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Abstract

We consider an upper bound of minimum length n,(5,d) of linear codes
with dimension 5 using projective geometry, and we find a new upper
bound: n,(5,d) < g4(5,d) + 1 for some values of d.

1 Introduction and Preliminaries

Let F, be a finite field with ¢ elements. An [n, k, d], code is a linear subspace in }FZ
with dimension & and the minimum Hamming distance d over F,. Optimal linear
code problem is to find n,(k, d), the smallest value n for which there exists an [n, k, d],
code for given k and d. The following bound is called the Griesmer bound g,(k,d)
as a lower bound on n,(k,d);

k-1
)
ng(k,d) > gg(k,d) ==Y {—w
im0 14
where [z] denotes the smallest integer > z. A code C is called an optimal linear
code if the above equality holds.

For given ¢ and k, the following theorem provides a starting point for finding the
value of ny(k,d) for each d.

Theorem 1 ([5]) Let d = s¢"~1 — Y7 | ¢“~! such that k > uy > uy > -+ > u, with
Wi > Uiy for 1 <i<p—q+1, wheres= fq,jL_l]. If
min{s+1,p}
Uj S Ska
i=1
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then ngy(k,d) = g,(k,d).

When k = 1,2, obviously, n,(k, d) = g,(k, d) for any d by Theorem 1. When k = 3,4,
the value n,(k, d) is completely determined for any d for ¢ < 4 in [6]. Moreover, we
can find many more results about the values n,(k,d) in [11].

In this paper, we are interested in linear codes of dimension 5. When k = 5, by
Theorem 1, we have n,(5,d) = g,(5,d) for the following values of d and g¢:

P -g+1<d< ¢ —Forgt -2 +1<d < g for g >3,
20" —2¢° — ¢* +1 < d < 2¢* for ¢ > 3,
d> 3¢t —4q¢® + 1 for ¢ > 5.

Therefore we consider the value n,(5, d) for which d is different from the above range,
and we prove ng(5,d) < g,(5,d) 4+ 1 for the following values of d and gq.

(1) ¢* =3¢ +1 < d < ¢* = 2¢* for ¢ > 4,
(2) 2¢* —2¢° —2¢* +1 < d < 2¢* — 243 — ¢* for ¢ > 3,
(3) 3¢ —4¢® — > +1 < d < 3¢* — 4¢® for ¢ > 5.

We remark that ny(5, d) is completely determined for any d ([8]). If d is in the range
in (1), then n3(5,d) is given in [11].

As a notational convention, P, P;,Q etc. stand for points in P¥"!. Similarly, I, 1;
(respectively 4,8;, A,A;) etc. stand for lines (resp. planes, solids) in P¥™. We
denote by 0; the number of points in a j-dimensional subspace in PF1 e, 0; =
q];_# =¢ +---+q+1for j > 0. Here 6y = 1. For a subset S C P*, (S) denotes
the linear span of S.

Let C be an [n,k,d], code with a generator matrix G. Now C is said to be non-
degenerate if any column of G is nonzero. Thus if C' is a non-degenerate code, each
column of G can be regarded as a point in P*~!. The formal sum of all columns of
G as points in P*7! is called a O-cycle of the code €', which we denote by X¢. If
one chooses another generator matrix G’ of the same code C, then two 0-cycles of
C corresponding to G and G, respectively, are projectively equivalent. Conversely,
two codes are equivalent ones if their O-cycles are projectively equivalent. Letting
m(P) > 0 denote the number of times the point P occurrs as a column of G, we
have Xo = Y pepre1m(P)P.

For any subset S C P*~, we denote the restriction X¢ to S by Xo(S):=3" pesm(P)P.
The symbol [S] denotes the 0-cycle

[S]:=>_P,

PeS
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which can be identified with the set S. We use the notation SuppXe = {P € P¥7* |
m(P) > 1}.

For a O-cycle Xo = ) pepr1m(P)P corresponding to a given code C, let vy :=
max{m(P) | P € P*~1} and ¢(S) := deg Xc(S). Then we express the parameters n
and d of C in terms of the coefficients in the 0-cycle X as follows:

n = deg X := Z m(P),
Pepk-1
d=n— max c¢(H),
HePk-1"
where P*~1* means the set of all hyperplanes in P~

The concept of minihyper (F,w) with weight function was defined in [4], [10] and
[12]. In this paper, we use the terminology 0-cycle instead of (F,w). Then their
definition can be expressed as follows. For r > 2, a O-cycle X = 3, . m(P)P
defines {f, m;r, q}-minihyper if

f=degX = m(P),
PePr
m = min c(H).
Hepr
When k = 5, we consider only the case v < 3, since ny(5,d) = g,(5,d) for o > 4 by
Theorem 1.

2 Construction of codes of length g,(5,d) + 1

Now we construct a class of codes with length g,(5,d) 4+ 1 by generalizing the idea
in the proof of Theorem C in [2].

Lemma 2 There exists a collection of ¢+ 1 planes in P* passing through a point P
such that any two planes in the collection intersect only at P, and ¢* + 1 is mazimal
possible.

Proof. Let T = {d1,02,...,6,} be a collection of planes through a point P such
that §;n6; = {P}ifi # j. Since P* D UT, we have 6, > [UT| =1+ (|6 1) =
1+ 7(¢® + q), whence r < ¢% + 1.

On the other hand, let Hy be a hyperplane in P* such that P ¢ Hy. Then by Theorem
4.1 in [7], we note that there exists a spread & = {l1,la, ..., 1241} of exactly ¢* + 1
mutually disjoint lines in Hy. Let Sp = {(l;; P) | 1 < i < ¢®> + 1}. Then, clearly
(l;, PN (l;, Py = {P} it i # j. Thus the lemma is proved. |

Now, using Lemma 2, we construct three classes of minihypers in Lemma 3, 5 and 7.
Then we state three theorems, Theorem 4, 6 and 8 in which we prove the existence
of [g4(5,d) + 1,5, d], code for given d and ¢ in (1), (2) and (3), respectively.
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Lemma 3 There exists a {205 + abh + 8 — 1, 2¢ + 1 + «; 4,q}-minihyper with
w(P) <1 for any P in P*, where a, 3 with 0 < o, 3 < ¢ — 1.

Proof. Fix integers a and 8 such that 0 < o, 3 < ¢ — 1. For a point Py in P*, by
Lemma 2, we can choose o + 3 planes 0y, 01, ..., 0442 such that §; N 6; = {Py} for
0 <i<j<a+2. Now, choose a line [; in each plane §; for 3 < i < a + 2 which
does not contain the point Py. Consider a 0-cycle

a+2

Xy = [61] + [02] — [Po] + Z[Zi].

Then obviously deg(X;) = 26, + aby — 1 and ¢(H) > 2¢ + 1 + « for any hyperplane
H in P*. Let Hy be a hyperplane containing dy. Since (5y,d;) = P*, i = 1,2 and
(00, 1) = P* 3 < j < a+ 2, we note that 6; ¢ Ho for i = 1,2 and l; ¢ Hy
for 3 < j < a+ 2. Thus ¢(Hy) = 2¢ + 1 + a. Therefore, the O-cycle X is a
{20, + ab; — 1, 2¢+ 1 + «; 4, ¢}-minihyper.

Now, choose 3 points Q;, (1 < j < 8) in P* — Supp(&;) — Ho. Let
B
X =X+ Z[Q;]
j=1

Then obviously the 0-cycle X] is a {262 + a8, + 5 — 1, 2¢ + 1+ «; 4, ¢}-minihyper,
which completes the proof. ]
Theorem 4 If ¢ > 4 and ¢* —3¢> +1 < d < ¢* — 2¢2, then

ng(5,d) < g4(5,d) + 1.
Proof. For any d with ¢* —3¢®2 +1 < d < ¢* — 2¢?, there exist o and 3 such that
0<a,f<g—1landd=q*—2¢*> - (ag+ B).

Let C; be a code corresponding to the 0-cycle V) = [P*] — X}, where X is the 0-cycle
appeared in Lemma 3, that is,

a+2 B
V= [P) = 6] = 8] = Y11 = S(Q)]+ [,

Then the length n of C; is ¢* + ¢ — 0, — af, — 8+ 1. Now we consider the minimum
distance d of C;. Since
H) = 05 — deg X/(H)) = 03 — min (deg X|(H
nax c(H) = max (6 — deg X;(H)) = 0 — min (deg X;(H)),

we have d = n — (03 — mingcps deg X{(H)). Since A is a {20, +aby + 5 — 1, 2¢+
1+ a; 4,q}-minihyper by Lemma 3, d = ¢* — 2¢*> — ag — 3. Since ¢ > 4, we have
9,(5,d) = ¢* + ¢* — 0, — b, — B for d = ¢* — 2¢> — aq — 3, whence n = g,(5,d) + 1.
Thus C is a [g4(5,d) + 1,5,d], code, which completes the proof. [ |

To prove Theorem 6 we need a minihyper with w(P) < 2 for any point P in P*.
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Lemma 5 There exists a {203+ 0y + afy + 5 — 1, 2¢*> + 3q +2 + a; 4, q}-minihyper
with w(P) < 2 for any P in P*, where 0 < o, 8 < ¢ — 1.

Proof. Fix integers o and 8 such that 0 < o, 3 < ¢ — 1. For a point Py in P*,
by Lemma 2, we can take a + 2 planes, say 01,9, ..., 0442 such that §; N d; = {Fo}
for 1 < ¢ < j < a+2 Choose a line [; in each plane ¢; such that P, ¢ [; for
3<j<a+2. Let H; and H, be distinct hyperplanes containing the plane Js.

Consider a 0-cycle

a+2

Xy = [Hy] + [Ha] + [01] + Z[lﬂ = [Pl

Then deg(Xy) = 2034+62+ab; —1 and ¢(H) > 20546, +a—1 for any hyperplane H of
P*. Let Hy be a hyperplane containing d, such that Hy # Hy, Hy. Since (d,,6,) = P*
and (0, 1;) =P* 3<j<a+2, wenote that 6, ¢ Hy and lj ¢ Hyfor3<j<a+2.
Thus we have ¢(Hg) = 20 + 61 + o — 1. Choose § points @; (1 < j < ) in
P* — Supp(Xy) — Hy. Let

B
Xy =X+ Z[Q]]
j=1

Then obviously the O-cycle X is a {205 + 6, + af; + 8 — 1, 2¢> + 3¢+ 2+ «; 4,q}-
minihyper, which completes the proof. ]

Theorem 6 If g > 3 and 2¢* — 2¢® — 2¢°> +1 < d < 2¢* — 2¢° — ¢, then

ny(5,d) < g,(5,d) + 1.

Proof. For any d with 2¢* — 2¢° — 2¢° + 1 < d < 2¢* — 2¢° — ¢?, there exist a and
B such that 0 < o, 3 < qg—1and d = 2¢* — 2¢* — ¢* — (aq + ).

Let Cy be a code corresponding to the O-cycle Y, = 2[PY] — X, where X; is the
0-cycle appeared in Lemma 5, that is,

a+2 B
Yo = 2[PY] — [Hi] — [H,] — 6] - Z[li] - Z[Qﬂ +[R)-

Then the length n of Cy is 2¢* — 0, — af; — 8+ 1. Now we consider the minimum
distance d of Cy. Since

H) = 205 — deg Xi(H)) = 205 — min (deg X5(H
Inax ¢(H) = max (20; — deg X,(H)) = 20; — min (deg X,(H)),
we have d = n — (2605 — minycps deg XJ(H)). Since Xj is a {205 + 6, + ab; + [ —
1, 2¢°4+3¢+2+a; 4, q}-minihyper by Lemma 5, we have d = 2¢* — 2¢° — ¢* — ag — 5.
Since ¢ > 3, we have g,(5,d) = 2¢* — 0, — af, — 8 for d = 2¢* — 2¢® — ¢* — ag — 8,
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whence n = g,(5,d) + 1. Thus C, is a [g,(5,d) + 1,5, d], code, which completes the
proof. |

Next we construct a minihyper with w(P) < 3 for any point P in P* to prove
Theorem 8.

Lemma 7 There exists a {405 + af; + 8 — 1, 46, + a — 1; 4, q}-minihyper with
w(P) <3 for any P in P*, where 0 < a,3 < ¢ — 1.

Proof. Fix integers a and 3 such that 0 < «,8 < ¢ — 1. For a point P, in P, by
Lemma 2, there exists a collection D of g2 + 1 planes through P, such that any two
planes in D intersect only at Fy. We take any 4 planes in D, say d; (i = 1,2,3,4).
Then we take hyperplanes H; satisfying the following conditions;

(1) H; contains ¢; for i = 1,2, 3,4, respectively.
(i) Hy does not contain the line Hy N d,.

(iii) H3 does not contain the line Hy N 4.

(iv) Hy does not contain the line H, N Hy N Hj.

Indeed, it is easy to prove that such hyperplanes exist, H;NH> is a plane, HiNHsNH;
is a line which is not contained in d4, and Hy N Hy N Hy N Hy = { R }.

Next, we take a+1 planes in D—{d1, 2, 3,04}, say 0o, d; (j = 5, ..., a+4) which does
not contain the lines constructed by three of H; for ¢ = 1,2,3,4. For 5 < j < a+4,
choose a line [; in each plane §; such that Py & [;.

Let
a+4

Xy = [Hi| + [Hy] + [Hs) + [Ha] + Z[li] —[R).

Then deg(X3) =403 + @b, — 1 and ¢(H) > 46, + o — 1 for any hyperplane H of P*.
Moreover, w(P) < 3 for any P € P*, by the choice of H; and ;.

Let Hy be a hyperplane containing do. Since (Jp,d;) = P*, 1 <4 < 4 and (&, ;) = P*,
5 < j < a+4, we have ¢(Hy) = 462 +a —1. Next, we choose § points Q; (1 < j < )
in P* — Supp(&3) — Hy. Let

5
X=X+ Q).
j=1

Then obviously the O-cycle Xj is a {403 + aby + 3 — 1, 405 + a — 1; 4, ¢}-minihyper,
which completes the proof. |

Theorem 8 Ifq> 5 and 3¢* — 4¢® — > + 1 < d < 3¢* — 4¢°, then

ny(5,d) < g,(5,d) + 1.
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Proof. For any d with 3¢* —4¢® — ¢*> +1 < d < 3¢* — 4¢%, there exist o and 3 such
that 0 < a, 8 < ¢—1and d = 3¢* — 4¢* — (g + ).

Let Cs be a code corresponding to the O-cycle Y3 = 3[P*] — X}, where Xj is the
0-cycle appeared in Lemma 7, that is,

4 a+4 B
Vs =3[PY - Z[HJ - Z[lz‘} - Z[Qj] + [Fol.

Then the length n of C3 is 30, — 403 — af; — B + 1. Now we consider the minimum
distance d of (5. Since

o _ ! _ _ : !
nax c(H)= }fé%?ﬁ(%?’ deg X;(H)) = 365 Hnellgl}*(deg X;(H)),

we have d = n — (363 — minycps (deg X5(H)). Since Xy is a {463+ ab; +5 —1, 46>+
a —1; 4,q}-minihyper by Lemma 7, we have d = 3¢* — 4¢®> — ag— 3. Since ¢ > 5, we
have g,(5,d) = 30, —40; — ab, — 3 for d = 3¢* —4¢® — ag— 3, whence n = g,(5,d) + 1.
Thus Cj is a [g4(5,d) + 1,5,d], code, which completes the proof. [ |

Remark Maruta [9] proved that n,(5,d) = g,(5,d) + 1 when
q'—2¢° —q+1<d<q" —2¢" for ¢ > 3,
20" —2¢° — " —q+1<d <2¢" —2¢° — ¢ for ¢ > 3,
3¢ —4¢® — ¢+ 1 < d < 3¢* — 4¢® for ¢ > 5,

which is corresponding to the case @ = 0 and 0 < 8 < ¢—1 in our theorems Theorem
4, 6 and 8, respectively.

Also, in [1], [2] and [3], they proved that n,(5,d) = g,(5,d) + 1 when
" —2¢* —2q+1<d<q"—2¢* — g for ¢ > 5,
2¢" —2¢° —¢* —2¢+1<d<2¢" —2¢* —¢" —qfor ¢ > 5,
3¢ —4¢® —2¢+1 < d < 3¢* — 4¢® — g for ¢ > 11,

which is corresponding to the case a =1 and 0 < 8 < ¢—1 in our theorems Theorem
4, 6 and 8, respectively.
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