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Abstract

For a mixed graph, its Laplacian spectral radius is defined by that of its
Laplacian matrix. In this paper, we determine respectively the unicyclic
mixed graphs with the first, the second and the third largest spectral
radii among all unicyclic mixed graphs of given order.

1 Introduction

Let G = (V,E) be a mized graph with vertex set V = V(G) = {v1,vs,...,v,} and
edge set E = E(G) = {ey,..., ey}, which is obtained from an undirected graph by
orienting some of its edges. Then some edges of G have a special head and tail, while
others do not. We assume that G has no multi-edges or loops in this paper. The
sign of e € E(G) is denoted by sgne and defined as sgne = 1 if e is unoriented and
sgne = —1 otherwise. Set a;; = sgn{v;,v,} if {v;,v;} € E(G) and a;; = 0 otherwise.
Then A(G) = [ay] is called the adjacency matriz of G. The degree of the vertex
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v € V(G) is denoted by d¢(v) = d(v) and is defined to be the number of all (oriented
and unoriented) edges incident to v. The incidence matriz of G is the n x m matrix
M = M(G) = [m;;] whose entries are given by m;; = 1 if e; is an unoriented edge
incident with v; or e; is an oriented edge with head v;; m;; = —1 if e; is an oriented
edge with tail v;; and m;; = 0 otherwise. The Laplacian matriz of G is defined as
L = L(G) = MM?" ([1]), where M” denotes the transpose of M. One can find
that L(G) = D(G) + A(G), where D(G) = diag{d(v1),d(vs),...,d(v,)}. It is easy
to see that L(G) is symmetric and positive semidefinite so that its eigenvalues can
be arranged as follows: 0 < A\, (G) < A\1(G) < --+ < A (G). We simply say the
eigenvalues and eigenvectors of L(G) are those of G. We also refer to A;(G) as the
spectral radius of G, and denote it by p(G).

A mixed graph G is called singular (or nonsingular) if L(G) is singular (or nonsin-
gular). Clearly, if G is all-oriented (i.e. all edges of G are oriented), then L(G) is a
standard Laplacian matrix which is consistent with the Laplacian matrix of a simple
graph (see [11]); and there are a lot of results involved with the relations between its
spectrum and numerous graph invariants, such as connectivity, diameter, matching
number, isoperimetric number, and expanding properties of a graph; see, for exam-
ple, [6, 8, 11, 12]. If G is all-unoriented (i.c. all edges of G are unoriented), then
L(G) is called the unoriented Laplacian matriz ([7]). So the notion of a mixed graph
generalizes both the classical approach of orienting all edges and the unoriented ap-
proach. It is necessary to stress that even for an unoriented graph G its Laplacian
matriz, L(G) = D(G) + A(G), is different from the usual Laplacian matriz (which
is L(G) = D(G) — A(G)). For algebraic properties of mixed graphs, one can refer to
1, 2,3, 4,5, 13, 14].

Denote by 8 an all-oriented graph obtained from G by assigning to each unoriented
edge of G an arbitrary orientation (of two possible directions). G is called quasi-
bipartite if it does not contain a nonsingular cycle, or equivalently, G contains no
cycles with an odd number of unoriented edges ([1, Lemma 1]). Note that a signature
matriz is a diagonal matrix with 1 along its diagonal. Then by the result of [13,
Lemma 2.2], a connected mized graph G is singular if and only if it is quasi-bipartite;
and by the result of [1, Theorem 4|, a mized graph G is quasi-bipartite if and only if
there exists a signature matriz D such that DYL(G)D = L(G).

Suppose G is connected. If G is singular, then by the above results the spectrum of
G is exactly that of GG, and there are lots of results on the work related with the
eigenvalues of G ([11, 12]). One can find that all trees are singular. So we focus on
the work of mixed graphs containing cycles; in particular, we discuss the eigenvalues
of unicyclic mixed graphs. Note that the first author [4] has determined the graph
with the largest spectral radius among all nonsingular unicyclic mixed graphs of
given order. In this paper, we extend the above work and determine the unicyclic
mixed graphs with the largest, the second largest and the third largest spectral radii
among all unicyclic mixed graphs of given order.
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2 Preliminaries

Let G be a connected mixed graph. Denote by G an all-unoriented graph obtained
from G by unorienting each oriented edge of G. Then L(G) is an unoriented Laplacian
matrix, and is also irreducible, nonnegative and symmetric. Let |A| denote [|a;;|] for

the matrix A = [a;;]. Then L(G) = |L(G)|.

THEOREM 2.1 Let G be a connected mized graph on n vertices vi,...,v,. Then

p(G) < p(G)

with equality if and only if G has a bipartition (V1,Va) such that each edge within
Vi (and within V) is unoriented and every edge joining one vertex of Vi and one
vertex of Vs is ortented, or equivalently, there exists a signature matrix D such that
DTL(G)D = L(G).

Proof: By the result of nonnegative matrices (see [9, Theorem 8.4.5]), we know that
p(G) < p(G) as |L(G)| = L(G) with equality if and only if there exists a diagonal
matrix D = [d;;] = diag{e®,e?,... e} such that DL(G)D~' = L(G), where
0; € Rfor ¢ =1,...,n. Without loss of generality, let d;; = 1. For any vertex
v; adjacent to vy, by the above equality we have dy; sgn{vl,vj}d;jl = 1, and hence
dj; = sgn{v1,v;}. Applying the above discussion to other vertices, we get that each
diagonal entry of D is either 1 or —1 since G is connnected. Let Vi = {vy, | dy, = 1}
and V3 = {vy | dyx = —1} so that they form a bipartition of V(G). For any two
vertices v;,v; of Vi, if they are adjacent, then the edge joining them is necessarily
unoriented because d;; sgn{vi,vj}d;jl = 1. Similarly, the edges within V4, are also
unoriented and every edge joining one vertex of V] and one vertex of V5 is oriented.
Now we get the necessity of the equality holding.

Conversely, let D = [d;;] be a diagonal matrix such that dy; = 1if v; € V1 and dy; = —1
if v; € Va. One can easily verify that DL(G)D~! = L(G) and the sufficiency holds.
|

By the Perron-Frobenius theory, the spectral radius of the connected graph G is
a simple eigenvalue and there is a unique (up to multiples) corresponding positive
eigenvector, usually referred to as its Perron vector; see [9]. By the theory of sym-
metric matrices, p(G) is equal to the maximum value of the quadratic form ¥ L(G)x
as x varies over unit vectors, and also the quadratic form attains its maximum value
at a unit vector  if and only if x is an eigenvector corresponding to p(G). So if z is
the unit Perron vector of G, then we have p(G) = 27 L(G)z and 27 L(G)z > y"L(G)y

for any unit vector y, unless y = 2. Also we find that

' L(G)zx = Z (T4 + 2,)%, (2.1)

{u,v}€E(G)
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and ) is an eigenvalue of G with the corresponding eigenvector z if and only if  # 0
and
A —dw))z, = Z z,, for allv € V(G), (2.2)
{u,v}€E(G)
where z, is the entry of x corresponding to the vertex w.

Let G be a mixed graph. Denote by G° the mixed graph obtained from G by
orienting all of its unorienting edges and unorienting all of its oriented edges (that
is, A(G) = —A(G°)), and denote by A(G) the largest degree among all the vertices
of G. Note that a graph is called regular if all of its vertices have same degrees, and
is called semi-regular if it is bipartite and the vertices in each partition have same
degrees.

THEOREM 2.2 ([10], [14]) Let G be a mized graph on n vertices which has at least
one edge. Then

A(G) 41 < p(G) < max{d(u) + d(v) : {u,v} € E(G)}. (2.3)

Moreover, if G is connected, then the left equality holds if and only if A(G) =n—1
and G 1s quasi-bipartite; and the right equality holds if and only iof G is regular or
semi-reqular and G€¢ is quasi-bipartite.

We introduce five all-unoriented unicyclic mixed graphs of order n in Fig. 2.1 which
will be used in Section 3: the graphs Gi(r,s;n),r > s; Ga(r, s;n),r > s; Ga(r, s;n);
Ga(r,s;n),s > 1; Gs(r,s;n),r > s. Here r,s are nonnegative integers, which are
respectively the number of pendant vertices adjacent to u and v, moreover parameters
n,r, sarerelated by n=r+s+3, n=r+s+4, n=r+s+25.

Fig. 2.1. Five all-unoriented unicyclic mixed graphs on n vertices.
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LEMMA 2.3 [3, Lemma 2.4] Let G be a unicyclic mized graph on n vertices. Then
s = max{d(u) + d(w) : {u,w} € E(G)} <n+1,

with equality if and only if G is one such that G is Gy(r,s;n) of Fig. 2.1; and s =n
if and only if G is one such that G is one of the graphs G;(r,s;n) of Fig. 2.1 for
i=2,3,4,5.

3 Main results

In this section, we will respectively determine the unicyclic graphs with the largest,
the second largest and the third largest spectral radii among all unicyclic mixed
graphs on n vertices. For convinence, we simply call them the first largest graph, the
second largest graph and the third largest graph on n vertices, respectively.

We need to note that for a signature matrix D and a permutation matrix P both of
order n, and for a mixed graph G on n vertices, the graph with the Laplacian matrix
DTPTL(G)PD, denoted by PG, differs from the graph PG (for D = I) only in the
orientation of some edges, and has the same spectrum as that of G. We will say that
two mixed graphs with the relation of G and PTG are signature isomorphic.

Let G be a unicyclic mixed graph on n vertices. If n = 3, then G is G1(0,0;3) of
Fig. 2.1. If n = 4, then G is either the graph G,(1,0;4) or the graph G5(0,0;4) of
Fig. 2.1. By Theorem 2.2, p(G1(1,0;4)) > 4 = p(G5(0,0;4)). Then for n = 4, by
Theorem 2.1, G1(1,0;4) and G5(0,0;4) are respectively the first largest graph and
the second largest graph up to a signature isomorphism. In what follows we always
assume that n > 5.

LEMMA 3.1 The first largest graph(s) on n vertices is among the graphs G1(r, s;n)
forr > s > 0 of Fig. 2.1 up to signature isomorphisms, and the second largest
graph(s) or its underlying undirected graph(s) on n vertices are among the graphs of
Fig. 2.1 up to signature isomorphisms.

Proof: By Theorem 2.1, the first largest graph is an all-unoriented graph up to a
signature matrix. So it suffices to discuss the all-unoriented graphs. Let G be a
unicyclic mixed graph on n vertices. By Theorem 2.2 and Lemma 2.3, if G is not
among the graphs of Fig. 2.1, then p(G) < n — 1, and if G is among the graphs
Gi(r, s;n) of Fig. 2.1 for i = 2, 3,4, 5, then p(G) < n. However, in Fig. 2.1, the graph
G1(n—3,0;n) has maximal degree n—1, and also by Theorem 2.2, p(G1(n—3,0;n)) >
n. So the first largest graph is among the graphs G1(r, s;n) for all > s > 0. We also
find that graphs Go(n —4,0;n) = Gi(n — 4,1;n), Gs(n — 5,0;n) = G4(n — 5,1;n),
and Gs(n — 4,0;n) are all of maximal degree n — 2. By Theorem 2.2, the spectral
radii of these graphs are strictly greater than n — 1. So the second largest graph or
its underlying graph is among the graphs in Fig. 2.1. |
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LEMMA 3.2 Let Gi(r,s;n),Gi(r + 1,58 — 1;n),Gi(r — 1,8 + 1;n) be mized graphs of
Fig. 2.1 on n > 5 vertices fori=1,...,5. Then

(1) fori=1,2,5 and forr > s > 1, p(Gi(r,s;n)) < p(Gi(r + 1,5 — 1;n)).

(2) forr >s—12>0, p(Gs(r,s;n)) < p(Gs(r+1,5s—1;n)), and for1 <r < s—1,
p(Gs(r,s;m)) < p(Gs(r — 1,5 + 1;n)).

(3) forr >s—=22>0, p(Galr,s;n)) < p(Ga(r+1,s—1;n)), and for1 <r < s—2,
p(Ga(r,s;m)) < p(Ga(r — 1,5+ 1;n)).

Proof: (1) Note that for i = 1,2,5, the graphs G;(r + 1, s — 1;n) can be obtained
from G;(r, s;n) by deleting the edge {v,v,} and adding the edge {u,v,}. We discuss
the cases of i = 1 and ¢ = 5. The discussion for the case of i = 2 is similar to that
of i = 1 and we omit the details.

Let z be the unit Perron vector of L(Gy(r, s;n)). Then we have

p(Gi(r+1,s = Lin)) > 2TL(Gi(r +1,s - 1;n))z,
e L(Gy(r,s5n))z = p(Gi(r,s;n)) =: p,

and

2TL(Gi(r+ 1,5 — Lin))z — 2T L(Gy(r,s;n))r = (24 4+ 20,) — (2 + 1, )?
= (2y — ) (Ty + Ty + 22,,).

Then p(Gi(r, s;n)) < p(G1(r + 1,5 — 1;n)) will be true if z, < z,.

Note that p > A(Gi(r,s;n)) +1=1r+3 > 4 by Theorem 2.2. From the eigenvector
equation for the Perron vector & of L(G4(r,s;n)), we can obtain that

Iui:(P_l)_lxm l:17 )Ty x'Uj :(P_l)_lxm .]:17 S,

and hence ,
(p—(r+2)a, = p_la:u+xw+:cv. (3.1)
s
(p=(s+2)x, = = 1zv+xw+mu. (3.2)
Then we have
r s

(p—r—1-— Yo, =(p—s—1— JE2 (3.3)

p—1

The coefficients of z,, and z, in (3.3) are positive as p > r+3. If r > s, then z, > z,
and the result follows. When r = s, the condition p > r + 3 gives that z, = z, and

p(Gi(r,s3n)) = 2P L(G1(r,s;n))r = 2T L(G1(r+1,s—1;n))z < p(G1(r+1,5—1;n)).
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If this inequality holds as equality, z must be the unit Perron vector of L(G(r +
1,5 — 1;n)). In this condition, we have

1
(p—=(r+3))z, = ;__leu*—fw‘i‘fv- (3.4)

1
But combining (3.1) and (3.4), we obtain z, = — 7% which is a contradiction.

p
So p(Gi(r,s;n)) < p(Gi(r+1,s —1;n)) for all r > s > 1.

Next we discuss the case of i = 5. We also let  be the unit Perron vector of
L(G5(r,s;n)) corresponding to the eigenvalue p(Gs(r,s;n)) =: p. Note that p >
A(G5(r,s;n)) +1 =r + 3. Then we get

(P = 2)zp, = Tpy + T4y (P = 2)Tp, = Tpy + Ty,

and hence
(p = 1)(xp, — Tp,) = Ty — Ty
Also
r
(p—(r+2)—p_1> Ty = Tp, + Ty
s
(p_(5+2)—m> Iv:Ip2+Iu.
So we have
1 1
(p—(r—i—Q)—%—}—l) Ty = (p—(s+2)—%+l> Ty

As p > r 4 3, the coefficients of z, and x, are positive and ©, > z, if r > s > 1. If
r=s > 1, then ©, = z, and p(Gs(r,s;n)) < p(Gs(r + 1,s — 1;n)). Similar to the
prior discussion, z cannot be the Perror vector of L(G5(r + 1,5 — 1;n)) so that the
strict inequality p(Gs(r, s;n)) < p(Gs(r +1,s — 1;n)) holds.

(2) Let x be the unit Perron vector of L(G3(r, s;n)) corresponding to the eigenvalue
p(G3(r, s;n)) =: p. Noting that p > A(Gs(r,s;n))+1>r+3+1=r+4 and using
the same method as in the proof of (1), we have

(p—(r—}—?))—#) Ty = Ty + Ty + Ty, (3.5)

(p— (s+2)— %) Ty = Ty + Ty, (3.6)
1

(p—2- m)xm = ZLu (3.7)

Then we get
ALy = Py (3.8)
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where

a—(p—(r—i—?))— L ! T +1> andﬁ:(p—(s+2)—p81+l>.

p—1 p—2—pT1

Since p > r + 4, the coefficients of z, and z, are positive. If r > s —1> 0,

- 1
,B—a:r—s+1+r ° 4 T
p—1 p—2—pT1

1
— 1+ ——) >0.
> (r—s+1)( +p—1)
So &, < x,. Note that the graph G3(r 4+ 1,5 — 1;n) can be obtained from Gs(r, s;n)
by deleting the edge {v,v;s} and adding the edge {u,vs}, and
e L(Gs(r + 1,5 — 1;n))z — 2T L(G3(r, 5;n))z = (24 + Ty + 22, ) (T4 — 7,) > 0.

So the result follows under the condition » > s — 1 > 0.
If1<r<s—2, then
-2
f-—a< -1+ ——+4+1<0
p—1

so that =, > z,. Note that the graph G3(r — 1,5 + 1;n) can be obtained from
Gs(r, s;n) by deleting the edge {u,u,} and adding the edge {v,u,}, and

2P L(G3(r — 1,5 + L;n))z — 2" L(G3(r, 8;n))x = (24 + 2y + 224, ) (2, — 7,) >0
under this condition so that the result also follows.

(3) Letting = be the unit Perron vector of L(G4(r, s;n)) corresponding to the eigen-
value p(Gy(r,s;n)) =: p, and noting that p > A(Gy(r,s;n)) +1 > r + 4, we get
1

T = I = gt and

3
r 2
— 3) — - u — Ly-
<p (r+3) o1 p_3)w x

<p—(s+1)—pi1>xv:xu.

Then we have

<p—(r+3)— . —L—kl)xu:(P—(S—kl)—ﬁ—f—l)xv

p—1 p—-3

As p > r + 4, the coeflicients of x, and x, are positive. If r > s —2 > 0, z, < zy,
and if 1 <r <s-3, x, < z,. The result follows by a similar discussion to the proof
of (2). |

THEOREM 3.3 Forn > 5, Gi(n —3,0;n) of Fig. 2.1 is the unique largest graph on
n vertices up to signature isomorphisms.
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Proof: By Lemma 3.1, the largest graph is among the graphs among the graphs
Gi(r,s;n) for all r > s > 0 of Fig. 2.1. The result follows from Lemma 3.2 (1). W

LEMMA 3.4 The second largest graph on n vertices is among the graphs Gi(n —
4,1;n), Gs(n — 5,0;n), G3(0,n — 5;n), G4(0,n — 4;n), Gs(n — 4,0;n) of Fig. 2.1,

and Gi(n — 3,0;n) obtained from Gi(n — 3,0;n) by orienting the edge {u,v}, up to
stgnature 1somorphisms.

Proof: By Theorem 3.3, we find that the first largest graph G;(n — 3,0;n) is non-
singular as it contains odd number of unoriented edges. Hence by Lemma 3.1 and
Lemma 3.2, up to signature isomorphisms, the second largest graph is among of
following graphs G1(n —4,1;n) = Ga(n — 4,0;n), Gs(n — 5,0;n) = G4(n — 5,1;n),
G3(0,n — 5;n), G4(0,n — 4;n), G5(n — 4,0;n), and the singular graph, denoted by
H, which has the same underlying graph as Gi(n — 3,0;n). Since H is singular, by
the result in paragraph 3 of Section 1, there exists a signature matrix D such that
PH = Gi(n — 3,0;n). The result follows. |

THEOREM 3.5 Forn > 5, é\l(n — 3,0;n) with the underlying graph G1(n — 3,0;n)
of Fig. 2.1 is the unique second largest graph on n vertices up to signature isomor-
phisms.

Proof: We divide our discussion into four assertions.

Assertion 1: Forn > 5, p(Gi(n—4,1;n)) > p(Gs(n—5,0;n)) > p(G3(0,n —5;n));
and for n > 6, the second inequality is strict.

Now, we begin to prove the first inequality. Note that if we replace the edge {pi, p2}
of G3(n—>5,0;n) by the edge {p1, v}, then the graph G;(n—4,1;n) is obtained. Let =
be the unit Perron vector of L(G3(n—5,0;n)) corresponding to the largest eigenvalue
p(G3(n—5,0;n)) =: p;. It suffices to prove z,, < z,. From the eigenvector equation
for the Perron vector of L(G3(n — 5,0;n)) we have

1
(pl -2- ﬁ) Tpy = Tyy (P1 — 2)Ty = Ty + Tuyy (p1 — 2)Tyy = Ty + Ty
=

By calculation, we have

1
(n=2- 15 )t = (01 - 3.

Moreover p; > A(G3(n —5,0;n)) +1=n—1 >4, so the desired result holds.

Then we prove the second inequality. Note that the graph G3(n —5,0;n) can be ob-
tained from G3(0,n — 5;n) by deleting the edge {u,p»} and adding the edge {v,ps}.
Let z be the unit Perron vector of G3(0,n — 5;n) corresponding to the largest eigen-
value p(G5(0,n — 5;n)) =: py. It is sufficient to prove z, < z,. By a similar
discussion, we get

1
<p2 —2- p 1) Tpy = Tyy (P2 = 2)Ty = Ty + Ty, (P2 — 3)Ty = Ty + Ty + Ty,
y —
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1 1 1
P2 — 3 — — = a:u:<1+ )xv.
pr—2—-55 p—2 p2—2

If n > 7, then pp > A(G3(0,n —5;n))+1=n—22>5, and

3 ! ! (1+ ! ) >0
P2 — 3 — — — .
’ pp=2-15  pr—2 p2—2

and hence

In this conditon, we get x, < x, and the result follows. If n = 6, by Lemma
3.2(2), p(G3(0,1;6)) < p(G3(1,0;6)). Note that for the case of n = 5, the graphs
G3(n —5,0;n) and G3(0,n — 5;n) are same and the result follows.

Assertion 2: Forn > 5, p(Gi(n —4,1;n)) > p(G4(0,n — 4;n)).
If n = 5, then G4(0,1;5) = G3(0,0;5) and the result in this case is proved by
Assertion 1. If n = 6, then by Lemma 3.2(3), p(G4(0,2;6)) < p(G4(1,1;6)) =

p(G3(1,0;6)) as G4(1,1;6)) = G5(1,0;6). The result also follows by Assertion 1. So
we assume that n > 7 in below.

Note that the graph G(n —4,1;n) can be obtained from G4(0,n — 4;n) by deleting
the edge {pa,p1} and adding the edge {p»,v}. Let x be the unit Perron vector of
L(G4(0,n — 4;n)) corresponding to the eigenvalue p(G4(0,n — 4;n)) =: p. It suffices
to show x,, < x,. From the eigenvector equation, we have ;,, = x,, and (p—2)z,, =
T, + z, so that (p — 3)z,, = z,. In addition, (p — 3)z, = 2z, + z, = 2z, + <.
Then
(0= 3)° = 2oy, = 0.

Then by Theorem 2.2, p > A(G4(0,n—4;n))+1=n—2 > 5 and the result follows.
Assertion 3: Forn > 5, p(G1(n —4,1;n)) > p(Gs(n — 4,0;n)).

Note that the graph Gi(n —4,1;n) can be obtained from Gs(n — 4,0;n) by deleting
the edge {p1, 2} and adding the edge joining {p1,v}. Let = be the unit Perron vector
of Gs(n — 4,0;n) corresponding to the eigenvalue p(Gs(n — 4,0;n)) =: p. Then we
suffice to show z,, < x,. We have

(P = 2)2p, = Ty + Tpsy (P = 2)T0 = Ty + 2,

It is obvious that x,, = x, as p > A(Gs(n —4,0;n)) +1 =n —1 > 4 by Theorem
2.2, and hence

(p— 2)$p2 =Ty + Ty, = 20y,
which implies that xp,, < x,. The result follows.

o~

Assertion 4: Forn > 5, p(G1(n —4,1;n)) < p(G1(n — 3,0;n)).

By Theorem 2.2, we have p(é\l(n —3,0;n)) = n. Let A # 1 be an eigenvalue
of Gi(n — 4,1;n) with the corresponding eigenvector . Then by the eigenvector
equation of z,

Lyy = Tyg = =" = Typ_g —* Y1,
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and A is a root of the following equations:

A— ]-)yl = Ty,

A=n+2z, = (n—4y+ Ty + Ty
Ty + Ty + Tyy,s
Ty + Ty,

A=z, = z,.

e~~~ o~

> >
I

o W
—_—
8 8
g <

1

Therefore A is a root of following polynomial f(\):

A—1 -1 0 0 0

—-n+4 A—n+2 -1 -1 0

f(A) = det 0 -1 A—-3 -1 -1
0 -1 -1 Xx=2 0

0 0 -1 0 A—1

From a little calculation,
FO) = =4+ 8XN+ 30X + A2 — 9 A% 4+ 3X% 4+ 6nA% — 5AT — nAt + A%,

If n > 5, we have £(0) < 0, £(1/2) = (11 — 2n)/32 > 0 if n = 5, f(1/3) = (51n —
284)/243 > 0if n > 6, f(1) =4 —n <0, f(2) = —8+2n >0, f(4) = —20 — 4n < 0
and f(n) = —4+8n+4n? — 6n® +n* > 0, which implies that p(G1(n —4,1;n)) < n.
The result follows. |

By Lemma 3.4 and the Assertions 1-3 in the proof of Theorem 3.5, we determine
the third largest graph on n vertices.

THEOREM 3.6 Forn > 5, Gi(n—4,1;n) of Fig. 2.1 is the unique third largest graph
on n vertices up to signature isomorphisms.
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