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Abstract

The independence polynomial I(G, x) of a graph G is the polynomial in
variable x in which the coefficient an on xn gives the number of inde-
pendent subsets S ⊆ V (G) of vertices of G such that |S| = n. I(G, x)
is unimodal if there is an index μ such that a0 ≤ a1 ≤ · · · ≤ aμ−1 ≤
aμ ≥ aμ+1 ≥ · · · ≥ ad−1 ≥ ad. While the independence polynomials
of many families of graphs with highly regular structure are known to
be unimodal, little is known about less regularly-structured graphs. We
analyze the independence polynomials of a large infinite family of trees
without regular structure and show that these polynomials are unimodal
through a combinatorial analysis of the polynomials’ coefficients.

1 Introduction

Let G = (V,E) be a graph with vertices V and edges E. An independent set in G
is a subset of V in which no two distinct vertices are adjacent. (In other words, the
shortest path between each pair of vertices in an independent set is at least length
two.) The independence number of G, denoted α(G), is the cardinality of a largest
independent set in V . The independence polynomial, I(G; x), of G is defined by

I(G; x) =

α(G)∑
n=0

anx
n,

where an is the number of independent subsets of V of cardinality n.
We say that a sequence {a0, a1, ..., ad} is unimodal if there is some index μ such

that a0 ≤ a1 ≤ · · · aμ−1 ≤ aμ ≥ aμ+1 ≥ · · · ≥ ad−1 ≥ ad; in this case we say that
μ is a mode of the sequence. A polynomial is said to be unimodal if its coefficient
sequence is unimodal. Throughout this article, we will abuse the terminology and
say that a graph is unimodal if its independence polynomial is unimodal. We will
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further say that a sequence {a0, a1, ..., ad} (or, analogously, polynomial or graph) is
strictly unimodal if it has a unique mode μ and if

a0 < a1 < · · · < aμ−1 < aμ > aμ+1 > · · · > ad−1 > ad.

The unimodality of various families of graphs has been the focus of a large amount
of study. The survey [8] provides an overview of a number of early results concern-
ing unimodality and related properties (e.g., symmetry and logarithmic concavity).
More recent studies include [2–7, 9–15]. Despite the considerable attention paid to
unimodality, little is known about the unimodality of any but the most regular fami-
lies of graphs. In particular, little progress has been made in answering the following
simple question, first posed by Alavi, Malde, Schwenk, and Erdős in [1]: is the
independence polynomial of an arbitrary tree unimodal?

A graph T is called a tree if it is connected and acyclic. Further, a tree T is
called a caterpillar if the collection of all of T ’s vertices of degree at least 2 forms a
path P , which we call the spine of the caterpillar. Several authors have investigated
the independence polynomials of “regular” caterpillars, in which the subtree of T
pendant at each vertex of T ’s spine is identical. Beginning with [15], Zhu proves
that caterpillars in which every spine vertex has two pendant edges is unimodal. In
fact, several studies of regular caterpillars encompass more general path-like graphs;
see, for example, [2] and [4]. More recently, Galvin and Hilyard [7] investigate the
behavior of I(T, x) for a family of “semi-regular” caterpillar-like graphs, in which
the subtrees pendant at the vertices in the graph’s spine are not all identical to one
another but rather alternate in a regular pattern.

Here we consider much more general caterpillars. Let �m = (m1, m2, ...) be a
sequence of natural numbers and let T (�m, n) be the caterpillar with n vertices on its
spine, the kth of which has mk pendant edges.

Theorem 1.1 Let T (�m, n) be defined as above for �m = (m1, m2, ...) such that

1. mk ≤ mk+1 for all 1 ≤ k < n,

2. 3 ≤ m1 < m2 and m3 < m4, and

3. 2(m1 +m3 + · · ·+mk) < 3(m2 +m4 + · · ·+mk−1) for k odd and 2(m2 +m4 +
· · ·+mk) < 3(m1 +m3 + · · ·+mk−1) for k even.

Then I(T (�m, n), x) is unimodal with mode μn ∈ {�dn
2
�, �dn

2
	}, where

dn = deg(I(T (�m, n))) =
n∑

k=1

mk.

Condition (3) is a technical one that follows if mk does not grow too quickly. For
instance, when �m is non-decreasing, Condition (3) holds whenever mk ≤ m1 +m3 +
· · ·+mk−1 when k is even and mk ≤ m2 +m4 + · · ·+mk−1 when k is odd.

In the following section, we establish several important lemmas and in Section 3
we prove Theorem 1.1.
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2 The relationship between q(x) and (1 + x)tq(x)

Our proofs depend on careful analysis of products of the form (1 + x)tq(x) where q
is a polynomial whose coefficients are well understood. We will say that the strictly
unimodal polynomial q(x) =

∑d
i=0 bix

i with unique mode μ is left-dominant (abbre-
viated LD) if

bμ > bμ−1 > bμ+1 > · · · > b1 > b2μ−1 > b0 ≥ b2μ

when μ ≤ d
2
and

bμ > bμ−1 > bμ+1 > · · · > b2μ−d+1 > bd−1 > b2μ−d ≥ bd

when μ > d
2
. Similarly, we will say that q is right-dominant (abbreviated RD) if

bμ > bμ+1 > bμ−1 > · · · > b2μ−1 > b1 > b2μ ≥ b0

when μ ≤ d
2
and

bμ > bμ+1 > bμ−1 > · · · > bd−1 > b2μ−d+1 > bd ≥ b2μ−d

when μ > d
2
. We will say that q is weakly LD (or weakly RD) if the respective

ordering permits equality to hold between terms strictly less than bμ, rather than
requiring strict inequality. Finally, assuming that q is both strictly unimodal and
either LD or RD, we will say that q is balanced if μ = �d

2
	 when q is LD and μ = �d

2
�

when q is RD.
We now examine how strict unimodality and left- and right-dominance are af-

fected when multiplying a polynomial q by powers of 1 + x:

Lemma 2.1 Suppose that q(x) =
∑d

i=0 bix
i is a balanced strictly unimodal polyno-

mial with mode μ. Let t ∈ N such that t ≤ μ, and suppose (1 + x)tq(x) =
∑d+t

i=0 βix
i.

1. If t is even and q is weakly LD (respectively, weakly RD), then (1 + x)tq(x) is
a balanced weakly LD (respectively, weakly RD) strictly unimodal polynomial
with unique mode μ+ t

2
.

2. If t is odd and q is weakly LD (respectively, weakly RD), then (1 + x)tq(x) is
a balanced weakly RD (respectively, weakly LD) strictly unimodal polynomial
with unique mode μ+ t−1

2
(respectively, μ+ t+1

2
).

Moreover, if q is LD or RD (and not merely weakly LD or weakly RD), then (1 +
x)tq(x) is LD or RD, accordingly as above.

Proof: Let us assume that t is even and q is weakly LD; the remaining three cases
are proven analogously.

Since

βk =

k∑
i=0

(
t

i

)
bk−i
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when 0 ≤ k ≤ t and

βd+k =

t∑
i=k

(
t

i

)
bd+k−i

when d ≤ k ≤ d + t, the strict unimodality of q shows that β0 ≤ β1 ≤ · · · ≤ βt and
βd ≥ βd+1 ≥ · · · ≥ βd+t. When t ≤ k ≤ d,

βk =

t∑
i=0

(
t

i

)
bk−i,

and straightforward computation thus yields

βμ+t/2−βμ+t/2−1 =

⎡
⎣t/2−1∑

i=0

((
t

i+ 1

)
−
(
t

i

))(
bμ+t/2−i−1 − bμ−t/2+i

)
⎤
⎦+bμ+t/2−bμ−t/2−1.

Because q is LD, every parenthesized term in this expression is non-negative. More-
over, the term corresponding to i = t

2
− 1 involves the strictly positive difference

bμ − bμ−1. Therefore the sum must be strictly positive, and βμ+t/2−1 < βμ+t/2. Simi-
larly,

βμ+t/2−βμ+t/2+1 =

⎡
⎣t/2−1∑

i=0

((
t

i+ 1

)
−
(
t

i

))(
bμ−t/2+i+1 − bμ+t/2−i

)⎤⎦+bμ−t/2−bμ+t/2+1,

in which, again, every parenthesized term is non-negative and the term corresponding
to i = t

2
− 1 is strictly positive, showing that βμ+t/2+1 < βμ+t/2 and establishing that

μ+ t
2
is the unique mode of (1 + x)tq(x).

Completely analogous computations show that βk < βk+1 whenever k ∈ [t, μ+t/2−2]
and βk > βk+1 whenever k ∈ [μ+t/2+1, d−1]. Together with the above inequalities,
these inequalities establish the strict unimodality of (1 + x)tq(x).

To establish weak left dominance, we must consider the differences βμ+t/2−s−βμ+t/2+s

for s ≤ μ+ t
2
. Let us first assume that t

2
≤ s ≤ μ− t

2
. Expanding in a similar manner

as above, we obtain

βμ+t/2−s − βμ+t/2+s =
t∑

i=0

(
t

i

)(
bμ−(s+t/2−i) − bμ+(s+t/2−i)

)
.

Since q is weakly LD, every parenthesized term in this expression is non-negative,
establishing βμ+t/2+s ≤ βμ+t/2−s. If s < t/2, a different arrangement of the terms in
the difference gives

βμ+t/2−s − βμ+t/2+s =

t/2−1∑
i=s

((
t

i+ s

)
−
(

t

i− s

))(
bμ−(t/2−i) − bμ+(t/2−i)

)

+
2s−1∑
i=0

(
t

i

)(
bμ−(t/2+s+i) − bμ+(t/2+s+i)

)
,



P. BAHLS ET AL. /AUSTRALAS. J. COMBIN. 71 (1) (2018), 104–112 108

where once more every parenthesized term is non-negative, establishing βμ+t/2+s ≤
βμ+t/2−s in this case as well. Finally, consider s such that μ − t

2
+ 1 ≤ s ≤ μ + t

2
.

Because (1+x)tq(x) is now known to be balanced, establishing weak left dominance
for these values s is equivalent to showing βd+t−j ≤ βj for 0 ≤ j ≤ t− 1. However,

βj − βd+t−j =

j∑
i=0

(
t

i

)
(bj−i − bd−(j−i)),

in which, yet again, every parenthesized term is non-negative because q is itself
balanced and weakly LD.

Very similar arguments show that βμ+t/2−(s+1) ≤ βμ+t/2+s for all s. Together these
inequalities show that (1+ x)tq(x) is weakly LD, as desired. Moreover, we note that
were q to be LD and not merely weakly LD, all of the above expressions would involve
strictly positive terms and not merely non-negative ones, showing that (1 + x)tq(x)
would be LD as well.

As mentioned above, the proofs in case q is (weakly) RD, or in which t is odd, are
analogous. �

We note that the proof above can easily be modified to show that the lemma
remains true when we replace (1 + x)t with any even-degree polynomial p(x) =∑t

i=0 aix
i that is both unimodal and symmetric (for which aj = at−j for any j,

0 ≤ j ≤ t). Moreover, we may also show that if q itself is symmetric and unimodal,
then the polynomial (1 + x)tq(x) is likewise symmetric and unimodal.

Similar techniques yield estimates for the differences βk+1 − βk and βk − βk+1 in
terms of the differences bj − bj+1:

Lemma 2.2 Suppose that q(x) =
∑d

i=0 bix
i is a balanced strictly unimodal polyno-

mial with mode μ, and further that q is either weakly LD or weakly RD. Let t ∈ N

be such that t ≤ μ, and let (1 + x)tq(x) =
∑d+t

i=0 βix
i and ν = μ

(
(1 + x)tq(x)

) ∈
{μ+ � t

2
�, μ+ � t

2
	}.

1. Let k ∈ [μ + 1, ν − 1]. Then βk+1 − βk ≥
((

t
k−j+1

)− (
t

k−j

))
(bj − bj+1) for

j ∈ [
k − � t

2
	+ 1, k

]
and βk+1 − βk ≥ bk+1 − bk+2.

2. Let k ∈ [ν, d− 1]. Then βk − βk+1 ≥
((

t
k−j

)− (
t

k−j−1

))
(bj − bj+1) for j ∈[

k − � t
2
�, k − 1

]
and βk − βk+1 ≥ bk − bk+1.

Proof: Let us consider Case (1) when q is weakly LD. Then

βk+1 − βk =

⎡
⎣t/2−1∑

i=0

((
t

i+ 1

)
−
(
t

i

))
(bk−i − bk−t+i+1)

⎤
⎦+ bk+1 − bk−t.
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Isolating the ith term in the sum gives

βk+1−βk ≥
((

t

i+ 1

)
−
(
t

i

))
(bk−i−bk−t+i+1) ≥

((
t

i+ 1

)
−

(
t

i

))
(bk−i−bk−i+1),

and letting j = k − i gives the desired inequality. The inequality βk+1 − βk ≥
bk+1− bk+2 follows from isolating the lone term outside of the sum. Proving Case (1)
for q weakly RD is analogous.

Case (2) is proven in similar fashion, using the fact that

βk − βk+1 =

⎡
⎣t/2−1∑

i=0

((
t

i+ 1

)
−
(
t

i

))
(bk−t+i+1 − bk−i)

⎤
⎦+ bk−t − bk+1.

�

We note that in general, the bounds given in Lemma 2.2 will offer very coarse
estimates, given both the number of terms ignored in the proof above and the enor-
mity of the coefficients on those terms. However, these bounds are sufficiently tight
for our purposes, as we shall see in the next section.

3 Applying the lemmas: unimodality of non-regular cater-

pillars

Recall that if G is a graph and S ⊆ V (G), then G − S is defined to be the graph
resulting from G by removing all vertices in S and all edges incident to at least
one vertex in S. If S = {v} comprises a single vertex, we may write G − v for
G − {v}. If v ∈ V (G), then the closed neighborhood of v, N [v], is defined by
N [v] = {u ∈ V (G) | uv ∈ E(V )} ∪ {v}.

We first note a standard lemma that we will use frequently, often without explicit
mention. Its proof is well-known and straightforward.

Lemma 3.1 Suppose that G is a graph and v ∈ V (G). Then I(G, x) = I(G−v, x)+
xI(G−N [v], x).

Let us now recall the sequences �m = (m1, m2, ...) and corresponding caterpillars
T (�m, n) defined in the introduction. We let p�m,n(x) = I(T (�m, n), x), and if k(�m, n)
denotes the greatest power of 1 + x evenly dividing p�m,n, we define q�m,n by p�m,n =
(1 + x)k(�m,n)q�m,n. When �m is understood, we may abbreviate T (�m, n) to Tn, etc.

The following facts are proven by direct application of Lemma 3.1 (to the spine
vertex v with mn pendant edges) and straightforward inductions; compare the meth-
ods of [2–4], for instance:
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Proposition 3.2 Let �m be given a non-decreasing sequence of natural numbers.
Then

pn =

⎧⎨
⎩

(1 + x)m1 + x if n = 1,
(1 + x)m1+m2 + x

(
(1 + x)m1 + (1 + x)m2

)
if n = 2, and

(1 + x)mnpn−1(x) + x(1 + x)mn−1pn−2(x) if n ≥ 3.

For all n, deg(pn) =
∑n

i=1mi. Moreover, k1 = 0 and

kn =

{
m1 +m3 + · · ·+mn−1 if n is even and
m2 +m4 + · · ·+mn−1 if n is odd, n ≥ 3,

so that kn+1 ≥ kn for all n, and

qn =

⎧⎨
⎩

(1 + x)m1 + x if n = 1,
(1 + x)m2 + x(1 + x)m2−m1 + x if n = 2, and
(1 + x)kn+1−knqn−1(x) + xqn−2(x) if n ≥ 3.

Thus, for all n,

deg(qn) =

{
m1 +m3 + · · ·+mn if n is odd and
m2 +m4 + · · ·+mn if n is even.

We now apply Lemmas 2.1 and 2.2 to show that under the right hypotheses qn(x)
is balanced, strictly unimodal, and either LD or RD. Once this is done, one more
application of Lemma 2.1 will establish the same properties for pn(x) = I(T (�m, n), x),
thereby proving our main result, Theorem 1.1.

Proposition 3.3 Let �m = (m1, m2, ...) be a sequence of natural numbers such that

1. mk ≤ mk+1 for all 1 ≤ k < n,

2. 3 ≤ m1 < m2 and m3 < m4, and

3. 2(m1 +m3 + · · ·+mk) < 3(m2 +m4 + · · ·+mk−1) for k odd and 2(m2 +m4 +
· · ·+mk) < 3(m1 +m3 + · · ·+mk−1) for k even.

Then the polynomial qn(x) defined as above is balanced, strictly unimodal, and either
LD or RD.

Proof: Straightforward computation shows that both q1 and q2 are balanced, with q1
weakly LD and q2 either LD or RD. The polynomial q1 is always strictly unimodal,
and q2 is unimodal in general. It will be strictly unimodal except when m1 is even,
m1 ≥ 6, and m2 = m1 + 1; in this case, q2 has consecutive modes at m2−1

2
and m2+1

2
.

In any case, we may take these polynomials to be the base cases for an induction.
Assume that we have shown our result for all k ≤ n− 1 for some n ≥ 3.

Let μ = μ(qn−2) and μ′ = μ(qn−1), and suppose

qn−2 =
∑

aix
i, qn−1 =

∑
bix

i, xqn−2 =
∑

αix
i, and (1 + x)tqn−1 =

∑
βix

i,
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where

t = kn+1 − kn =

{
(m2 −m1) + · · ·+ (mn −mn−1) if n is even and
m1 + (m3 −m2) + · · ·+ (mn −mn−1) if n is odd.

Clearly, αi = ai−1 for all i ≥ 1, μ(xqn−2) = μ + 1, and Lemma 2.1 implies that
(1 + x)tqn−1 is balaced and unimodal and either LD or RD. Moreover, if we let
μ′′ = μ((1 + x)tqn−1), then μ′′ = μ′ + � t

2
� if qn−1 is LD and μ′′ = μ′ + � t

2
	 if qn−1 is

RD. (Note that Lemma 2.1 applies because our third hypothesis on the values mi

ensures that t ≤ μ′.) Finally, because qn = (1+x)tqn−1+xqn−2, qn =
∑

(αi+βi)x
i =∑

(ai−1 + βi)x
i.

Clearly αk + βk < αk+1 + βk+1 for k ≤ μ and αk + βk > αk+1 + βk+1 for k ≥ μ′′.
Thus, to prove strict unimodality of qn we only need to consider k ∈ [μ+ 1, μ′′ − 1],
and for such k it suffices to show that ak−1 − ak < βk+1− βk. First note that, by the
definition of bj and βk, Part (1) of Lemma 2.2 implies βk+1− βk ≥ (t− 1)(bk − bk+1).
Moreover, because qn−1 = (1 + x)kn−kn−1qn−2 + xqn−3, Part (2) of the same lemma
implies bk−bk+1 ≥ (t′−1)(ak−1−ak), where t

′ = kn−kn−1. (In fact, this last estimate
ignores the non-negative contribution from the term xqn−3, inclusion of which would
only serve to increase the left-hand side of the last inequality.) Putting these together,
we obtain βk+1 − βk ≥ (t− 1)(t′ − 1)(ak−1 − ak) Moreover, our first two hypotheses
on the values mi imply that t, t′ ≥ 2 whenever n ≥ 3. Thus (t− 1)(t′ − 1) ≥ 1, and
the inequality above implies that βk+1 − βk ≥ ak−1 − ak, as desired.

Thus qn is strictly unimodal and

μ(qn) = μ((1 + x)tqn−1) =

{
μ(qn−1) + � t

2
� if qn is RD and

μ(qn−1) + � t
2
	 if qn is LD,

so that qn is balanced as well. Moreover, Lemma 2.2 also implies that the addition
of the terms αk does not affect the LD or RD nature of (1 + x)tqn−1. That is,
qn = (1 + x)tqn−1 + xqn−2 remains LD or RD, accordingly. �

As noted before the statement of the proposition, the fact that pn(x) =
I(T (�m, n), x) is balanced, strictly unimodal (even in the case of p2 when m1 ≥ 6
is even and m2 = m1 + 1), and either LD or RD follows from one more application
of Lemma 2.1, because pn(x) = (1 + x)knqn(x) for all n. This completes our proof of
Theorem 1.1.

We close by offering an explanation for our requirement that �m be non-decreasing.
Observe that for n ≥ 3, kn = min{kn−1 +mn, kn−2 + mn−1}, so that if �m were not
non-decreasing, it could be that, for some n, kn−1 +mn < kn−2 +mn−1, giving us

qn = qn−1 + x(1 + x)kn−2+mn−1−knqn−2,

in which case our fundamental result, Lemma 2.1, would not apply. Therefore with-
out significant further analysis of the recursive construction of an arbitrary cater-
pillar’s independence polynomial, we cannot accommodate sequences �m in which
mk > mk+1 for some k.
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