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A note on signed k-matching in graphs
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Abstract

Let G be a graph of order n. For every v € V(G), let Eg(v) denote the
set of all edges incident with v. A signed k-matching of G is a function
[ E(G) — {—1,1}, satistying f(Fg(v)) < 1 for at least k vertices,
where f(S) = Y .q f(e), for each S C E(G). The maximum of the
values of f(F(G)), taken over all signed k-matchings f of G, is called
the signed k-matching number and is denoted by S%(G). In this paper,
we prove that for every graph G of order n and for any positive integer
k <n, BE(G) > n—k —w(G), where w(G) is the number of components
of G. This settles a conjecture proposed by Wang. Also, we present a
formula for the computation of S%(G).

1 Introduction

Let G be a simple graph with the vertex set V(G) and edge set E(G). For every
v € V(G), let N(v) and Eg(v) denote the set of all neighbors of v and the set
of all edges incident with v, respectively. A signed k-matching of a graph G is a

* Also at Department of Computer Engineering, Sharif University of Technology, Iran.



S. AKBARI ET AL./AUSTRALAS. J. COMBIN. 64 (2) (2016), 341-346 342

function f : E(G) — {—1, 1}, satisfying f(Eg(v)) < 1 for at least k vertices, where
f(8) =>.cq fe), for each S C E(G). The maximum value of f(£(G)), taken over
all signed k-matching f, is called the signed k-matching number of G and is denoted
by BE(G). We refer to a signed n-matching as a signed matching. The concept of
signed matching has been studied by several authors; for instance see [1], [2], [4] and
[5].

Throughout this paper, changing f(e) to —f(e) for an edge e is called switching
the value of e. Let T be a trail with the edges ey, ..., e, and f : E(G) — {—1,1} be
a function. Call T" a good trail, if f(e;) = —f(e;41) fori=1,..., m—1.If f(e;) = a
and f(en) = b, then we call T a good (a,b)-trail. Define O¢(G) = {v € V(G) |d(v) =
1(mod 2), f(Eg(v)) < 1}. A vertex is called odd if its degree is odd. The following
conjecture was proposed in [3].

Conjecture. Let G be a graph without isolated vertices. Then for any positive
integer k,

BE(G) >n—k —w(q),
where w(G) denotes the number of components of G.

In this note we prove this conjecture. Before stating the proof, we need the
following result.

Theorem 1. Let G be a connected graph of order n. Then for any positive integer
k<n, B8(G)>n—k—1.

Proof. If G is a cycle, then by Theorem 2 of [3] the assertion is obvious. Thus
assume that G is not a cycle. Now, we apply induction on |E(G)| — |V(G)|. Since
G is connected, |E(G)| — |V(G)| > —1. If |[E(G)| — |V(G)| = —1, then G is a tree
and so by Theorem 6 of [3], we are done. Now, suppose that the assertion holds
for every graph H with |E(H)| — |V(H)| <t(t > —1) and G be a connected graph
such that |[E(G)| — |V(G)| =t + 1. Since |E(G)| — |V(G)| > 0, G contains a cycle
C' and there exists a vertex v such that v € V(C) and d(v) > 3. Assume that
u,w € N(v)NV(C). Let x € N(v)\{u,w}. Remove two edges vw and zv and
add a new vertex v’. Join v’ to both z and w. Call the new graph G’. Clearly, G’
is connected and |E(G")| — |[V(G')| = t. By the induction hypothesis, 3&(G") >
V(G| —k—2=mn—k—1. We claim that 85(G) > BEM(G’). Let f be a signed
(k + 1)-matching of G’ such that f(FE(G’)) = BET(G"). Define a function g on E(G)
as follows:

For every e € E(G) \ {vx,vw}, let g(e) = f(e). Moreover, define g(xv) = f(zv')
and g(vw) = f(v'w). Tt is not hard to see that g is a k-matching of G. So BE(G) >
g(BE(G)) = BETHG"). Thus BE(G) > n — k — 1, and the claim is proved. The proof
is complete. O

Now, using the previous theorem we show that the conjecture holds.



S. AKBARI ET AL./AUSTRALAS. J. COMBIN. 64 (2) (2016), 341-346 343

Theorem 2. Let G be a graph of order n without isolated vertices. Then for any
positive integer k < n,

B5(G) = n—k - w(G),

where w(G) denotes the number of components of G.

Proof. For the abbreviation let w = w(G). If w = 1, then by Theorem 1 the
assertion holds. Now, suppose that w > 1 and G4, ..., G, are all components of G.
Let f : E(G) — {—1,1}, be a signed k-matching function such that f(FE(G)) =
BE(G). Suppose that A C {v € V(G) | f(Eg(v)) < 1} and |A| = k. Let k; = [{v €
V(G)NA| f(Eg(v)) <1}, fori=1,...,w. Obviously, >, k; = k. By Theorem 1,
BE(Gy) > |V(Gy)| —ki—1, fori = 1,...,w. Now, we show that 8% (G;) = f(E(G))).
By contradiction, suppose that ﬁg(Gz) > f(E(G;)), for some i, i =1,... ,w. Let g :
E(G) — {—1,+1} be a function such that g(e) = f(e), for every e € E(G) \ E(G;)
and the restriction of g on E(G;) is a signed k;-matching with g(E(G;)) = & (Gy).
So we conclude that g(E(G)) > BE(G), a contradiction. Thus 3%(G) = f(E(G)) =
YL JEBG)) =300, B5(G) =2 L (VG = ki = 1) = V(G) -k —w. O

Now, suppose that G is a connected graph containing exactly 2k odd vertices.
Let P be a partition of the edge set into m trails, say T1,...,7T,,, for some m. Call
P a complete partition if m = k. By Theorem 1.2.33 of [6], for every connected
graph with 2k odd vertices there exists at least one complete partition. Note that
for every odd vertex v € V(G), there exists ¢ such that v is an endpoint of T;, where
P T,...,T; is a complete partition of G. So we obtain that the end vertices of
T; are odd and they are mutually disjoint, for i = 1,...,k. Now, define 7(P) =
{i | |E(T;)| = 1(mod 2)}|. Let n(G) = max7(P), taken over all complete partitions
of G. In the next theorem we provide an explicit formula for the signed n-matching
number of a graph.

Theorem 3. For every non-Eulerian connected graph G of order n, f&(G) = n(G).

Proof. For the simplicity, let Oy = Of(G). Let f be a signed matching such that
|O¢| = max(|Oy4|) taken over all signed matching g with g(E(G)) = B&(G). We prove
that f(Eg(v)) > —1, for every v € V(G).

By contradiction suppose that there is a vertex v € V(G) such that f(Eg(v)) <
—2. Let W be a longest good (—1, +1)-trail starting at v. Suppose that W ends at
u. There are two cases:

Case 1. Assume that u # v. If W is a good (—1, —1)-trail, then f(Eqg(u)) < —1,
since otherwise there exists e € Eg(u) \ E(W) such that f(e) = 1, therefore W can
be extended and it contradicts the maximality of |E(WW)|. Now, switch the values
of all edges of W to obtain a function g on E(G), where g(FEq(z)) = f(Eq(x)) for
every x € V(G) \ {u,v}, and g(Eg(x)) = f(Ec(x)) + 2 for z € {u,v}. Thus g is a
signed matching of G such that g(E(G)) = f3(G) + 2, a contradiction.

If W is a good (—1,1)-trail, then f(Eqg(u)) = 1, since otherwise there exists e €
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Eq(u) \ E(W), where f(e) = —1, a contradiction. Now, switch the values of all
the edges of W to obtain a function g on E(G), where g(Eq(z)) = f(Eg(z)) for
r € V(G)\ {u,v}, g(Eg(u)) = —1 and g(Eg(v)) < 1. So g is a signed matching of
G such that g(E(G)) = 3(G) and |Oy| = |Oy| + 1, a contradiction.

Case 2. Now, let u = v. Note that W is a good (—1, —1)-trail, since otherwise
> e BW)nEs() | (€) = 0 and using the inequality f(Eq(v)) < —2, we conclude that
there exists e € Eg(v) \ E(W), such that f(e) = —1. Therefore W can be extended,
a contradiction.

If f(Eg(v)) < —3, then switch the values of all edges of W to obtain a signed
matching g such that g(E(G)) = (3(G) + 2, a contradiction. Now, assume that
f(Eg(v)) = —2. We show that f(Eg(t)) = 0, for every t € V(W) \ {v}. By
contradiction, suppose that there exists x € V(W) \ {v}, such that f(Eg(x)) # 0.
Let eq,...,e, be all edges of W. Assume that e; and e;;; are two consecutive
edges of W which are incident with z. With no loss of generality, assume that
f(e;) = —1. First, suppose that f(Eq(z)) < —1. Call the sub-trail induced on the
edges ey, ey, ...,¢; by Wi. Clearly, W is a good (—1,—1)-trail. Switch the values
of all edges of W to obtain a signed matching ¢ such that g(E(G)) = B4(G) + 2, a
contradiction. Next, suppose that f(Eqg(z)) = 1. Call the sub-trail induced on the
edges €41, ..., ey by Way. Clearly, Wy is a good (1, —1)-trail. Switch the values of all
edges of Wj to obtain a signed matching ¢ such that g(Eg(z)) = —1, g(Eg(v)) =0
and g(Fg(2)) = f(Eqg(2)), for every z € E(G) \ {z,v}. So g(E(G)) = p%(G) and
|Og4| = |O¢| + 1, a contradiction. Thus, f(Eq(t)) =0, for every t € V(W) \ {v}.

Now, we show that Eg(v) C E(W). By contradiction assume that there exists
e € Eg(v)\ E(W). If f(e) = 1, then W can be extended, a contradiction. If
f(e) = —1, then f(Fg(v)) < —3 which contradicts f(Eg(v)) = —2. Thus Eg(v) C
E(W). Since G is non-Eulerian, there are x € V(W) \ {v} and y € V(G) such that
xy ¢ E(W). Let W’ be a longest good trail in G\ E(W) whose first vertex and first
edge are x and xy, respectively. Suppose that W’ ends at 3" and the last edge of W’
is e. We have two possibilities:

If y = x, then we show that W’ is a good (1, —1) or (—1,1)-trail. To see this,
since f(Eg(x)) = 0, we obtain that f(Eg(z) \ E(W)) = 0. If f(e) = f(xy), then
there exists €' € Eg(z) \ (E(W)U E(W')) such that f(¢') = —f(zy). So W’ can be
extended, a contradiction. Thus f(e) # f(xy). It is not hard to see that the trail
with the edges E(W)UE(W’) is a good (—1, —1)-trail starting at v, a contradiction.

Now, suppose that y' # . Assume that x is the common endpoint of e; and e;1,
for some j, 1 < j <m — 1. With no loss of generality assume that f(e;) = —f(zy).
Consider the trail W” :ey,...,e;, W'. Since Eg(v) C E(W), v #v. lf v € V(IW),
then f(Eq(y')) = 0 and }°_ p,wyumsmvneew) f(2) = f(e). Hence there exists
¢ € Eq(y) \ (Ec(W) U Eg(W")) such that f(e’) = —f(e), which contradicts the
maximality of |[E(W')|. Thus ¢y ¢ V(W) and so W” is a maximal good trail in G.
So we reach to Case 1 which we discussed before (Note that in Case 1 we used just
the maximality of the length of W).
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So far we have proved that f(Eq(z)) > —1, for every z € V(G). In the sequel
assume that G has exactly 2k odd vertices. We would like to partition G into & good
trails.

Let T : eq,..., e, be alongest good trail in G. Suppose that T starts at u; and
ends at uy, where uj,us € V(G). First, we show that u; # wus. By contradiction
assume that uy = ug. Suppose that f(e;) # f(en,). Since G is non-Eulerian, there ex-
ists e € F(G)\ E(T) and e is adjacent to the common endpoint of e; and ;1 for some
i,i=1,...,m (eyms1 = €1). With no loss of generality assume that f(e) # f(e;),
so T" @ e,e;, € 1,...,€1,€m, ..., €41 18 a good trail with m + 1 edges, a contra-
diction. Now, suppose that f(e1) = f(em). Since Y. cp e f(2) = 2f(e1)
and |f(Fg(u1))| < 1, we obtain that there exists a € Eg(up) \ E(T) such that
f(a) # f(e1). So T can be extended, a contradiction.

Hence uy # ws. Since f(Eg(v)) = 0, for every v € V(G) of even degree, we
obtain that u; and us have odd degrees. Indeed, if u; has even degree, then
f(Eg(uy)) = 0 and so T can be extended, a contradiction. Now, we show that
Eq(uy) U Eg(ug) € E(T). By contradiction, suppose that there is an edge e €
Eg(u) \ E(T). Clearly, f(e) = f(e1). Since 3_,cp e /(@) = f(er), it is not
hard to see that |f(Eg(u1))| > 2, a contradiction. Hence Eg(u1) U Eg(uz) C E(T).

Let G' = G\(E(T)U{us,us}). First, we prove that G’ has no Eulerian component.
By contradiction suppose that H is an Eulerian component of G'. Since | f(Eg(v))| <
1, for every v € V(G), we have f(Eg(v)) = 0, for every v € V(H). It is straight

forward to see that there is an Eulerian circuit C' : t1,%s, ..., ¢ g) of H such that
f(t;) = —f(tix1), fori=1,... |E(H)| — 1. Clearly,
> vevicy f(Er(v))
B = Y fle)= =" >2 =0 (mod 2).
ecE(C)

Hence, f(t1) = —f(tgm)). Since G is connected and all of the edges of u; and us
belong to E(T'), there exists v € V(H) N V(T). It is not hard to see that we have a
good trail with the edge set E(T) U E(C) which is longer than 7', a contradiction.
So if k = 2, then E(G") = 0, and E(G) forms a good trail. Now, apply induction
on k. Suppose that k& > 2. Let Hy,..., H, be all components of G', where H; has k;
odd vertices (k; > 2), for i = 1,...,r. It is clear that f is a signed matching of H;
such that f(F(H;)) = B‘SV(Hi)l(Hi) and Of(H;) = max Oy4(H;) taken over all signed
matching g with g(F(H;)) = LV(Hi)‘(Hi). So E(H;) can be decomposed into k; good
trails, for ¢ = 1,...,r. Hence, G has a complete partition, say P, into k good trails.
Obviously, f(E(G)) < 7(P) < n(G). Thus, f3(G) < n(G). Now, we give a signed
matching f such that f(E(G)) = n(G).

Consider a complete partition P of the edge set of G, where 7(P) = n(G). For

each trail T} assign +1 and —1 to the edges of T;, alternatively, to obtain a signed
matching f where f(E(G)) = n(G). So the proof is complete. O

Remark. For every Eulerian graph G of size m, f%(G) = 0 if m is even and
BE(G) = —1 if m is odd. To see this, let f be a signed matching of G such that
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f(E(G)) = B%(G). Since the degree of each vertex of G is even, f(Eg(v)) < 0, for
every v € V(G). Thus f(E(G)) = %ZUeV(G) f(Eg(v)) < 0. Therefore, 8Z(G) <0,
if m is even and B%(G) < —1, if m is odd. Now, consider an Eulerian circuit of G.
Assign —1 and +1 to the edges of this Eulerian circuit, alternatingly to obtain a

signed matching g with the desired property.
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