(c) The complement of a fuzzy subset A is a fuzzy subset, 

denoted -~ A, with a membership function defined by 

g ~ ( x ) =  l - ~ . ~ ( x )  x E X 

Complementation corresponds to negation 'NOT'. 
The definition of a fuzzy set enables us to deal with the 

information contained in the experience of a human operator. 
Linguistic expressions, such as the flow is 'big', 'medium', 

'small', 'not big', etc. clearly are fuzzy subsets of the universe 
of discourse 'flow'. 

Furthermore to represent the concept of a system mapping 
from an input to an output set in a fuzzy way, the concept of a 
fuzzy conditional statement (implication) is introduced. The 
system is described as a set of fuzzy conditional statements 
of the form 

if 'input is big' then 'output is medium' 

The membership function corresponding to a fuzzy condi- 
tional statement S: if A then B, given the fuzzy subset A of 
the universe of discourse X and the fuzzy subset B of Y, is 
defined by [5] 

g s (y ,x )=min [ t tA(x ) : t t~ (y ) l  x E X.y E Y (1) 

The complete system is described by a set of such fuzzy 
implications* e.g. 

if 'input is big' then 'output is medium' 
or (else) 

if ' input is medium' then 'output is small' 

Using the above mentioned definition of the 'or '  connective 
the final fuzzy implication S composed of two implications: if 
A, then B, or (else) if A2 then B2, has the membership 
function 

tts(y, x) = max [rain [tt,~,(x); tts,(y)]: rain [tz,2(x): gs2(Y)l] 
(2) 

This can be extended to the case of more than two fuzzy 
implications. 

Having defined the relation between fuzzy subsets, the 
next step is to calculate the infered fuzzy subset, given a 
certain implicand fuzzy subset. Knowing the rule: if 'input is 
big' then 'output is medium' the question arises what will be 
the output when the 'input is very big'? Here the following 
compositional rule of inference is used: given a fuzzy impli- 
cation S: if A then B, the fuzzy subset B ' ,  infered from a 
given fuzzy input set A '  (A and A '  fuzzy subsets of X, B and 
B'  of Y), has a membership function defined by [5] 

ga.(Y) = max min [ttA.(x): tzs(y, x)l (3) 

*The extension to the case of an implication of the form: if 
A then (if B then C), is straightforward: min l ~ ( x ) ;  
min [~B(Y); ttc(z)]l = rain [irA(x); t~m(Y): tic(z)]. 
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The input to the sys tem in this control application was 
considered to be precise, not fuzzy. There is no fuzzy input, 
hence there is no need to apply the compositional rule of  
inference.  Using the intuitive meaning of a fuzzy implication: 
if A then B. the implied output can never obtain a higher 
degree of truth than that of  the implying input. That would be 
contrary to the nature of an implication. Hence  one obtains the 
fuzzy output B up to the degree of membership of the 
measured value xo in the fuzzy input A. This gives the fuzzy 
output set 

P-B.(Y) = min [#A (xo); g , ( y ) ]  = #s(Y, Xo) 

values/zA,(x) equal to zero, except  the value at the measured 
point p.A,(xo) which is equal to one. Equation (3)---the com- 
positional rule of in fe rence- - reduces  then to 

#-B'(Y) = #s(Y. xo) 

The representat ion of  a fuzzy system is used as an algorithm 
for a fuzzy controller: a decision has to be made as to which 
particular action should be taken and fed into the process.  
The decision procedure applied here is to take that value yo at 
which the final membership function is a maximum, that is yo 
at which 

An alternative way to obtain the same result is to interpret 
this input Xo as a ' fuzzy '  input set A '  with all membership /~s,(Yo) = max/zB.(y) = max max rain [/~A,(x):/Zs(y. x)] (4) 


