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A note on signed k-matching in graphs

S. Akbari M. Dalirrooyfard∗

Department of Mathematical Sciences
Sharif University of Technology

Tehran
Iran

s akbari@sharif.edu mdalirrooyfard@ce.sharif.edu

K. Ehsani R. Sherkati

Department of Computer Engineering
Sharif University of Technology

Tehran
Iran

kehsani@ce.sharif.edu sherkati@ce.sharif.edu

Abstract

Let G be a graph of order n. For every v ∈ V (G), let EG(v) denote the
set of all edges incident with v. A signed k-matching of G is a function
f : E(G) −→ {−1, 1}, satisfying f(EG(v)) ≤ 1 for at least k vertices,
where f(S) =

∑
e∈S f(e), for each S ⊆ E(G). The maximum of the

values of f(E(G)), taken over all signed k-matchings f of G, is called
the signed k-matching number and is denoted by βk

S(G). In this paper,
we prove that for every graph G of order n and for any positive integer
k ≤ n, βk

S(G) ≥ n− k − ω(G), where w(G) is the number of components
of G. This settles a conjecture proposed by Wang. Also, we present a
formula for the computation of βn

S(G).

1 Introduction

Let G be a simple graph with the vertex set V (G) and edge set E(G). For every
v ∈ V (G), let N(v) and EG(v) denote the set of all neighbors of v and the set
of all edges incident with v, respectively. A signed k-matching of a graph G is a
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function f : E(G) −→ {−1, 1}, satisfying f(EG(v)) ≤ 1 for at least k vertices, where
f(S) =

∑
e∈S f(e), for each S ⊆ E(G). The maximum value of f(E(G)), taken over

all signed k-matching f , is called the signed k-matching number of G and is denoted
by βk

S(G). We refer to a signed n-matching as a signed matching. The concept of
signed matching has been studied by several authors; for instance see [1], [2], [4] and
[5].

Throughout this paper, changing f(e) to −f(e) for an edge e is called switching
the value of e. Let T be a trail with the edges e1, . . . , em and f : E(G) −→ {−1, 1} be
a function. Call T a good trail, if f(ei) = −f(ei+1) for i = 1, . . . , m− 1. If f(e1) = a
and f(em) = b, then we call T a good (a, b)-trail. Define Of(G) = {v ∈ V (G) | d(v) ≡
1(mod 2), f(EG(v)) < 1}. A vertex is called odd if its degree is odd. The following
conjecture was proposed in [3].

Conjecture. Let G be a graph without isolated vertices. Then for any positive
integer k,

βk
S(G) ≥ n− k − ω(G),

where ω(G) denotes the number of components of G.

In this note we prove this conjecture. Before stating the proof, we need the
following result.

Theorem 1. Let G be a connected graph of order n. Then for any positive integer
k ≤ n, βk

S(G) ≥ n− k − 1.

Proof. If G is a cycle, then by Theorem 2 of [3] the assertion is obvious. Thus
assume that G is not a cycle. Now, we apply induction on |E(G)| − |V (G)|. Since
G is connected, |E(G)| − |V (G)| ≥ −1. If |E(G)| − |V (G)| = −1, then G is a tree
and so by Theorem 6 of [3], we are done. Now, suppose that the assertion holds
for every graph H with |E(H)| − |V (H)| ≤ t (t ≥ −1) and G be a connected graph
such that |E(G)| − |V (G)| = t + 1. Since |E(G)| − |V (G)| ≥ 0, G contains a cycle
C and there exists a vertex v such that v ∈ V (C) and d(v) ≥ 3. Assume that
u, w ∈ N(v) ∩ V (C). Let x ∈ N(v)\{u, w}. Remove two edges vw and xv and
add a new vertex v′. Join v′ to both x and w. Call the new graph G′. Clearly, G′

is connected and |E(G′)| − |V (G′)| = t. By the induction hypothesis, βk+1
S (G′) ≥

|V (G′)| − k − 2 = n − k − 1. We claim that βk
S(G) ≥ βk+1

S (G′). Let f be a signed
(k+1)-matching of G′ such that f(E(G′)) = βk+1

S (G′). Define a function g on E(G)
as follows:

For every e ∈ E(G) \ {vx, vw}, let g(e) = f(e). Moreover, define g(xv) = f(xv′)
and g(vw) = f(v′w). It is not hard to see that g is a k-matching of G. So βk

S(G) ≥
g(E(G)) = βk+1

S (G′). Thus βk
S(G) ≥ n − k − 1, and the claim is proved. The proof

is complete. �

Now, using the previous theorem we show that the conjecture holds.
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Theorem 2. Let G be a graph of order n without isolated vertices. Then for any
positive integer k ≤ n,

βk
S(G) ≥ n− k − ω(G),

where ω(G) denotes the number of components of G.

Proof. For the abbreviation let ω = ω(G). If ω = 1, then by Theorem 1 the
assertion holds. Now, suppose that ω > 1 and G1, . . . , Gω are all components of G.
Let f : E(G) −→ {−1, 1}, be a signed k-matching function such that f(E(G)) =
βk
S(G). Suppose that A ⊂ {v ∈ V (G) | f(EG(v)) ≤ 1} and |A| = k. Let ki = |{v ∈

V (Gi)∩A | f(EG(v)) ≤ 1}|, for i = 1, . . . , ω. Obviously,
∑ω

i=1 ki = k. By Theorem 1,
βki
S (Gi) ≥ |V (Gi)| − ki − 1, for i = 1, . . . , ω. Now, we show that βki

S (Gi) = f(E(Gi)).
By contradiction, suppose that βki

S (Gi) > f(E(Gi)), for some i, i = 1, . . . , ω. Let g :
E(G) −→ {−1,+1} be a function such that g(e) = f(e), for every e ∈ E(G) \E(Gi)
and the restriction of g on E(Gi) is a signed ki-matching with g(E(Gi)) = βki

S (Gi).
So we conclude that g(E(G)) > βk

S(G), a contradiction. Thus βk
S(G) = f(E(G)) =∑ω

i=1 f(E(Gi)) =
∑ω

i=1 β
ki
S (Gi) ≥

∑ω
i=1(|V (Gi)| − ki − 1) = |V (G)| − k − ω. �

Now, suppose that G is a connected graph containing exactly 2k odd vertices.
Let P be a partition of the edge set into m trails, say T1, . . . , Tm, for some m. Call
P a complete partition if m = k. By Theorem 1.2.33 of [6], for every connected
graph with 2k odd vertices there exists at least one complete partition. Note that
for every odd vertex v ∈ V (G), there exists i such that v is an endpoint of Ti, where
P : T1, . . . , Tk is a complete partition of G. So we obtain that the end vertices of
Ti are odd and they are mutually disjoint, for i = 1, . . . , k. Now, define τ(P ) =
|{i | |E(Ti)| ≡ 1(mod 2)}|. Let η(G) = max τ(P ), taken over all complete partitions
of G. In the next theorem we provide an explicit formula for the signed n-matching
number of a graph.

Theorem 3. For every non-Eulerian connected graph G of order n, βn
S(G) = η(G).

Proof. For the simplicity, let Of = Of(G). Let f be a signed matching such that
|Of | = max(|Og|) taken over all signed matching g with g(E(G)) = βn

S(G). We prove
that f(EG(v)) ≥ −1, for every v ∈ V (G).

By contradiction suppose that there is a vertex v ∈ V (G) such that f(EG(v)) ≤
−2. Let W be a longest good (−1,±1)-trail starting at v. Suppose that W ends at
u. There are two cases:

Case 1. Assume that u �= v. If W is a good (−1,−1)-trail, then f(EG(u)) ≤ −1,
since otherwise there exists e ∈ EG(u) \ E(W ) such that f(e) = 1, therefore W can
be extended and it contradicts the maximality of |E(W )|. Now, switch the values
of all edges of W to obtain a function g on E(G), where g(EG(x)) = f(EG(x)) for
every x ∈ V (G) \ {u, v}, and g(EG(x)) = f(EG(x)) + 2 for x ∈ {u, v}. Thus g is a
signed matching of G such that g(E(G)) = βn

S(G) + 2, a contradiction.
If W is a good (−1, 1)-trail, then f(EG(u)) = 1, since otherwise there exists e ∈
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EG(u) \ E(W ), where f(e) = −1, a contradiction. Now, switch the values of all
the edges of W to obtain a function g on E(G), where g(EG(x)) = f(EG(x)) for
x ∈ V (G) \ {u, v}, g(EG(u)) = −1 and g(EG(v)) < 1. So g is a signed matching of
G such that g(E(G)) = βn

S(G) and |Og| = |Of |+ 1, a contradiction.

Case 2. Now, let u = v. Note that W is a good (−1,−1)-trail, since otherwise∑
e∈E(W )∩EG(v) f(e) = 0 and using the inequality f(EG(v)) ≤ −2, we conclude that

there exists e ∈ EG(v) \E(W ), such that f(e) = −1. Therefore W can be extended,
a contradiction.

If f(EG(v)) ≤ −3, then switch the values of all edges of W to obtain a signed
matching g such that g(E(G)) = βn

S(G) + 2, a contradiction. Now, assume that
f(EG(v)) = −2. We show that f(EG(t)) = 0, for every t ∈ V (W ) \ {v}. By
contradiction, suppose that there exists x ∈ V (W ) \ {v}, such that f(EG(x)) �= 0.
Let e1, . . . , em be all edges of W . Assume that ei and ei+1 are two consecutive
edges of W which are incident with x. With no loss of generality, assume that
f(ei) = −1. First, suppose that f(EG(x)) ≤ −1. Call the sub-trail induced on the
edges e1, e2, . . . , ei by W1. Clearly, W1 is a good (−1,−1)-trail. Switch the values
of all edges of W1 to obtain a signed matching g such that g(E(G)) = βn

S(G) + 2, a
contradiction. Next, suppose that f(EG(x)) = 1. Call the sub-trail induced on the
edges ei+1, . . . , em by W2. Clearly, W2 is a good (1,−1)-trail. Switch the values of all
edges of W2 to obtain a signed matching g such that g(EG(x)) = −1, g(EG(v)) = 0
and g(EG(z)) = f(EG(z)), for every z ∈ E(G) \ {x, v}. So g(E(G)) = βn

S(G) and
|Og| = |Of |+ 1, a contradiction. Thus, f(EG(t)) = 0, for every t ∈ V (W ) \ {v}.

Now, we show that EG(v) ⊆ E(W ). By contradiction assume that there exists
e ∈ EG(v) \ E(W ). If f(e) = 1, then W can be extended, a contradiction. If
f(e) = −1, then f(EG(v)) ≤ −3 which contradicts f(EG(v)) = −2. Thus EG(v) ⊆
E(W ). Since G is non-Eulerian, there are x ∈ V (W ) \ {v} and y ∈ V (G) such that
xy /∈ E(W ). Let W ′ be a longest good trail in G \E(W ) whose first vertex and first
edge are x and xy, respectively. Suppose that W ′ ends at y′ and the last edge of W ′

is e. We have two possibilities:

If y′ = x, then we show that W ′ is a good (1,−1) or (−1, 1)-trail. To see this,
since f(EG(x)) = 0, we obtain that f(EG(x) \ E(W )) = 0. If f(e) = f(xy), then
there exists e′ ∈ EG(x) \ (E(W ) ∪ E(W ′)) such that f(e′) = −f(xy). So W ′ can be
extended, a contradiction. Thus f(e) �= f(xy). It is not hard to see that the trail
with the edges E(W )∪E(W ′) is a good (−1,−1)-trail starting at v, a contradiction.

Now, suppose that y′ �= x. Assume that x is the common endpoint of ej and ej+1,
for some j, 1 ≤ j ≤ m− 1. With no loss of generality assume that f(ej) = −f(xy).
Consider the trail W ′′ : e1, . . . , ej,W ′. Since EG(v) ⊆ E(W ), y′ �= v. If y′ ∈ V (W ),
then f(EG(y

′)) = 0 and
∑

z∈(EG(W )∪EG(W ′))∩EG(y′) f(z) = f(e). Hence there exists

e′ ∈ EG(y
′) \ (EG(W ) ∪ EG(W

′)) such that f(e′) = −f(e), which contradicts the
maximality of |E(W ′)|. Thus y′ /∈ V (W ) and so W ′′ is a maximal good trail in G.
So we reach to Case 1 which we discussed before (Note that in Case 1 we used just
the maximality of the length of W ).
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So far we have proved that f(EG(z)) ≥ −1, for every z ∈ V (G). In the sequel
assume that G has exactly 2k odd vertices. We would like to partition G into k good
trails.

Let T : e1, . . . , em be a longest good trail in G. Suppose that T starts at u1 and
ends at u2, where u1, u2 ∈ V (G). First, we show that u1 �= u2. By contradiction
assume that u1 = u2. Suppose that f(e1) �= f(em). Since G is non-Eulerian, there ex-
ists e ∈ E(G)\E(T ) and e is adjacent to the common endpoint of ei and ei+1 for some
i, i = 1, . . . , m (em+1 = e1). With no loss of generality assume that f(e) �= f(ei),
so T ′ : e, ei, ei−1, . . . , e1, em, . . . , ei+1 is a good trail with m + 1 edges, a contra-
diction. Now, suppose that f(e1) = f(em). Since

∑
z∈EG(u1)∩E(T ) f(z) = 2f(e1)

and |f(EG(u1))| ≤ 1, we obtain that there exists a ∈ EG(u1) \ E(T ) such that
f(a) �= f(e1). So T can be extended, a contradiction.
Hence u1 �= u2. Since f(EG(v)) = 0, for every v ∈ V (G) of even degree, we
obtain that u1 and u2 have odd degrees. Indeed, if u1 has even degree, then
f(EG(u1)) = 0 and so T can be extended, a contradiction. Now, we show that
EG(u1) ∪ EG(u2) ⊆ E(T ). By contradiction, suppose that there is an edge e ∈
EG(u1) \ E(T ). Clearly, f(e) = f(e1). Since

∑
a∈EG(u1)∩E(T ) f(a) = f(e1), it is not

hard to see that |f(EG(u1))| ≥ 2, a contradiction. Hence EG(u1) ∪ EG(u2) ⊆ E(T ).

LetG′ = G\(E(T )∪{u1, u2}). First, we prove thatG′ has no Eulerian component.
By contradiction suppose that H is an Eulerian component of G′. Since |f(EG(v))| ≤
1, for every v ∈ V (G), we have f(EG(v)) = 0, for every v ∈ V (H). It is straight
forward to see that there is an Eulerian circuit C : t1, t2, . . . , t|E(H)| of H such that
f(ti) = −f(ti+1), for i = 1, . . . , |E(H)| − 1. Clearly,

|E(C)| ≡
∑

e∈E(C)

f(e) ≡
∑

v∈V (C) f(EH(v))

2
≡ 0 (mod 2).

Hence, f(t1) = −f(t|E(H)|). Since G is connected and all of the edges of u1 and u2

belong to E(T ), there exists v ∈ V (H) ∩ V (T ). It is not hard to see that we have a
good trail with the edge set E(T ) ∪ E(C) which is longer than T , a contradiction.
So if k = 2, then E(G′) = ∅, and E(G) forms a good trail. Now, apply induction
on k. Suppose that k > 2. Let H1, . . . , Hr be all components of G′, where Hi has ki
odd vertices (ki ≥ 2), for i = 1, . . . , r. It is clear that f is a signed matching of Hi

such that f(E(Hi)) = β
|V (Hi)|
S (Hi) and Of(Hi) = maxOg(Hi) taken over all signed

matching g with g(E(Hi)) = β
|V (Hi)|
S (Hi). So E(Hi) can be decomposed into ki good

trails, for i = 1, . . . , r. Hence, G has a complete partition, say P , into k good trails.
Obviously, f(E(G)) ≤ τ(P ) ≤ η(G). Thus, βn

S(G) ≤ η(G). Now, we give a signed
matching f such that f(E(G)) = η(G).

Consider a complete partition P of the edge set of G, where τ(P ) = η(G). For
each trail Ti assign +1 and −1 to the edges of Ti, alternatively, to obtain a signed
matching f where f(E(G)) = η(G). So the proof is complete. �

Remark. For every Eulerian graph G of size m, βn
S(G) = 0 if m is even and

βn
S(G) = −1 if m is odd. To see this, let f be a signed matching of G such that
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f(E(G)) = βn
S(G). Since the degree of each vertex of G is even, f(EG(v)) ≤ 0, for

every v ∈ V (G). Thus f(E(G)) = 1
2

∑
v∈V (G) f(EG(v)) ≤ 0. Therefore, βn

S(G) ≤ 0,

if m is even and βn
S(G) ≤ −1, if m is odd. Now, consider an Eulerian circuit of G.

Assign −1 and +1 to the edges of this Eulerian circuit, alternatingly to obtain a
signed matching g with the desired property.
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