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Abstract

A simple signed graph (G,Σ) is a simple graph G having two different
types of edges, positive edges and negative edges, where Σ denotes the
set of negative edges of G. A closed walk of a signed graph is posi-
tive (negative) if it has an even (odd) number of negative edges, taking
repeated edges into account. A homomorphism (respectively, colored ho-
momorphism) of a simple signed graph to another simple signed graph
is a vertex-mapping that preserves adjacencies and signs of closed walks
(respectively, signs of edges). A simple signed graph (G,Σ) is a signed ab-
solute clique (respectively, (0, 2)-absolute clique) if any homomorphism
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(respectively, colored homomorphism) of it is an injective function, in
which case G is called an underlying signed absolute clique (respectively,
underlying (0, 2)-absolute clique). Moreover, G is edge-critical if G− e is
not an underlying signed absolute clique (respectively, underlying (0, 2)-
absolute clique) for any edge e of G. In this article, we characterize all
edge-critical outerplanar underlying (0, 2)-absolute cliques and all edge-
critical planar underlying signed absolute cliques. We also discuss the
motivations and implications of obtaining these exhaustive lists.

1 Introduction

The work of Naserasr, Rollová and Sopena [19], based on the work of Zaslavsky [30],
has generated attention to the topic of homomorphisms of signed graphs in recent
times [2, 6, 8, 18, 20, 23]. In particular, the seminal work of Naserasr, Rollová
and Sopena and the series of works that followed showed how one can extend a
number of classical results and conjectures, including the Four-Color Theorem and
Hadwiger’s Conjecture, to the signed graph context. In this article, we deal only
with simple signed graphs; thus, the definition of homomorphism to be given is the
one appropriate for simple signed graphs. In particular, we voluntarily omit more
complicated definitions, such as the one from [21].

Homomorphisms of signed graphs

A signed graph (G,Σ) is a graph with set of vertices V (G) and set of edges E(G)
where each edge is assigned one of two possible signs, + and −. Edges with sign
+ are called positive, while edges with sign − are called negative. For any two
adjacent vertices u, v of (G,Σ), we call u a positive neighbor of v if uv is a positive
edge. Analogously, u is a negative neighbor of v if uv is a negative edge. We denote
by N(u), N+(u) and N−(u) the sets of neighbors, positive neighbors and negative
neighbors of u in (G,Σ). The signature Σ of G is its set of negative edges. A closed
walk (in particular, a cycle) C in (G,Σ) is positive (respectively, negative) if it has
an even (respectively, odd) number of negative edges, taking repeated edges into
account.

A homomorphism f of a signed graph (G,Σ) to a signed graph (H,Π) is a vertex-
mapping f : V (G) → V (H) that preserves adjacencies and the signs of closed walks.
We use the notation (G,Σ) → (H,Π) to denote that there exists a homomorphism
of (G,Σ) to (H,Σ).

To comprehend homomorphisms of signed graphs, some graph parameters and
objects such as the notions of chromatic number, relative and absolute clique, relative
and absolute clique number and underlying absolute clique, need to be defined. The
chromatic number of a signed graph (G,Σ) is given by

χs(G,Σ) = min {|V (H)| : (G,Σ) → (H,Π)} .
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Observe that this definition generalizes the usual notion of chromatic number for
simple graphs, since χs(G, ∅) = χ(G) where χ(G) denote the chromatic number of
the simple graph G.

Likewise the notion of clique number was also generalized to the context of signed
graphs. However, in this case the generalization ramified into two different parame-
ters, namely the signed relative clique number and the signed absolute clique num-
ber [19], the latter being of interest for our investigations in this work. For the sake
of completeness and for the sake of providing a big picture, we will also recall the
definition of the former.

• On the one hand, a signed relative clique of a signed graph (G,Σ) is a vertex
subset R ⊆ V (G) such that, for any homomorphism f of (G,Σ), we have
|f(R)| = |R|. The signed relative clique number ωrs(G,Σ) of (G,Σ) is the
maximum |R| where R is a signed relative clique of (G,Σ).

• On the other hand, a signed graph (C,Λ) is an signed absolute clique if χs(C,Λ)
= |V (C)|. The signed absolute clique number ωas(G,Σ) of a signed graph (G,Σ)
is the maximum |C| such that C induces a signed absolute clique in (G,Σ).

Observe that ωrs(G, ∅) = ωas(G, ∅) = ω(G), and also that (G, ∅) is a signed
absolute clique if and only if G is a complete graph (or, equivalently, a clique).
Furthermore, notice that, from the definitions, as noted e.g. in [19] one can directly
derive the following inequalities for any signed graph (G,Σ):

ωas(G,Σ) ≤ ωrs(G,Σ) ≤ χs(G,Σ) (1)

A simple graph G is an underlying signed absolute clique if there exists a signature
Σ of G such that (G,Σ) is a signed absolute clique. Moreover, an underlying signed
absolute clique G is edge-critical if for any edge e ∈ E(G) the signed graph (G −
e,Σ\{e}) is not a signed absolute clique. To the best of our knowledge, an analogous
notion for signed relative cliques does not exist yet.

Let p ∈ {χs, ωrs, ωas} be one of the parameters defined earlier. Each of these
three parameters defined for signed graphs can be extended to a family F of graphs
by setting:

p(F) = max {p(G,Σ) : G ∈ F for all signature Σ of G} .

Motivations

Before moving into the specific problems that we address in this article, let us discuss
our motivations. In the literature, different types of graphs and their homomorphisms
have been studied. Some of them are relevant to present our motivations.

An (m,n)-colored mixed graph is a graph with m different types of arcs and n
different types of edges [22]. A colored homomorphism of an (m,n)-colored mixed

graph G to an (m,n)-colored mixed graph H is a vertex-mapping f : V (G)
(m,n)−−−→
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V (H) such that an arc (edge) uv of G implies that f(u)f(v) is an arc ( edge) of H
of the same type as uv. It is worth mentioning that (m,n)-colored mixed graphs
encapsulate simple graphs1 [13], oriented graphs2 [28], 2-edge-colored graphs3 [16]
and k-edge-colored graphs4 [1]. For each of these particular cases, the corresponding
homomorphisms have been well studied independently.

Notice that a signed graph can be thought of as a (0, 2)-colored mixed graph.
However, homomorphisms of (0, 2)-colored mixed graphs preserve adjacencies and
edge signs only. For signed graphs, their homomorphisms preserve adjacencies and
signs of their closed walks instead, which is a little more flexible in the sense that
colored homomorphisms of signed graphs (treated as (0, 2)-colored mixed graphs)
are homomorphisms, but homomorphisms of signed graphs are not colored homo-
morphisms. Still, we make the connection between the two notions more explicit in
what follows.

To switch a vertex v of a signed graph (G,Σ) is to reverse the signs of the edges
incident to v. If it is possible to obtain a signed graph (G,Σ′) by switching a set of
vertices of (G,Σ), then we say that the two signed graphs are in a switch relation
and denote it by (G,Σ′) ∼ (G,Σ). Note that the switch relation is an equivalence
relation.

An alternative, but equivalent, definition of homomorphisms of signed graphs is
the following [21]: a homomorphism f of a signed graph (G,Σ) to a signed graph
(H,Π) is a vertex-mapping f : V (G) → V (H) such that there exists a (G,Σ′) with

(G,Σ′) ∼ (G,Σ) for which f : (G,Σ′)
(0,2)−−→ (H,Π). This definition is the key for

connecting the two notions. This relation was explored in [19, 23].

Another interesting related notion is that of pushable homomorphisms [] of ori-
ented graphs. To push a vertex v of an oriented graph is to reverse the direction of all

the arcs incident to v. A pushable homomorphism of an oriented graph
−→
G to another

oriented graph
−→
H is a vertex-mapping f : V (

−→
G) → V (

−→
H ) such that it is possible

to push a set of vertices of
−→
G to obtain a

−→
G ′ for which f :

−→
G ′ (1,0)−−→ −→

H . Note the
similarity between that definition and the alternative definition of homomorphisms
of signed graphs above. In practice it was noticed that, due to this similarity, sev-
eral results that hold for either of the two topics, namely homomorphisms of signed
graphs and pushable homomorphisms of oriented graphs, can be similarly proved
for the other. However, no systematic relation between the two notions has been
established yet.

For each of these types of graphs and homomorphisms, several parameters and
objects such as the notions of chromatic number, relative and absolute clique, relative
and absolute clique number and underlying absolute clique, can be defined similarly
as in the case of homomorphisms of signed graphs. Therefore, any question/problem
raised regarding the parameters or objects associated to any of the graph types

1These are (0, 1)-colored mixed graphs.
2These are (1, 0)-colored mixed graphs.
3These are (0, 2)-colored mixed graphs.
4These are (0, k)-colored mixed graphs.
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(m,n)-colored mixed 5 oriented 2-edge-colored pushable signed

χ
∈ [p3 + εp2 + p+ 1, 5p4]

[12, 22]

∈ [18, 80]

[15, 25]

∈ [20, 80]

[23, 1]

∈ [9, 40]

[27]

∈ [10, 40]

[23]

ωrel
∈ [3p2 + p+ 1, 42p2 + 8]

[10]

∈ [15, 50]

[9]

∈ [15, 50]

[9]

= 8

[11]

= 8

[11]

ωabs
∈ [3p2+p+1, 9p2+2p+2]

[3]

= 15

[17]

= 15

[17]

= 8

[19]

= 8

[19]

Table 1: Known lower and upper bounds on different parameters for the family of
planar graphs. Here χ, ωrel and ωabs denote the chromatic number, relative clique
number and absolute clique number for the corresponding graph types and homo-
morphisms.

becomes a natural topic of study for the other types of graphs as well.

For example, in any of the contexts above, the question of finding the chromatic
number for the family of planar graphs is a crucial, which is open for all the cases
except for that of (0, 1)-colored mixed graphs. Recall indeed that (0, 1)-colored mixed
graphs are nothing but simple graphs, and that the Four-Color Theorem solves that
very question for them.

Question 1.1. In any of the contexts above, what is the chromatic number for the
family of planar graphs?

In fact, answering Question 1.1 in any other context seems to be difficult. This
explains why many efforts have been put into tackling the following seemingly simpler
questions.

Question 1.2. In any of the contexts above, what is the relative clique number for
the family of planar graphs?

Question 1.3. In any of the contexts above, what is the absolute clique number for
the family of planar graphs?

The answer to Question 1.2 is trivial for the case of (0, 1)-colored mixed graphs,
while an answer for the case of signed graphs was given in [11]. A similar proof yields
the similar bound for pushable homomorphisms as well. The answer to Question 1.3
is trivial for the case of (0, 1)-colored mixed graphs, while an answer was given in the
cases of (1, 0)-colored mixed graphs [17], (0, 2)-colored mixed graphs [26], pushable
graphs [4] and signed graphs [19]. The questions remain open for the remaining
cases [28, 9, 3]. Table 1 summarizes what is currently known to date regarding
Questions 1.1, 1.2 and 1.3.

A way to get some sort of progress towards the questions above is to consider
subclasses of planar graphs. In particular, outerplanar graphs have been attracting

5Here, p = 2m+ n and ε = 1 if n = 0 or n is odd, while ε = 2 otherwise.
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(m,n)-colored mixed 6 oriented 2-edge-colored pushable signed

χ
∈ [p3 + εp2 + p+ 1, 5p4]

[12, 22]

= 7

[28]

= 9

[1]

= 4

[14]

= 5

[19]

ωrel
= (3p2 + p+ 1)

[3]

= 7

[28]

= 7

[26]

= 4

[26]

= 4

[26]

ωabs
= (3p2 + p+ 1)

[3]

= 7

[17]

= 7

[17]

= 4

[26]

= 4

[26]

Table 2: Known lower and upper bounds on different parameters for the family of
outerplanar graphs. Here χ, ωrel and ωabs denote the chromatic number, relative
clique number and absolute clique number for the corresponding graph types and
homomorphisms.

some attention. For the family of outerplanar graphs, exact values are known for
every parameter and every type of graphs and homomorphisms listed in Table 1,
except, in general, for the chromatic number of (m,n)-colored mixed graphs [28, 3].
Some of the values are actually easy to prove. Table 2 summarizes what is currently
known to date regarding Questions 1.1, 1.2 and 1.3 for outerplanar graphs.

In the line of the previous three questions, a natural fourth one to ask, connected
tightly to Question 1.3, is whether planar absolute cliques admit some nice char-
acterization. This is where the notion of edge-critical underlying absolute cliques
comes into play.

Question 1.4. In any of the contexts above, what are the planar underlying absolute
cliques?

In the article [17] where Nandy, Sen and Sopena provided the answer to Ques-
tion 1.3 for (1, 0)-colored mixed graphs by showing that the absolute clique number
of a planar (1, 0)-graph can be at most 15, they also provided a list of all edge-critical
underlying absolute outerplanar cliques and addressed the problem of finding a sim-
ilar one for planar graphs. They also showed that there is a unique edge-critical
underlying absolute planar clique [17] on 15 vertices for (1, 0)-colored mixed graphs.

Of course the answer to Question 1.4 is trivial for (0, 1)-colored mixed graphs.
Among the other cases, until now such lists for planar graphs have been found only
for pushable graphs [4] and an “almost exhaustive” computer-generated list for (1, 0)-
colored mixed graphs is reported in the Ph.D. thesis of Prabhu [24]. Here “almost
exhaustive” means that the exhaustiveness of the list was computer checked and/or
theoretically proved for all except the graphs having 14 vertices. Thus, in the list
provided, it is possible that we may have to add a few more graphs having 14 vertices.
Even such a list for outerplanar graphs is yet to be found for any case other than
for (1, 0)-colored mixed graphs. It is worth mentioning that for signed graphs the
problem of deciding whether a given graph is an underlying absolute clique is known
to be NP-hard [3].

6Here, p = 2m+ n and ε = 1 if n = 0 or n is odd, while ε = 2 otherwise.
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Our contribution

In this article, we first exhibit, in Section 2, the exhaustive list of all edge-critical
underlying absolute outerplanar cliques for (0, 2)-colored mixed graphs. In other
words, we answer Question 1.4 restricted to the family of outerplanar graphs for
(0, 2)-colored mixed graphs. After that, using this list, we exhibit, in Section 3,
the exhaustive list of all edge-critical underlying absolute planar cliques for signed
graphs. That is, we answer Question 1.4 for signed graphs. Finally, in Section 4 we
discuss the status of Question 1.1 for signed graphs.

2 Underlying absolute outerplanar cliques for (0, 2)-colored

mixed graphs

A signed graph is a (0, 2)-absolute clique if any two non-adjacent vertices of (G,Σ)
are connected by a 2-path (path of length 2) whose edges have different signs [3]. A
simple graph G is an underlying (0, 2)-absolute clique if there exists a signature Σ
such that (G,Σ) is a (0, 2)-absolute clique. Moreover, an underlying (0, 2)-absolute
clique G is edge-critical if for any edge e ∈ E(G) the graph G−e is not an underlying
(0, 2)-absolute clique.

To contract an edge uv of a graph G is to replace the vertices u, v with a new
vertex w which is adjacent to all the vertices of N(u)∪N(v). A graphH is a minor of
a graph G if it is possible to obtain H from G through a sequence of vertex deletions,
edge deletions, and edge contractions. So, a graph is outerplanar if and only if it
does not contain K4 or K2,3 as a minor [7].

Our main result in this section reads as follows:

Theorem 2.1. There are exactly 11 edge-critical underlying (0, 2)-absolute outerpla-
nar cliques. These 11 graphs are depicted in Figure 1.

The proof of this theorem is contained in the upcoming lemmas. Before starting,
let us present a few definitions and notations. Given a signed graph (G,Σ), two
vertices u and v see each other if they are adjacent or are endpoints of a 2-path with
edges having different signs. Also if u and v are endpoints of a 2-path with edges
having different signs and the third vertex of the 2-path is w, then we say that u and
v see each other through w.

Lemma 2.2. If O is an underlying (0, 2)-absolute outerplanar clique having |V (O)| =
7, then O contains the graph O11 of Figure 1 as a spanning subgraph.

Proof. Suppose that (O,Ω) is a (0, 2)-absolute outerplanar clique with |V (O)| = 7.
As O is a connected outerplanar graph, O has a vertex u having degree 1 or 2.

Assume that there exists a degree-1 vertex u in O adjacent to its only neighbor
v. Furthermore, let v be an α-neighbor of u for some {α, ᾱ} = {+,−}. Therefore we
must have N ᾱ(v) = V (O) \ {u, v} in order for a vertex x ∈ V (O) \ {u, v} to see u.
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(O1,Ω1) (O2,Ω2) (O3,Ω3) (O4,Ω4) (O5,Ω5)

(O6,Ω6) (O7,Ω7) (O8,Ω8)

(O9,Ω9) (O10,Ω10) (O11,Ω11)

Figure 1: Exhaustive list of all edge-critical underlying (0, 2)-absolute outerplanar
cliques along with a corresponding signature. Solid edges are positive edges, while
dashed edges are negative edges.

Observe that two vertices from V (O) \ {u, v} see each other without using u or v.
Thus the graph induced by N ᾱ(v) is an underlying (0, 2)-absolute clique. Moreover
it is a path as O is an outerplanar graph. We know from [3] that an underlying
(0, 2)-absolute clique that is a forest can have at most three vertices, a contradiction.

Thus there exists a degree 2 vertex u in O adjacent to its only neighbors v
and w. Furthermore, let v be an α-neighbor and w be a β-neighbor of u for some
{α, ᾱ} = {β, β̄} = {+,−}. Therefore we must have N ᾱ(v)∪N β̄(w) = V (O)\{u, v, w}
in order for a vertex x ∈ V (O) \ {u, v, w} to see u. Note that |N ᾱ(v) ∩N β̄(w)| ≤ 1,
as otherwise it would contain K2,3 as a minor contradicting the fact that O is an
outerplanar graph.

If |N ᾱ(v) ∩ N β̄(w)| = 0, then two vertices from V (O) \ {u, v, w} see each other
without using u, v or w. Thus, the vertices of V (O) \ {u, v, w} induce an underlying
(0, 2)-absolute clique on four vertices that is also a path. We know from [3] that an
underlying (0, 2)-absolute clique that is a forest can have at most three vertices, a
contradiction.

Hence we must have |N ᾱ(v) ∩ N β̄(w)| = 1. Moreover, let N ᾱ(v) ∩ N β̄(w) = z.
Assume that A = N ᾱ(v) \ {z} and B = N β̄(w) \ {z}. Note that any edge between A
and B would force K2,3 to be a minor, contradicting the fact that O is an outerplanar
graph.

Without loss of generality, assume that |A| ≥ |B|. If |B| > 0, then the only way
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for the vertices of A to see the vertices of B is through z. Then K2,3 is a minor
because |A ∪ B| = 3, contradicting the outerplanarity of O. Hence |B| = 0.

If |B| = 0, then |A| = 3. The only two options for a vertex x ∈ A to see w are
through v or z. If all three vertices of A see w through z, then there is K2,3 as a
minor, a contradiction. Thus at least one vertex from A sees w through v forcing
the edge vw in O.

Observe that the vertices of A induce a forest. Furthermore, the vertices of A
cannot see each other only through u, v, w. Also, it is not possible that all three
vertices of A, see each other through z. Therefore, at least two vertices of A see each
other through the third vertex of A forcing a 2-path in the graph induced by A.

However, this forces the graph O11 to be a subgraph of O.

Next we handle the case where |V (O)| ≤ 6.

Lemma 2.3. If O is an underlying (0, 2)-absolute outerplanar clique having |V (O)| ≤
6, then O contains one of O1, . . . , O10 as a spanning subgraph.

Proof. Suppose that (O,Ω) is a (0, 2)-absolute outerplanar clique with |V (O)| ≤ 6.

As O is connected, if |V (O)| = 1, 2 or 3, then O contains O1, O2 or O3 as a
spanning subgraph, respectively.

Next suppose that |V (O)| ∈ {4, 5, 6}. It is known that an outerplanar graph
either have a cut-vertex or is Hamiltonian [7]. Thus we can consider that O is either
Hamiltonian or has a cut-vertex v.

Let us first suppose that O has a cut-vertex v. Assume that O−v has components
C1, . . . , Ck. Then the vertices of Ci must see the vertices of Cj, for all i �= j, through
v in (O,Ω). Therefore, k = 2 and V (C1) ⊆ Nα(u) and V (C2) ⊆ N ᾱ(u) for some
{α, ᾱ} = {+,−}. Thus the graph induced by V (Ci) from (O,Ω) is a (0, 2)-absolute
clique for each i ∈ {1, 2}. Moreover, as O is outerplanar, all Ci’s are paths. As we
know from [3] that an underlying (0, 2)-absolute clique that is a forest can have at
most three vertices, |V (C1)|, |V (C2)| ≤ 3. Thus if O has a cut-vertex, then O must
contain O5, O7, O8 or O10 as a spanning subgraph.

Let us now assume that O is Hamiltonian.

• If |V (O)| = 4, then O must contain O4 as a spanning subgraph.

• If |V (O)| = 5, then O contains a 5-cycle. However, any signature on a 5-cycle
forces two incident edges of the same sign. The endpoints of the 2-path induced
by those edges cannot see each other. Thus O must have at least one chord in
this case, forcing O6 as a spanning subgraph.

• If |V (O)| = 6, then O contains a 6-cycle. However, a 6-cycle does not have
diameter 2. If we add some chords to a 6-cycle in order to construct an outer-
planar graph having diameter 2, then we are forced to have O9 as a spanning
subgraph.
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Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. First observe that the signed graphs (Oi,Ωi) for all i ∈
{1, . . . , 11} are (0, 2)-absolute outerplanar cliques. Moreover, Bensmail, Duffy and
Sen [3] have shown that if O is an underlying (0, 2)-absolute outerplanar clique, then
|V (O)| ≤ 7. From this, the proof now follows directly from Lemmas 2.2 and 2.3.

3 Underlying absolute planar cliques for signed graphs

A positive (respectively, negative) cycle of a signed graph is popularly refered to as a
balanced (respectively, unbalanced) cycle. It is known from [19] that a signed graph
is a signed absolute clique if and only if any two non-adjacent vertices of the graph
are part of an unbalanced 4-cycle. Furthermore, if a signed graph (G,Σ) is a signed
absolute clique, then any (G,Σ′) ∼ (G,Σ) is also a signed absolute clique [19].

Theorem 3.1. There are exactly 15 edge-critical underlying signed absolute planar
cliques. These 15 graphs are depicted in Figure 2.

The proof of this theorem is contained in a series of observations and lemmas
below. Before starting with those, let us present a few definitions and notations.

Let u, v be a pair of vertices of a simple graph G. We say that u reaches v if either
u and v are adjacent or u and v have at least two common neighbors. Furthermore,
when writing that u reaches v through w, we mean that w is a common neighbor of
u and v. Also if any two distinct vertices of G reach each other, then we say that G
is reach-complete. This motivates our first observation.

Observation 3.2. An underlying signed absolute clique is reach-complete.

Recall that, for a simple graph G, the parameter δ(G) denotes its minimum
degree.

Observation 3.3. A reach-complete graph G cannot have a cut-vertex. In particular,
if |V (G)| ≥ 3, then δ(G) ≥ 2.

Proof. If a reach-complete graphG has a cut-vertex v, then the vertices from different
components of G−v are neither adjacent nor have at least two common neighbors in
G. Now, if |V (G)| ≥ 3 and δ(G) = 1, then the neighbor of a vertex having degree 1
is a cut-vertex.

Note that a reach-complete graph is either a complete graph or contains a 4-cycle.
Thus the following is immediate.

Lemma 3.4. If (H,Π) is a signed absolute planar clique having |V (H)| ≤ 4, then
H contains one of A1, A2, A3, A4 as a spanning subgraph.

Now let us consider the case of graphs having five vertices.



J. BENSMAIL ET AL. /AUSTRALAS. J. COMBIN. 77 (1) (2020), 117–135 127

(A1,Π1) (A2,Π2) (A3,Π3) (A4,Π4) (A5,Π5)

(A6,Π6) (A7,Π7) (A8,Π8)

(A9,Π9) (A10,Π10) (A11,Π11)

(A12,Π12) (A13,Π13) (A14,Π14) (A15,Π15)

Figure 2: Exhaustive list of all edge-critical underlying signed absolute planar cliques
along with a corresponding signature. Solid edges are positive edges, while dashed
edges are negative edges.

Lemma 3.5. If (H,Π) is a signed absolute planar clique having |V (H)| = 5, then
H contains A5 as a spanning subgraph.

Proof. As H does not have a cut-vertex, it contains either a 5-cycle or K2,3 as a
subgraph.

• We know that a 5-cycle is not an underlying (0, 2)-absolute clique, and thus
obviously not an underlying signed absolute clique. Therefore, we need to add
at least one chord to make the graph an underlying signed absolute clique.
Without loss of generality assume that we have added the chord be. Note that
the vertex a is non-adjacent to both c and d. Moreover, both a, c and a, d have
at exactly one common neighbor. Thus we need to add some more chords. If
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we add either ac or ad, then the subgraph A5 is created. The other way is to
add both ce and bd, in which case also the subgraph A5 is created.

• K2,3 is not an underlying signed absolute clique as there exist two vertices
from the partite set of cardinality 3 that are neither adjacent nor part of an
unbalanced 4-cycle. Thus we need to add at least one edge in the concerned
partite set. This creates the subgraph A5.

We already know that if (H,Π) is a signed absolute planar clique having |V (H)| ≥
6, then δ(H) ≥ 2. First we analyse the case when δ(H) = 2.

Lemma 3.6. If (H,Π) is a signed absolute planar clique having |V (H)| ≥ 6 and
δ(H) = 2, then H contains A7 as a spanning subgraph.

Proof. Let u be a degree-2 vertex of H having exactly two neighbors v and w. Then
each non-neighbor x of u must be adjacent to both v and w, resulting in a K2,|V (G)|−2.
Assume that V (H) \ {u, v, w} = {x1, . . . , xt}. For being a signed absolute clique,
uvxiwu must be an unbalanced 4-cycle for each i ∈ {1, . . . , t}. Furthermore, xk and
xl, for some i �= j, have exactly two common neighbors v and w. As both uvxkwu
and uvxlwu are unbalanced 4-cycles, the 4-cycle vxkwxlv is balanced. Thus any two
non-neighbors of v are not part of any common unbalanced 4-cycle in (H,Π).

Note that t ≥ 3 since |V (H)| ≥ 6. Furthermore, if t ≥ 4, then x1 and x4 cannot
have any common neighbor other than v and w. But, as observed earlier, the 4-cycle
induced by vx1wx4v is balanced. Thus t = 3.

Now note that the only common neighbor of x1 and x3, other than v, w, is x2.
As we know that the 4-cycle vx1wx3v is balanced, the only way for (H,Π) to be a
signed absolute planar clique is to have the 2-path x1x2x3 with exactly one negative
edge. Thus H contains A7 as a subgraph.

Recall that Theorem 2.1 provided the list of all edge-critical underlying (0, 2)-
absolute outerplanar cliques (in Figure 1). If an signed absolute planar clique (H,Π)
has a dominating vertex v, then we can switch the negative neighbors of v to obtain
a new signature Π∗ of H . Observe that signed absolute cliques are invariant under
switching. Thus (H,Π∗) is also a signed absolute planar clique. Observe that the
signed graph obtained by deleting v from (H,Π∗) is a (0, 2)-absolute outerplanar
clique. We denote by (H+,Π+) be the signed graph obtained by adding a new
vertex v to (H,Π) such that v is adjacent to every other vertex through a positive
edge.

We are now ready to present our next observation.

Observation 3.7. A signed graph (H,Π) is a (0, 2)-absolute outerplanar clique if
and only if (H+,Π+) is a signed absolute planar clique.

Recall that (Ok,Ωk) denotes the kth graph in Figure 1. Then:



J. BENSMAIL ET AL. /AUSTRALAS. J. COMBIN. 77 (1) (2020), 117–135 129

Observation 3.8. If 
 denotes spanning subgraph inclusion, then A2 
 O+
1 , A3 


O+
2 , A4 
 O+

3 , A5 
 O+
4 , A5 
 O+

5 , A6 
 O+
6 , A8 
 O+

7 , A7 
 O+
8 , A9 
 O+

9 ,
A10 
 O+

10, A13 
 O+
11.

A dominating set S of a graph G is a vertex subset such that any vertex from
V (G) \ S has a neighbor in S. The domination number of G is the minimum |S|
where S is a dominating set. Due to the previous observations, we need to only focus
on edge-critical underlying signed absolute planar cliques having at least six vertices,
minimum degree 3, and domination number at least 2.

Now let us introduce a few graphs. Let P2 and P4 denote the paths on two and
four vertices, respectively. Let A be the graph obtained by taking two vertices ∞ and
−∞ along with the disjoint union of P2 and P4, and making each of ∞,−∞ adjacent
to each vertex of P2 and P4. Also let B be the graph obtained from A by adding an
edge between the vertices ∞ and −∞. Furthermore, let C denote the 5-wheel graph
obtained by taking a 5-cycle and a vertex ∞ and adding edges between ∞ and each
of the vertices of the 5-cycle.

Lemma 3.9. The graphs A,B and C are not underlying signed absolute cliques.

Proof. Observe that A is a subgraph of B. Thus if we prove that B is not an
underlying signed absolute clique, then it will imply that A is also not an underlying
signed absolute clique.

Assume that B is an underlying signed absolute clique and Σ is a signature of B
such that (B,Σ) is a signed absolute clique. Now switch the negative neighbors of
∞ in (B,Σ) to obtain the signed graph (B,Σ∗). If both edges between −∞ and the
vertices of P2 are negative, then switch −∞ as well. Note that the edges incident to
∞ are all positive and one edge between −∞ and a vertex x of P2 is also positive. We
know that (B,Σ∗) is also a signed absolute clique. Therefore, in order for x to reach
the vertices of P4, the edges between −∞ and the vertices of P4 must be negative.
In this case, the endpoints of P4 cannot be part of a common unbalanced 4-cycle.

Observe that C is a planar graph. If C is an underlying signed absolute planar
clique, then by Observation 3.7 a 5-cycle is an underlying (0, 2)-absolute outerplanar
clique. This is a contradiction due to Theorem 2.1.

As A,B and C are not underlying signed absolute planar cliques, one may wonder
what happens if we add some edges to them. If we add any edge to A to obtain a
planar graph A∗, then A∗ contains A13 as a spanning subgraph. Similarly, if we add
any edge to C to obtain a graph C∗, then C∗ contains A6 as a spanning subgraph.
As A is a subgraph of B, we have the following lemma.

Lemma 3.10. If an underlying signed absolute planar clique H contains A,B or
C as a spanning subgraph, then H must contain either A6 or A13 as a spanning
subgraph.

Proof. Suppose that (H,Π) an underlying signed absolute planar clique and H con-
tains C as a spanning subgraph. Note that H contains a dominating vertex ∞. Let
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(H ′,Π′) be the signed graph obtained by deleting ∞ from (H,Π). Notice that H ′ is
an outerplanar graph. Due to Observation 3.7, we know that (H ′,Π′) must be an
underlying (0, 2)-absolute outerplanar clique. Therefore H ′ must contain O6 (from
Figure 1) as a spanning subgraph due to Theorem 2.1. Hence H contains C as a
planar subgraph.

Suppose that (H,Π) an underlying signed absolute planar clique and H contains
A as a spanning subgraph. Note that, as A is a subgraph of B, it is enough to show
that H contains A13.

Let us first understand the graph A13. In fact, let us understand the difference
between A13 and A.

Take the bipartite graph K2,6 with smaller partite set {u, v} and bigger partite
set {x1, x2, . . . , x6}. Now if we add the edges x1x2, x2x3, x4x5, x5x6, then we obtain
A13. Instead, if we add the edges x1x2, x2x3, x3x4, x5x6, then we obtain A.

We already know that A is not an underlying signed absolute clique. Thus H
has some edges which are not in A. If we add the edge uv, then we obtain the graph
B. We know that B is also not an underlying signed absolute clique. Therefore, H
must be having some additional edge of the form xixj . However, as H is planar,
the only additional edge of the form xixj must have, assuming i < j without loss of
generality, i ∈ {1, 4} and j ∈ {5, 6}. Hence, without loss of generality, assume that
the additional edge is x4x5. This graph already contains A13. In fact, if we delete the
edges x3x4 and uv (if present) from this graph, what we obtain is exactly A13.

Now, we present the last lemma needed for the proof of Theorem 3.1 which was
implicitly proved by Bensmail, Nandi and Sen [4] (note the erratum [5] as well).

Lemma 3.11. If H is a planar edge-critical reach-complete graph having six, seven
or eight vertices, minimum degree at least 3 and domination number at least 2, then
H contains one of A6, A8, A9, A10, A11, A12, A13, A14, A15, A, B, C as a spanning sub-
graph.

Proof. This proof is implicitly present in Section 5 of [4]. Let H be as in the state-
ment.

• If |V (H)| = 6, then Lemma 5.6 of [4] proves thatH contains one of A6, A7, A8, C
(which are the graphs H7, H6, H9, H8 in [4], respectively).

• If |V (H)| = 7, then Lemma 5.9 of [4] proves that H contains one of A9, A10, A11

(which are the graphs H10, H11, H12 in [4], respectively).

• If |V (H)| = 8, then Lemma 5.9 of [4] proves that H contains one of A12, A13,
A14, A15, A (which are the graphs H13, H14, H15, H16, A in [4], respectively).

Hence, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. First observe that the signed graphs (Ai,Πi) for all i ∈
{1, . . . , 15} are signed absolute planar cliques. Moreover, Naserasr, Rollová and
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∞

Figure 3: The positive edges of the complete signed graph (P+
9 ,Γ+) are depicted

here. The vertex ∞ is adjacent to all the other vertices with a positive edge. The
thick edges from it refers to that. All the non-edges in the picture should be replaced
by negative edges in order to obtain the signed graph (P+

9 ,Γ+).

Sopena [19] have shown that if (H,Π) is a signed absolute planar clique, then
|V (H)| ≤ 8. Thus the proof follows directly from the observations and lemmas
proved in this section.

4 Concluding discussion and remarks

Using our results, we have managed to exhibit a computer-generated list of all under-
lying absolute planar cliques for signed graphs. We report that there are, in total, 47
non-isomorphic underlying signed absolute planar cliques (1 on 1 vertex, 1 on 2 ver-
tices, 1 on 3 vertices, 3 on 4 vertices, 4 on 5 vertices, 10 on 6 vertices, 14 on 7 vertices
and 13 on 8 vertices). See the lists in the webpage http://jbensmai.fr/code/signed/
for details.

An interesting aspect of Figure 2 is that its first four graphs are outerplanar as
well. As there is no other outerplanar graph in the list, this implies the following
corollary.

Corollary 4.1. There are exactly four edge-critical underlying signed absolute out-
erplanar cliques. These four graphs are the first four graphs depicted in Figure 2.

Furthermore, it is worth mentioning that the list of all edge-critical underlying
signed absolute planar cliques for pushable graphs have exactly one more graph than
the ones depicted in Figure 2, namely the 5-wheel graph. This shows yet another
difference between the two contexts.

Now let us discuss the status of the analogue of the Four-Color Theorem for signed
graphs, that is, what is χs(P) for the family P of planar graphs. It is known that
10 ≤ χs(P) ≤ 40 to date [23]. Furthermore, it is also known [23] that χs(P) = 10 if

http://jbensmai.fr/code/signed/
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Figure 4: The Wagner graph W8.

and only if every signed planar graph admits a homomorphism to a particular signed
graph called signed Paley plus graph (P+

9 ,Γ+) on 10 vertices, which is depicted in
Figure 3.

Let us mention which planar graphs are known to admit a homomorphism to
(P+

9 ,Γ+). It is known that all planar signed graphs having no cycle of length at most
4 admit a homomorphism to (P+

9 ,Γ+) [23].

Let (H,Π′) be a signed graph obtained by switching a set of vertices of (H,Π).
We know that (G,Σ) → (H,Π) if and only if (G,Σ) → (H,Π′) [19]. It is known
that (K4, ∅) is a subgraph of (P+

9 ,Γ+) and it is possible to switch a set of vertices
of (P+

9 ,Γ+) so that the so-obtained signed graph contains (K4, E(K4)) as a sub-
graph [23]. Therefore, the Four-Color Theorem implies that for any planar graph P ,
the signed graphs (P, ∅) and (P,E(P )) admit a homomorphism to (P+

9 ,Γ+).

A bijective homomorphism of a signed graph to itself whose inverse is also a homo-
morphism is an automorphism. Given any two balanced (respectively, unbalanced)
3-cycles C1 and C2 of (G,Σ) if any bijection from V (C1) to V (C2) can be extended
to an automorphism of (G,Σ), then (G,Σ) is triangle-transitive. It is known that
the signed graph (P+

9 ,Γ+) is triangle-transitive.

Moreover Ochem, Pinlou and Sen [23] have observed (through computer) that all
planar signed graphs having at most 15 vertices admit a homomorphism to (P+

9 ,Γ+).
In particular, all signed absolute planar cliques also admit a homomorphism to it.
Moreover, due to the triangle-transitive property of (P+

9 ,Γ+), any planar graph ob-
tained by (repeated) k-clique-sums (gluing k-cliques of two graphs to obtain a new
graph) of planar graphs having 15 or fewer vertices also admits a homomorphism
(P+

9 ,Γ+) for k ≤ 3.

These accumulated observations make us confident enough to make the following
conjecture:

Conjecture 4.2. Every planar signed graph admits a homomorphism to (P+
9 ,Γ+).

In particular, the conjecture, if true, would imply χs(P) = 10.

Recall that long before the Four-Color Theorem was proved, Wagner showed
in [29] that if all planar graphs admit a 4-coloring, then so do all K5-minor-free
graphs. He used the following characterization to prove this: G is a K5-minor-free
graph if and only if G is a subgraph of a graph obtained by (repeated) k-clique-
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sums of graphs belonging to P ∪ {W8} for k ≤ 3, where W8 is the Wagner graph
depicted in Figure 4. Due to the triangle-transitive property of (P+

9 ,Γ+) we are
able to show something similar. In fact, the only non-trivial part is to show that
(W8,Σ) → (P+

9 ,Γ+) for any signature Σ of W8.

Lemma 4.3. For any signature Σ of W8, we have (W8,Σ) → (P+
9 ,Γ+).

Proof. Let (X,Λ) be the signed graph obtained by adding the following edges to
(W8,Σ): v1v3, v1v4, v1v6 and v4v7. Moreover, the new edges are assigned signs in
such a way that the cycle v1v3v7v6v1 is an unbalanced 4-cycle in (X,Λ).

Let (X ′,Λ′) be the signed graph obtained from (X,Λ) by deleting the vertex
v8. Note that it is a planar graph having 8 vertices. Thus there exists a homomor-
phism f : (X,Λ) → (P+

9 ,Γ+). As v1v3v7v6v1 is an unbalanced 4-cycle, the images
f(v1), f(v4) and f(v7) are distinct vertices of (P+

9 ,Γ+). Thus the homomorphism
f can be extended to a homomorphism of (X,Λ) to (P+

9 ,Γ+) due the following
property (see Lemma 2.10(2) of [23]): given any three distinct vertices u, v, w of
(P+

9 ,Γ+) either Nα(u) ∩ Nβ(v) ∩Nγ(w) �= ∅ or N ᾱ(u) ∩N β̄(v) ∩ N γ̄(w) �= ∅ where
{α, ᾱ} = {β, β̄} = {γ, γ̄} = {+,−}.

As (W8,Σ) is a subgraph of (X,Λ), we are done.

Therefore, we indeed have the analogue of Wagner’s result.

Proposition 4.4. Every K5-minor-free signed graph admits a homomorphism to
(P+

9 ,Γ+) if and only if χs(P) = 10.

We hope that the above Wagner-like proposition may help in formulating a Hadi-
wiger-like conjecture for signed graphs in the future.
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