On the upper bound of the minimum length of 5-dimensional linear codes

E. J. CHEON*

Department of Mathematics
Korea Advanced Institute of Science and Technology
Daejeon 305-701
Korea
enju1000@naver.com

Abstract

We consider an upper bound of minimum length $n_q(5, d)$ of linear codes with dimension 5 using projective geometry, and we find a new upper bound: $n_q(5, d) \leq g_q(5, d) + 1$ for some values of d.

1 Introduction and Preliminaries

Let \mathbb{F}_q be a finite field with q elements. An $[n,k,d]_q$ code is a linear subspace in \mathbb{F}_q^n with dimension k and the minimum Hamming distance d over \mathbb{F}_q . Optimal linear code problem is to find $n_q(k,d)$, the smallest value n for which there exists an $[n,k,d]_q$ code for given k and d. The following bound is called the Griesmer bound $g_q(k,d)$ as a lower bound on $n_q(k,d)$;

$$n_q(k, d) \ge g_q(k, d) := \sum_{i=0}^{k-1} \left[\frac{d}{q^i} \right],$$

where $\lceil x \rceil$ denotes the smallest integer $\geq x$. A code C is called an optimal linear code if the above equality holds.

For given q and k, the following theorem provides a starting point for finding the value of $n_q(k,d)$ for each d.

Theorem 1 ([5]) Let $d = sq^{k-1} - \sum_{i=1}^{p} q^{u_i-1}$ such that $k > u_1 \ge u_2 \ge \cdots \ge u_p$ with $u_i > u_{i+q-1}$ for $1 \le i \le p-q+1$, where $s = \lceil \frac{d}{q^{k-1}} \rceil$. If

$$\sum_{i=1}^{\min\{s+1,p\}} u_i \le sk,$$

^{*} This work was supported by the Korea Research Foundation Grant. (KRF-2004-037-C00004)

then $n_q(k,d) = g_q(k,d)$.

When k = 1, 2, obviously, $n_q(k, d) = g_q(k, d)$ for any d by Theorem 1. When k = 3, 4, the value $n_q(k, d)$ is completely determined for any d for $q \le 4$ in [6]. Moreover, we can find many more results about the values $n_q(k, d)$ in [11].

In this paper, we are interested in linear codes of dimension 5. When k = 5, by Theorem 1, we have $n_q(5, d) = g_q(5, d)$ for the following values of d and q:

$$\begin{cases} q^4 - q^3 - q + 1 \le d \le q^4 - q^3 \text{ or } q^4 - 2q^2 + 1 \le d \le q^4 \text{ for } q \ge 3, \\ 2q^4 - 2q^3 - q^2 + 1 \le d \le 2q^4 \text{ for } q \ge 3, \\ d \ge 3q^4 - 4q^3 + 1 \text{ for } q \ge 5. \end{cases}$$

Therefore we consider the value $n_q(5,d)$ for which d is different from the above range, and we prove $n_q(5,d) \leq g_q(5,d) + 1$ for the following values of d and q.

(1)
$$q^4 - 3q^2 + 1 \le d \le q^4 - 2q^2$$
 for $q \ge 4$,

(2)
$$2q^4 - 2q^3 - 2q^2 + 1 \le d \le 2q^4 - 2q^3 - q^2$$
 for $q \ge 3$,

(3)
$$3q^4 - 4q^3 - q^2 + 1 \le d \le 3q^4 - 4q^3$$
 for $q \ge 5$.

We remark that $n_2(5, d)$ is completely determined for any d ([8]). If d is in the range in (1), then $n_3(5, d)$ is given in [11].

As a notational convention, P, P_i, Q etc. stand for points in \mathbb{P}^{k-1} . Similarly, l, l_i (respectively $\delta, \delta_i, \Delta, \Delta_i$) etc. stand for lines (resp. planes, solids) in \mathbb{P}^{k-1} . We denote by θ_j the number of points in a j-dimensional subspace in \mathbb{P}^{k-1} , i.e., $\theta_j = \frac{q^{j+1}-1}{q-1} = q^j + \cdots + q+1$ for $j \geq 0$. Here $\theta_0 = 1$. For a subset $S \subset \mathbb{P}^4$, $\langle S \rangle$ denotes the linear span of S.

Let C be an $[n,k,d]_q$ code with a generator matrix G. Now C is said to be non-degenerate if any column of G is nonzero. Thus if C is a non-degenerate code, each column of G can be regarded as a point in \mathbb{P}^{k-1} . The formal sum of all columns of G as points in \mathbb{P}^{k-1} is called a 0-cycle of the code C, which we denote by \mathcal{X}_C . If one chooses another generator matrix G' of the same code C, then two 0-cycles of C corresponding to G and G', respectively, are projectively equivalent. Conversely, two codes are equivalent ones if their 0-cycles are projectively equivalent. Letting $m(P) \geq 0$ denote the number of times the point P occurs as a column of G, we have $\mathcal{X}_C = \sum_{P \in \mathbb{P}^{k-1}} m(P) P$.

For any subset $S \subset \mathbb{P}^{k-1}$, we denote the restriction \mathcal{X}_C to S by $\mathcal{X}_C(S) := \sum_{P \in S} m(P)P$. The symbol [S] denotes the 0-cycle

$$[S] := \sum_{P \in S} P,$$

which can be identified with the set S. We use the notation $\operatorname{Supp} \mathcal{X}_C = \{P \in \mathbb{P}^{k-1} \mid m(P) \geq 1\}$.

For a 0-cycle $\mathcal{X}_C = \sum_{P \in \mathbb{P}^{k-1}} m(P)P$ corresponding to a given code C, let $\gamma_0 := \max\{m(P) \mid P \in \mathbb{P}^{k-1}\}$ and $c(S) := \deg \mathcal{X}_C(S)$. Then we express the parameters n and d of C in terms of the coefficients in the 0-cycle \mathcal{X}_C as follows:

$$n = \deg \mathcal{X}_C := \sum_{P \in \mathbb{P}^{k-1}} m(P),$$
$$d = n - \max_{H \in \mathbb{P}^{k-1^*}} c(H),$$

where \mathbb{P}^{k-1^*} means the set of all hyperplanes in \mathbb{P}^{k-1} .

The concept of minihyper (F, w) with weight function was defined in [4], [10] and [12]. In this paper, we use the terminology 0-cycle instead of (F, w). Then their definition can be expressed as follows. For $r \geq 2$, a 0-cycle $\mathcal{X} = \sum_{P \in \mathbb{P}^r} m(P)P$ defines $\{f, m; r, q\}$ -minihyper if

$$f = \deg \mathcal{X} = \sum_{P \in \mathbb{P}^r} m(P),$$

$$m = \min_{H \in \mathbb{P}^{r^*}} c(H).$$

When k=5, we consider only the case $\gamma_0 \leq 3$, since $n_q(5,d)=g_q(5,d)$ for $\gamma_0 \geq 4$ by Theorem 1.

2 Construction of codes of length $g_q(5,d) + 1$

Now we construct a class of codes with length $g_q(5,d) + 1$ by generalizing the idea in the proof of Theorem C in [2].

Lemma 2 There exists a collection of $q^2 + 1$ planes in \mathbb{P}^4 passing through a point P such that any two planes in the collection intersect only at P, and $q^2 + 1$ is maximal possible.

Proof. Let $\mathcal{T} = \{\delta_1, \delta_2, \dots, \delta_r\}$ be a collection of planes through a point P such that $\delta_i \cap \delta_j = \{P\}$ if $i \neq j$. Since $\mathbb{P}^4 \supseteq \cup \mathcal{T}$, we have $\theta_4 \ge |\cup \mathcal{T}| = 1 + \sum_{i=1}^r (|\delta_i| - 1) = 1 + r(q^2 + q)$, whence $r \le q^2 + 1$.

On the other hand, let H_0 be a hyperplane in \mathbb{P}^4 such that $P \notin H_0$. Then by Theorem 4.1 in [7], we note that there exists a spread $\mathcal{S} = \{l_1, l_2, \dots, l_{q^2+1}\}$ of exactly $q^2 + 1$ mutually disjoint lines in H_0 . Let $\mathcal{S}_P = \{\langle l_i, P \rangle \mid 1 \leq i \leq q^2 + 1\}$. Then, clearly $\langle l_i, P \rangle \cap \langle l_i, P \rangle = \{P\}$ if $i \neq j$. Thus the lemma is proved.

Now, using Lemma 2, we construct three classes of minihypers in Lemma 3, 5 and 7. Then we state three theorems, Theorem 4, 6 and 8 in which we prove the existence of $[g_q(5,d)+1,5,d]_q$ code for given d and q in (1), (2) and (3), respectively.

Lemma 3 There exists a $\{2\theta_2 + \alpha\theta_1 + \beta - 1, 2q + 1 + \alpha; 4, q\}$ -minihyper with $w(P) \le 1$ for any P in \mathbb{P}^4 , where α, β with $0 \le \alpha, \beta \le q - 1$.

Proof. Fix integers α and β such that $0 \le \alpha, \beta \le q - 1$. For a point P_0 in \mathbb{P}^4 , by Lemma 2, we can choose $\alpha + 3$ planes $\delta_0, \delta_1, \ldots, \delta_{\alpha+2}$ such that $\delta_i \cap \delta_j = \{P_0\}$ for $0 \le i < j \le \alpha + 2$. Now, choose a line l_i in each plane δ_i for $0 \le i \le \alpha + 2$ which does not contain the point P_0 . Consider a 0-cycle

$$\mathcal{X}_1 = [\delta_1] + [\delta_2] - [P_0] + \sum_{i=2}^{\alpha+2} [l_i].$$

Then obviously $\deg(\mathcal{X}_1) = 2\theta_2 + \alpha\theta_1 - 1$ and $c(H) \geq 2q + 1 + \alpha$ for any hyperplane H in \mathbb{P}^4 . Let H_0 be a hyperplane containing δ_0 . Since $\langle \delta_0, \delta_i \rangle = \mathbb{P}^4$, i = 1, 2 and $\langle \delta_0, l_j \rangle = \mathbb{P}^4$, $3 \leq j \leq \alpha + 2$, we note that $\delta_i \not\subset H_0$ for i = 1, 2 and $l_j \not\subset H_0$ for $3 \leq j \leq \alpha + 2$. Thus $c(H_0) = 2q + 1 + \alpha$. Therefore, the 0-cycle \mathcal{X}_1 is a $\{2\theta_2 + \alpha\theta_1 - 1, 2q + 1 + \alpha; 4, q\}$ -minihyper.

Now, choose β points Q_j , $(1 \leq j \leq \beta)$ in $\mathbb{P}^4 - \text{Supp}(\mathcal{X}_1) - H_0$. Let

$$\mathcal{X}_1' = \mathcal{X}_1 + \sum_{j=1}^{\beta} [Q_j].$$

Then obviously the 0-cycle \mathcal{X}_1' is a $\{2\theta_2 + \alpha\theta_1 + \beta - 1, 2q + 1 + \alpha; 4, q\}$ -minihyper, which completes the proof.

Theorem 4 If $q \ge 4$ and $q^4 - 3q^2 + 1 \le d \le q^4 - 2q^2$, then

$$n_q(5,d) \le g_q(5,d) + 1.$$

Proof. For any d with $q^4 - 3q^2 + 1 \le d \le q^4 - 2q^2$, there exist α and β such that $0 \le \alpha, \beta \le q - 1$ and $d = q^4 - 2q^2 - (\alpha q + \beta)$.

Let C_1 be a code corresponding to the 0-cycle $\mathcal{Y}_1 = [\mathbb{P}^4] - \mathcal{X}'_1$, where \mathcal{X}'_1 is the 0-cycle appeared in Lemma 3, that is,

$$\mathcal{Y}_1 = [\mathbb{P}^4] - [\delta_1] - [\delta_2] - \sum_{i=3}^{\alpha+2} [l_i] - \sum_{j=1}^{\beta} [Q_j] + [P_0].$$

Then the length n of C_1 is $q^4 + q^3 - \theta_2 - \alpha \theta_1 - \beta + 1$. Now we consider the minimum distance d of C_1 . Since

$$\max_{H\in\mathbb{P}^{4^*}}c(H)=\max_{H\in\mathbb{P}^{4^*}}(\theta_3-\deg\mathcal{X}_1'(H))=\theta_3-\min_{H\in\mathbb{P}^{4^*}}(\deg\mathcal{X}_1'(H)),$$

we have $d=n-(\theta_3-\min_{H\in\mathbb{P}^{4^*}}\deg\mathcal{X}_1'(H))$. Since \mathcal{X}_1' is a $\{2\theta_2+\alpha\theta_1+\beta-1,\ 2q+1+\alpha;\ 4,q\}$ -minihyper by Lemma 3, $d=q^4-2q^2-\alpha q-\beta$. Since $q\geq 4$, we have $g_q(5,d)=q^4+q^3-\theta_2-\alpha\theta_1-\beta$ for $d=q^4-2q^2-\alpha q-\beta$, whence $n=g_q(5,d)+1$. Thus C_1 is a $[g_q(5,d)+1,5,d]_q$ code, which completes the proof.

To prove Theorem 6 we need a minihyper with $w(P) \leq 2$ for any point P in \mathbb{P}^4 .

Lemma 5 There exists a $\{2\theta_3 + \theta_2 + \alpha\theta_1 + \beta - 1, 2q^2 + 3q + 2 + \alpha; 4, q\}$ -minihyper with $w(P) \leq 2$ for any P in \mathbb{P}^4 , where $0 \leq \alpha, \beta \leq q - 1$.

Proof. Fix integers α and β such that $0 \le \alpha, \beta \le q-1$. For a point P_0 in \mathbb{P}^4 , by Lemma 2, we can take $\alpha+2$ planes, say $\delta_1, \delta_2, \ldots, \delta_{\alpha+2}$ such that $\delta_i \cap \delta_j = \{P_0\}$ for $1 \le i < j \le \alpha+2$. Choose a line l_j in each plane δ_j such that $P_0 \notin l_j$ for $3 \le j \le \alpha+2$. Let H_1 and H_2 be distinct hyperplanes containing the plane δ_2 .

Consider a 0-cycle

$$\mathcal{X}_2 = [H_1] + [H_2] + [\delta_1] + \sum_{i=2}^{\alpha+2} [l_i] - [P_0].$$

Then $\deg(\mathcal{X}_2) = 2\theta_3 + \theta_2 + \alpha\theta_1 - 1$ and $c(H) \geq 2\theta_2 + \theta_1 + \alpha - 1$ for any hyperplane H of \mathbb{P}^4 . Let H_0 be a hyperplane containing δ_2 such that $H_0 \neq H_1$, H_2 . Since $\langle \delta_2, \delta_1 \rangle = \mathbb{P}^4$ and $\langle \delta_2, l_j \rangle = \mathbb{P}^4$, $3 \leq j \leq \alpha + 2$, we note that $\delta_1 \not\subset H_0$ and $l_j \not\subset H_0$ for $3 \leq j \leq \alpha + 2$. Thus we have $c(H_0) = 2\theta_2 + \theta_1 + \alpha - 1$. Choose β points Q_j $(1 \leq j \leq \beta)$ in $\mathbb{P}^4 - \operatorname{Supp}(\mathcal{X}_2) - H_0$. Let

$$\mathcal{X}_2' = \mathcal{X}_2 + \sum_{j=1}^{eta} [Q_j].$$

Then obviously the 0-cycle \mathcal{X}_2' is a $\{2\theta_3 + \theta_2 + \alpha\theta_1 + \beta - 1, 2q^2 + 3q + 2 + \alpha; 4, q\}$ -minihyper, which completes the proof.

Theorem 6 If $q \ge 3$ and $2q^4 - 2q^3 - 2q^2 + 1 \le d \le 2q^4 - 2q^3 - q^2$, then

$$n_q(5,d) \le g_q(5,d) + 1.$$

Proof. For any d with $2q^4-2q^3-2q^2+1\leq d\leq 2q^4-2q^3-q^2$, there exist α and β such that $0\leq \alpha,\beta\leq q-1$ and $d=2q^4-2q^3-q^2-(\alpha q+\beta)$.

Let C_2 be a code corresponding to the 0-cycle $\mathcal{Y}_2 = 2[\mathbb{P}^4] - \mathcal{X}'_2$, where \mathcal{X}'_2 is the 0-cycle appeared in Lemma 5, that is,

$$\mathcal{Y}_2 = 2[\mathbb{P}^4] - [H_1] - [H_2] - [\delta_0] - \sum_{i=3}^{\alpha+2} [l_i] - \sum_{j=1}^{\beta} [Q_j] + [P_0].$$

Then the length n of C_2 is $2q^4 - \theta_2 - \alpha\theta_1 - \beta + 1$. Now we consider the minimum distance d of C_2 . Since

$$\max_{H \in \mathbb{P}^{4^*}} c(H) = \max_{H \in \mathbb{P}^{4^*}} (2\theta_3 - \deg \mathcal{X}_2'(H)) = 2\theta_3 - \min_{H \in \mathbb{P}^{4^*}} (\deg \mathcal{X}_2'(H)),$$

we have $d = n - (2\theta_3 - \min_{H \in \mathbb{P}^{4^*}} \deg \mathcal{X}_2'(H))$. Since \mathcal{X}_2' is a $\{2\theta_3 + \theta_2 + \alpha\theta_1 + \beta - 1, 2q^2 + 3q + 2 + \alpha; 4, q\}$ -minihyper by Lemma 5, we have $d = 2q^4 - 2q^3 - q^2 - \alpha q - \beta$. Since $q \geq 3$, we have $g_q(5, d) = 2q^4 - \theta_2 - \alpha\theta_1 - \beta$ for $d = 2q^4 - 2q^3 - q^2 - \alpha q - \beta$,

whence $n = g_q(5, d) + 1$. Thus C_2 is a $[g_q(5, d) + 1, 5, d]_q$ code, which completes the proof.

Next we construct a minihyper with $w(P) \leq 3$ for any point P in \mathbb{P}^4 to prove Theorem 8.

Lemma 7 There exists a $\{4\theta_3 + \alpha\theta_1 + \beta - 1, 4\theta_2 + \alpha - 1; 4, q\}$ -minihyper with $w(P) \leq 3$ for any P in \mathbb{P}^4 , where $0 \leq \alpha, \beta \leq q - 1$.

Proof. Fix integers α and β such that $0 \le \alpha, \beta \le q - 1$. For a point P_0 in \mathbb{P}^4 , by Lemma 2, there exists a collection \mathcal{D} of $q^2 + 1$ planes through P_0 such that any two planes in \mathcal{D} intersect only at P_0 . We take any 4 planes in \mathcal{D} , say δ_i (i = 1, 2, 3, 4). Then we take hyperplanes H_i satisfying the following conditions;

- (i) H_i contains δ_i for i = 1, 2, 3, 4, respectively.
- (ii) H_2 does not contain the line $H_1 \cap \delta_4$.
- (iii) H_3 does not contain the line $H_1 \cap \delta_2$.
- (iv) H_4 does not contain the line $H_1 \cap H_2 \cap H_3$.

Indeed, it is easy to prove that such hyperplanes exist, $H_1 \cap H_2$ is a plane, $H_1 \cap H_2 \cap H_3$ is a line which is not contained in δ_4 , and $H_1 \cap H_2 \cap H_3 \cap H_4 = \{P_0\}$.

Next, we take $\alpha+1$ planes in $\mathcal{D}-\{\delta_1, \delta_2, \delta_3, \delta_4\}$, say δ_0, δ_j $(j=5,\ldots,\alpha+4)$ which does not contain the lines constructed by three of H_i for i=1,2,3,4. For $5 \leq j \leq \alpha+4$, choose a line l_j in each plane δ_j such that $P_0 \notin l_j$.

Let

$$\mathcal{X}_3 = [H_1] + [H_2] + [H_3] + [H_4] + \sum_{i=1}^{\alpha+4} [l_i] - [P_0].$$

Then $\deg(\mathcal{X}_3) = 4\theta_3 + \alpha\theta_1 - 1$ and $c(H) \geq 4\theta_2 + \alpha - 1$ for any hyperplane H of \mathbb{P}^4 . Moreover, $w(P) \leq 3$ for any $P \in \mathbb{P}^4$, by the choice of H_i and l_i .

Let H_0 be a hyperplane containing δ_0 . Since $\langle \delta_0, \delta_i \rangle = \mathbb{P}^4$, $1 \leq i \leq 4$ and $\langle \delta_0, l_j \rangle = \mathbb{P}^4$, $5 \leq j \leq \alpha + 4$, we have $c(H_0) = 4\theta_2 + \alpha - 1$. Next, we choose β points Q_j $(1 \leq j \leq \beta)$ in $\mathbb{P}^4 - \operatorname{Supp}(\mathcal{X}_3) - H_0$. Let

$$\mathcal{X}_3' = \mathcal{X}_3 + \sum_{j=1}^{\beta} [Q_j].$$

Then obviously the 0-cycle \mathcal{X}_3' is a $\{4\theta_3 + \alpha\theta_1 + \beta - 1, 4\theta_2 + \alpha - 1; 4, q\}$ -minihyper, which completes the proof.

Theorem 8 If $q \ge 5$ and $3q^4 - 4q^3 - q^2 + 1 \le d \le 3q^4 - 4q^3$, then

$$n_q(5,d) \le g_q(5,d) + 1.$$

Proof. For any d with $3q^4 - 4q^3 - q^2 + 1 \le d \le 3q^4 - 4q^3$, there exist α and β such that $0 \le \alpha, \beta \le q - 1$ and $d = 3q^4 - 4q^3 - (\alpha q + \beta)$.

Let C_3 be a code corresponding to the 0-cycle $\mathcal{Y}_3 = 3[\mathbb{P}^4] - \mathcal{X}_3'$, where \mathcal{X}_3' is the 0-cycle appeared in Lemma 7, that is,

$$\mathcal{Y}_3 = 3[\mathbb{P}^4] - \sum_{i=1}^4 [H_i] - \sum_{i=5}^{\alpha+4} [l_i] - \sum_{j=1}^{\beta} [Q_j] + [P_0].$$

Then the length n of C_3 is $3\theta_4 - 4\theta_3 - \alpha\theta_1 - \beta + 1$. Now we consider the minimum distance d of C_3 . Since

$$\max_{H \in \mathbb{P}^{4^*}} c(H) = \max_{H \in \mathbb{P}^{4^*}} (3\theta_3 - \deg \mathcal{X}_3'(H)) = 3\theta_3 - \min_{H \in \mathbb{P}^{4^*}} (\deg \mathcal{X}_3'(H)),$$

we have $d=n-(3\theta_3-\min_{H\in\mathbb{P}^{4^*}}(\deg\mathcal{X}_3'(H))$. Since \mathcal{X}_3' is a $\{4\theta_3+\alpha\theta_1+\beta-1,\ 4\theta_2+\alpha-1;\ 4,q\}$ -minihyper by Lemma 7, we have $d=3q^4-4q^3-\alpha q-\beta$. Since $q\geq 5$, we have $g_q(5,d)=3\theta_4-4\theta_3-\alpha\theta_1-\beta$ for $d=3q^4-4q^3-\alpha q-\beta$, whence $n=g_q(5,d)+1$. Thus C_3 is a $[g_q(5,d)+1,5,d]_q$ code, which completes the proof.

Remark Maruta [9] proved that $n_q(5,d) = g_q(5,d) + 1$ when

$$\begin{aligned} q^4 - 2q^2 - q + 1 &\leq d \leq q^4 - 2q^2 \text{ for } q \geq 3, \\ 2q^4 - 2q^3 - q^2 - q + 1 &\leq d \leq 2q^4 - 2q^3 - q^2 \text{ for } q \geq 3, \\ 3q^4 - 4q^3 - q + 1 &\leq d \leq 3q^4 - 4q^3 \text{ for } q \geq 5, \end{aligned}$$

which is corresponding to the case $\alpha = 0$ and $0 \le \beta \le q - 1$ in our theorems Theorem 4, 6 and 8, respectively.

Also, in [1], [2] and [3], they proved that $n_q(5,d) = g_q(5,d) + 1$ when

$$\begin{aligned} q^4 - 2q^2 - 2q + 1 &\leq d \leq q^4 - 2q^2 - q \text{ for } q \geq 5, \\ 2q^4 - 2q^3 - q^2 - 2q + 1 &\leq d \leq 2q^4 - 2q^3 - q^2 - q \text{ for } q \geq 5, \\ 3q^4 - 4q^3 - 2q + 1 &\leq d \leq 3q^4 - 4q^3 - q \text{ for } q \geq 11, \end{aligned}$$

which is corresponding to the case $\alpha=1$ and $0\leq\beta\leq q-1$ in our theorems Theorem 4, 6 and 8, respectively.

References

- [1] E. J. Cheon, T. Kato and S. J. Kim, Nonexistence of $[n,5,d]_q$ codes attaining the Griesmer bound for $q^4-2q^2-2q+1 \le d \le q^4-2q^2-q$, Designs, Codes and Cryptography **36** (2005), 288–299.
- [2] E. J. Cheon, T. Kato and S. J. Kim, On the minimum length of some linear codes of dimension 5, *Designs, Codes and Cryptography* **37** (2005), 421–434.

- [3] E. J. Cheon, T. Kato and S. J. Kim, Nonexistence of $[g_q(5,d),5,d]_q$ code for $3q^4-4q^3-2q+1 \le d \le 3q^4-4q^3-q$, preprint.
- [4] P. Govaerts and L. Storme, On a particular class of minihypers and its applications. I. The result for general q, Designs, Codes and Cryptography 28 (2003), 51–63.
- [5] R. Hill, Optimal linear codes, Cryptography and Coding II (ed. C. Mitchell), Oxford Univ. Press, Oxford (1992), 75–104.
- [6] R. Hill and E. Kolev, A survey of recent results on optimal linear codes, in Combinatorial Designs and their Applications, Chapman and Hall/CRC Press Research Notes in Mathematics, (Holroyd FC et al. eds.), CRC Press, Boca Raton (1999), 127–152.
- [7] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford (1998).
- [8] D.B. Jaffe, Information about binary linear codes. [Online]. Available: http://www.math.unl.edu/~djaffe/codes/webcodes/codeform.html
- [9] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Designs, Codes and Cryptography 22 (2001), 165-177.
- [10] T. Maruta, I. N. Landjev and A. Rousseva, On the minimum size of some minihypers and related linear codes, *Designs*, *Codes and Cryptography* 34 (2005), 5–15.
- [11] T. Maruta, Griesmer Bound for Linear Codes over Finite Fields. [Online]. Available: http://www.appmath.osaka-wu.ac.jp/~maruta/griesmer.htm
- [12] F. Tamari, A construction of some [n, k, d; q]-codes meeting the Griesmer bound, Discrete Math. 116 (1993), 269–287.

(Received 13 Feb 2006)