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Abstract

We give four new extension theorems for linear codes over F,: (a) For ¢ =
2" h > 3, every [n, k,d], code with d odd whose weights are congruent
to 0 or d (mod ¢/2) is extendable. (b) For ¢ = 2" h > 3, every [n, k,d],
code with ged(d, ¢) = 2 whose weights are congruent to 0 or d (mod q) is
doubly extendable. (c) For integers h, m,t with 0 < m <t < h and prime
p, every [n, k,d], code with ged(d,q) = p™ and ¢ = p" is extendable if
D izd (mod pt) Ai < ¢ H1(q)¢"?(g—1), where g+7(g) +1 is the smallest
size of a non-trivial blocking set in PG(2, ¢). (d) Every [n, k, d|, code with
ged(d, q) = 1 whose diversity is (6x_1 — 2¢"72, ¢*72) is extendable. These
are generalizations of some known extension theorems by Hill and Lizak
(1995), Simonis (2000) and Maruta (2005).

1 Introduction

Let F denote the vector space of n-tuples over F,, the field of ¢ elements. A g-ary
linear code of length n and dimension k or an [n, k], code is a k-dimensional subspace
of F7. An [n, k,d], code is an [n, k], code with minimum (Hamming) distance d. The
weight of a vector € Fy, denoted by wt(x), is the number of nonzero coordinate
positions in . The weight distribution of C is the list of numbers (A, Ay, ..., A,),
where A; denotes the number of codewords of C with weight 7. A; is usually omitted
from the list if A; = 0. The weight distribution (Ag, Ag4,...) = (1, a,...) is expressed
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as 0'd”... in this paper. A g-ary linear code C is called w-weight (mod q) if C has
exactly w distinct weights of codewords under modulo ¢ reduction. We only consider
linear codes over finite fields having no coordinate which is identically zero. For an
[n, k, d], code C with a generator matrix G, C is called eztendable (to C') if there exists
a vector h € F} such that the extended matrix [G, h'] generates an [n+1,k,d + 1],
code C'. Then C' is called an extension of C. C is doubly extendable if one of its
extensions C’ is also extendable. The most well-known extension theorem is the
following by Hill and Lizak [6]; see also [5] and [10].

Theorem 1.1 ([6]). Every [n, k,d], code with gcd(d, q) = 1, whose weights (of code-
words) are congruent to 0 or d (mod q), is extendable.

For even ¢ > 8, we give a stronger result:

Theorem 1.2. For g = 2", h >3, every [n, k,d], code with d odd whose weights are
congruent to 0 or d (mod q/2) is extendable.

Theorem 1.1 is an extension theorem for 2-weight (mod ¢) linear codes. As for
the extension theorems for 3-weight (mod ¢) linear codes, see [14]. Theorem 1.2 is
applicable to 4-weight (mod ¢) linear codes whose weights are 0, ¢/2,d, d+ ¢/2 (mod
q), and is the first extension theorem for 4-weight (mod ¢) linear codes.

The extendability of [n,k,d], codes with ged(d,q) = 2 was first investigated
in [17]. The condition “ged(d,q) = 1”7 in Theorem 1.1 cannot be replaced by
“ged(d, q) = 27 for ¢ = 4 since there is a counterexample; see [17]. But for ¢ > 8, we
prove the following.

Theorem 1.3. For q = 2", h > 3, every [n,k,d], code with gcd(d,q) = 2 whose
weights are congruent to 0 or d (mod q) is doubly extendable.

Simonis [16] gave the following generalization of Theorem 1.1.
Theorem 1.4 ([16]). Fvery [n,k,d], code with gcd(d,q) = 1, ¢ = p", p prime, is
extendable if 32y (moa py Ai = gt
We give a generalization of Theorem 1.4:

Theorem 1.5. Let h,m,t be integers with 0 < m < t < h. For ¢ = p" with prime
p, every [n,k,d], code with gcd(d,q) = p™ is extendable if

Yoo A= (1.1)
i#Zd (mod pt)
Note that Theorem 1.4 is the case m = 0, t = 1 in Theorem 1.5. The condition (1.1)
can be weakened to the following.

Theorem 1.6. Let h,m,t be integers with 0 < m < t < h. For ¢ = p" with prime
p, every [n,k,d], code with gcd(d,q) = p™ is extendable if

Y A< (g g - ), (1.2)
iZd (mod pt)

where q +1(q) + 1 is the smallest size of a non-trivial blocking set in PG(2,q).
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A non-trivial blocking set in PG(2, q) is a set of points in the projective plane over F,
meeting every line in at least one point but containing no line; see Chapter 13 of [7].
As for r(q), it is known that 7(3) = r(4) = 2, r(5) = 3, r(7) = 4. It can be shown
that the inequality (1.2) implies the equality (1.1). The following result is known as
another extension theorem making use of r(q).

Theorem 1.7 ([9]). Every [n,k,d], code with ged(d,q) =1 is extendable if

Yo A< (). (1.3)

i#0,d (mod q)

Since the condition on weights of codewords in Theorem 1.1 can be written as
Ei;—éo, d (mod g) A; = 0, Theorem 1.7 is also a generalization of Theorem 1.1, and the
inequality (1.3) was recently improved as follows.

Theorem 1.8 ([15]). Every [n,k,d|, code with gcd(d,q) =1 is extendable if

Z A; < qk_Q(q - 1).

i#20,d (mod q)

To give one more extension theorem, we introduce the diversity of a linear code.
For an [n, k, d], code C with ged(d, ¢) < ¢, let

CI)OZLZAE o = 11 Z Aj,

¢—1 qli,i>0 T % 20,4 (mod q)

where the notation ¢|i means that ¢ is a divisor of i. The pair of integers (®g, ;)
is called the diversity of C ([11], [12]). Theorem 1.8 shows that C is extendable if
®; < ¢"? and ged(d, q) = 1. Next, we consider the case when ®; = ¢"~2. We denote
0; = (¢ —1)/(qg —1) for F,. As for ternary linear codes (¢ = 3), it is known that
an [n, k,d]3 code with ged(3,d) = 1, k > 3, is extendable if

((I)07 (I)l) € {(0k—27 O)? (ek—fia 2- 3k_2)7 (0145—27 2- 3k_2)7 (0145—2 + 3k_27 3k_2)}7

see [12]. For an [n, k,d], code C with ged(d, q¢) = 1, k > 3, it follows from Theorem 1.1
that C is extendable if (®g, P1) = (fx—2,0). We generalize the case (Py,P;) =
(Ox_o + 3772, 3F72) for ternary linear codes to g-ary linear codes.

Theorem 1.9. Let C be an [n, k,d], code with diversity ($o, P1), gcd(d,q) = 1. Then
C is extendable if (®g, P1) = (01 — 2¢"2,¢F7?).

Example 1.1.

(a) Let C; be a [100,3,87]s code. Considering the possible residual codes, it can be
proved that all possible weights of C; are 87,88,91,92,95,96. So, A; = 0 for all 1 #
0,3 (mod 4). Hence C; is extendable by Theorem 1.2. Actually, the possible weight
distributions for C; are 0*8741388639535  (18742088569528967  (187392881991569214 and
018737888639170.
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(b) There exists a [73, 4,62]s code Cy with weight distribution 016217616418837(252721%
see [8]. Since the weights of Cy are congruent to 0 or 6 (mod 8), Cy is doubly
extendable to a [75, 4, 64]s code by Theorem 1.3.

(c) There exists a [30, 3,22]; code C3 with weight distribution 012242415303, see [3].
C; is extendable by Theorem 1.6 with m =1,t =2, p = 2.

(d) Let C4 be a [15,3,7]4 code with generator matrix

1
Gy=1|0
0

O = O

0
0
1

— = =
O = O
g — o
o = O
O = =
E — o
[

1
w
0

— & =

1
w
1

o €=
o €=

where F;, = {0,1,w,@}. The weight distribution of C4 is 0173839311°12%¢13° with
diversity (13,4). So, C, is extendable by Theorem 1.9. Indeed, by adding the column
(1,0,1)T to G4, one gets a [16, 3, 8], code C} with weight distribution 0183961221342,
See also Example 2.1 in Section 2.

Problem. (i) Can the conditions “g = 2"” and “ (mod ¢/2)” in Theorem 1.2 be
generalized to “g = p"” and “ (mod ¢/p)” for an odd prime p?

(ii) Is Theorem 1.9 valid for the case ged(d, q) > 27

(iii) Find more diversities such that every code over F, is extendable.

2 Proof of the main theorems

We first give the geometric method to investigate linear codes over I, through pro-
jective geometry. A j-flat of PG(r,q) is a projective subspace of dimension j in
PG(r,q). The 0-flats, 1-flats, 2-flats and (r — 1)-flats are called points, lines, planes
and hyperplanes, respectively. The number of points in a j-flat is [PG(j,q)| = 6; =
(¢t —1)/(q — 1), where |T| denotes the number of elements in the set 7. We refer
to [7] for geometric terminologies.

We assume k > 3. Let C be an [n,k,d|, code with diversity (®,,®;) and a
generator matrix G with no all-zero column. Let g; be the i-th row of G for 1 < i < k.
We consider the mapping w¢ from ¥ :=PG(k —1,q) to {i | A; > 0}, the set of non-
zero weights of C. For P = P(py,...,px) € X, the weight of P with respect to G,
denoted by wg(P), is defined as wa(P) = wt(3F_ | pigi), see [14].

Lemma 2.1 ([13]). For a line L = { Py, Py,...,P,} in 3, the following holds:
q
wo(L) =3 we(P) =0 (mod g).
i=0

Let Fy = {P € ¥ | wg(P) = d}. Recall that a hyperplane H of ¥ is defined by a
non-zero vector h = (hy, ..., hg) € IF’; as H=A{P(p1,...,px) € X | hup1+---+hgpr =
0}. The vector h is called a defining vector of H.
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Lemma 2.2 ([13]). C is extendable if and only if there exists a hyperplane H of ¥
such that FyN H = (. Moreover, the extended matriz of G by adding a defining
vector of H as a column generates an extension of C.

Now, let

Fy = {PeX|we(P)
F, = {PeX|we(P)
F, = {PeX|we(P)

0 (mod gq)},
0,d (mod q)},
d (mod q)} D Fy.

11 S

Note that (®g, P1) = (|Fol, |F1|). Since (Fo U Fy) N Fy = 0 if ged(d, q) < ¢, we get
the following.

Lemma 2.3. C is extendable if gcd(d,q) < q and if there exists a hyperplane H of
> such that H C Fy U F7.

A set B of points in PG(r, q) is called a blocking set with respect to s-flats if every
s-flat in PG(r,q) meets B in at least one point. A blocking set in PG(r,q) with
respect to s-flats is called non-trivial if it contains no (r — s)-flat.

Lemma 2.4 ([1],[2],[4]). Let B be a blocking set with respect to s-flats in PG(r,q).
(a) |B| > 0,_s, where the equality holds if and only if B is an (r — s)-flat.

(b) |B| > 0,_s+q" " 1r(q) if B is non-trivial, where q+r(q) + 1 is the smallest size
of a non-trivial blocking set in PG(2,q).

The following result is essential in the proofs of Theorems 1.2 and 1.3.

Lemma 2.5 ([17]). Let K be a set of points in ¥ = PG(k — 1,q), k > 3, ¢ = 2",
h > 3, meeting every line in exactly 1, q/2+ 1, or g+ 1 points. Then, K contains a
hyperplane of 3.

Now, we are ready to prove our results.

Proof of Theorem 1.2. For ¢ = 2" h > 3, let C be an [n, k,d], code with d odd
whose weights are congruent to 0 or d (mod ¢/2). For a generator matrix G of C
and a line L in ¥ = PG(k — 1,¢q), we have wg(L) = Y pe; wa(P) = 0 (mod q) by
Lemma 2.1. Let Fy := {Q € ¥ | wg(Q) is even}. Then, Fy N F; = (. Assume that
the t points on L have odd weights and that the other have even weights. Then, from
the condition, we have td = 0 (mod ¢/2), so, t = 0 (mod ¢/2), for d is odd. Hence
t =0,q/2 or q. Thus, |Fy N Ll =1,q/24+1or¢g+1, and Fy contains a hyperplane
of ¥ by Lemma 2.5. Hence our assertion follows from Lemma 2.2. O

Proof of Theorem 1.3. For ¢ = 2" h > 3, let C be an [n,k,d|, code with
ged(d, g) = 2 whose weights are congruent to 0 or d (mod ¢). For a generator matrix
G of Cand aline L in ¥ = PG(k—1,¢q), we have wg(L) = > pop we(P) =0 (mod gq)
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by Lemma 2.1. Note that X = Fy U Fy, Fy N Fy = (). Assume |L N Fy| = t. Then,
from the condition, we have td = 0 (mod q), so, t =0 (mod ¢/2), for ged(d, q) = 2.
Hence t = 0,¢q/2 or q. Thus, |[FyNL| = 1,¢q/2+ 1 or ¢ + 1, and Fy contains a
hyperplane of ¥, say H, by Lemma 2.5. Hence C is extendable by Lemma 2.3. Let
C’ be the extension with generator matrix G’ = [G, hT], where h is a defining vector
of H. Let Fy = {P € ¥ | we(P) = d+1}. Note that wg(P) = we(P) =0 (mod q)
for any point P of H. Since d + 1 is odd, we have H N Fy = (). Hence, C’ is also
extendable by Lemma 2.2. O

Proof of Theorem 1.6. For integers h, m,t with 0 < m < t < h and for ¢ = p" with
prime p, let C be an [n, k, d], code with ged(d, ¢) = p™ and assume Eii&d (mod pt) Ai <
¢"1+r(q)¢"3(qg—1). For a generator matrix G of C and a line L in ¥ = PG(k—1, q),
we have wg(L) = Y pe; we(P) = 0 (mod ¢) by Lemma 2.1. Let Fy = {Q €
% | we(Q) # d (mod p)} and Fy = {Q € ¥ | we(Q) = d (mod p)}. Then,
FoNFy; =0 and |Fy| < 0p_o + r(q)¢">. Suppose L C F,. Then, we have d = 0
(mod p'), a contradiction. Thus Fy forms a blocking set with respect to lines in
Y. Hence F, contains a hyperplane of ¥ by Lemma 2.4, and C is extendable by
Lemma 2.2. O

Lemma 2.6. Let K be a set of points in ¥ = PG(r,q) with K # X. Then K is a
hyperplane of ¥ if and only if every line meets K in either one or q + 1 points.

A line ¢ is called an (i, j)-line if |[¢ N Fy| =i and [¢ N Fy| = 5. Note that a (1, 1)-line
and a (0, 1)-line do not exist by Lemma 2.1.

Proof of Theorem 1.9. Let C be an [n,k,d], code with diversity (®g,®;) =
(Op—1 — 2¢"72,¢"2), ged(d,q) = 1, k > 3. Then, we have |F}| = |Fy| = ¢*2. For
R € F;, there exist at least 6_3 lines through R containing no point of Fi, for
|Fi| = ¢"2. Such lines are (1,0)-lines, for ged(d,q) = 1. Let ly,...,ls, , be such
lines and let H = (J2*7* ;. Since |Fy N H| = (¢ — 1)6_3+ 1 = | Fy|, we have F, C H.
Hence, every line through two points of F is a (1,0)-line. For R; € [; and R; € [;
with ¢ # j and R;, R; # R, the line | = (R;, R;) is a (1,0)-line. Let P be the
point of Fy on [. If there exists a point of F} on the line [p = (R, P), then there
exists a (1,1)-line or a (0, 1)-line on the plane (l;,;), a contradiction. Hence [p is
also a (1,0)-line, and [ is contained in H. It follows that H forms a hyperplane of
Y =PG(k —1,q). Since H contains only (1,0)-lines or (¢ + 1,0)-lines, Hy = Fy N H
is a hyperplane of H by Lemma 2.6. Now, take a hyperplane H; through H, with
H, # H. Then, we have H; C Fy U Fy since F, = H \ Hy. Hence C is extendable by
Lemma 2.3. ]

Example 2.1. Let us investigate the [15,3,7]4 code Cy in Example 1.1 (d). We
denote by [a, b, ] the line in PG(2, 4) with defining vector (a, b, ¢). From the generator
matrix G4, we have Fy = {(1,1,0), (1,©,0), (0,1,1), (1,w,1), (1,0,w), (0,1,w),
(1,1,w), (1,o,w), (1,0,0), (0,1,0), (1,1,0), (1,&,o), (1,0,0)} and F; = {(1,0,1),
(0,1,0), (1,1,1), (1,0, 1)}, where (x,y, z) stands for the point P(x,y, z) of PG(2,4).
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Hence, Fy U F} contains a (1,4)-line [1,0,1], which gives a [16,3,8]4 code C} in
Example 1.1 (d). On the other hand, F contains a (5,0)-line [0,1,w], giving a
[16, 3, 8] code with weight distribution 0183951212132,
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