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Abstract

A weighted graph is one in which every edge e is assigned a nonnegative
number, called the weight of e. The weight of a graph is defined as the
sum of the weights of its edges.

In 2-edge-colored complete graph, by using Ramsey-type theorems,
we obtain the existence of monochromatic subgraph which have many
edges compared with its order. In this paper, we extend the concept of
Ramsey problem to the weighted graphs, and we show the existence of a
heavy monochromatic subgraph in 2-edge-colored graph with small order.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. We use
[1] for basic terminology and notation not defined here. A weighted graph is one in
which every edge e is assigned a nonnegative real number w(e), called the weight of
e. For a subgraph H of G, the weight of H is defined by the sum of the weight of
the edges in H, denoted by wg(H). When there is no fear of confusion, we denote
we(H) by w(H).

We say that a graph G can be decomposed into graphs Hy, Hs, ..., H; if and only
if there is a set {G1, Go, ..., G} of subgraphs of G such that each G; is isomorphic to
H; and each edge of G is contained in exactly one of the graphs in {G1, Gs,...,Gi}.
In this case we also say that {H, Hs,..., H;} is a decomposition of G. Especially,
we call a decomposition of a graph G into two weighted graphs R and B a 2-edge-
coloring of G, so that the edges in R are colored red, and the edges in B are colored
blue. For any subgraph H of a 2-edge-colored weighted graph G, we define

we(H)= > wle), ws(H)= > wle).

e€E(R)NE(H) e€E(B)NE(H)

In [4], some Turan-Ramsey theorems for weighted graphs in which every edge has
weight 0, 1/2 or 1, are considered. And in [2] and [5], there are some results of Turan
problems for weighted graphs, in which the weight of every edge is a rational number.
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In this paper we deal with more general weighted graphs, i.e. every nonnegative
real number is allowed for the weights of the edges. And, the aim is to introduce
the Weighted Ramsey Problem, the extension of the Ramsey Problem to weighted
graphs.

Definition 1. Let n and s be two integers with n > s > 3. We define WR(s;n)
to be the supremum value ¢ such that for any weighting function w of K,, and for

any 2-edge-coloring R and B of K,, there exists a subgraph H of order s satisfying
max{wgr(H),ws(H)} > ¢- w(kK,).

The following proposition shows the relation between the Ramsey number R(s, s)
and the weighted Ramsey number WR(s;n).

Proposition 1. Let n and s be two integers with n > s > 3. Then R(s,s) < n if

s(s—1)—2

WR(s;n) > pYp—y

(1)

Proof. Consider a weighted complete graph G of order n such that w(e) = 1 for

every edge e in G. By (1) and the fact w(G) = n(n —1)/2, we can find H ~ K, such

that

s(s—1)—2
n(n —1)

s(s—l)—2:s(s—1)
2 2

max{wg(H),wg(H)} > w(G@) = - L

Since w(e) = 1 for every edge in G, H is a monochromatic K, which implies R(s) <
n. (]

Since max{w(R), w(B)} > w(G)/2 for any 2-edge-coloring of weighted complete
graph G with order n, we easily obtain the following proposition from the straight-
forward averaging argument.

Proposition 2. Let n and s be two integers with n > s > 3. Then
1 -1
WR(s;n) > = - M
2 n(n-1) O

On the other hand, the Turdn graph and its complement give an upper bound of
WR(s,n).

Proposition 3. Let n and s be two integers with n > s > 3. Then

s2—1 s(s—1)
$24+1 nn-1)

WR(s;n) <

Proof. Let T,(n) be the Turdn graph, the complete r-partite graph with n vertices
whose partite sets differ in size by at most 1. Consider the 2-edge-coloring of K,
where R ~ T;_;(n) and B is the complement of R. Now we assign weight

1
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for every red edge and weight

for every blue edge. Then max{wr(H),wp(H)} < 1 for every induced subgraph H

of order s and there are
1 n
(1-s5+s0m) ()

(Za-rem) ()

blue edges, where f(s,n) is a function such that f(s,n) > 0 for every s,n and
f(s,n) = 0 as n — oco. Hence

w(@) s(s _21) —2 (1 s i 1" f(s,n)> (Z)
g () (3)
(=imern) 2 (3)

s2+1 n(n —1)

(s=1)(s+1) s(s—1)°

red edges and

\

Therefore,

WR(s;n) <

<

In this paper, we determine the exact value of WR(3;n) for n = 5 and 6.
Theorem 1. WR(3;5) = 1/5.
Theorem 2. WR(3;6) =1/7.

We prove Theorems 1 and 2 in the later section. By Proposition 1, we obtain that
Theorem 2 implies the fact R(3,3) < 6. Note that Theorem 1 implies that the
equality
s(s—1)—2
WR(s;n) = —————
(sim) n(n —1)
holds for s = 3 and n = 5. In this sense, we can say that the fact R(3,3) > 5 is
optimal even for weighted graphs.
By using Theorem 2, we can improve the lower bound of WR(3;n) in Proposi-
tion 2.
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Proposition 4. Ifn > 6, then

30 1

WR(3in) > = T

Proof. Let G be a weighted complete graph of order n with w(G) = 1. By the
straightforward averaging argument, we obtain the existence of a subgraph G' ~ K
in G such that

30
n(n—1)

w(G') >

Then, it follows from Theorem 2 that there exists an induced subgraph H ~ Kj;
satisfying
30 1

max{wr(H),ws(H)} 2 w(@)/7 2 - 2oy

which implies the assertion. O

We shall discuss the value WR(3;n) further in Section 5.

2 Lemmas

Let B; and By be two graphs. B; + B denotes a graph obtained by joining every
vertex in B and every vertex in B,. For a graph B and v € V(B), dg(v) is the
number of neighbors of v in B. We say E(B) is connected if E(B) induces a connected
graph. A path with r vertices is denoted by P,, and the graph K, is called a star. In
a star K ,, the vertex of degree r is called its center, and degree 1 its leaf. The star
with the center v and the leaves vy, vy, ..., v, is denoted by u-vivs...v,. A graph is
called claw-free if it contains no K3 as an induced subgraph.

To prove Theorems 1 and 2, for the technical reason, we consider the following
weighting functions for a given graph B;

W(B) = {w : E(B) = Rt | w(B') <6 for any subgraph B’ of B with |V(B')| < 3},
and investigate the following invariant.
W(B) = sup{w(B) | w € W(B)}.

Now we prepare some facts and lemmas, which determine the values of W(B) for
several graphs B. The following fact is obvious, so we omit the proof.

Fact 1. Let B be a graph with at most 6 vertices. If |E(B)| > 8, then E(B) induces
a connected graph. a

Lemma 1. Let B’ be a subgraph of B, then W(B') < W(B).
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Proof. Assume that w'(B’) > W(B) for some w' € W(B'). Consider the weighting
function w such that w(e) = w'(e) if e € B’ and w(e) =0 if e ¢ B'. Then it is clear
that w(B) = w'(B') > W(B) and w € W(B), which contradicts the definition of
W(B). O

Lemma 2. If B is an edge-disjoint union of the graphs By and Bs, then W(B) <
W(B;) + W(Bs).

Proof. If w € W(B) and w(B) > W(B;) + W(B,), then w(B;) > W(B;) for i =1
or 2, which contradicts the definition of W (B;). O

Lemma 3. If B is a star Ky, with r > 2, then W(B) = 3r.
Proof. Let u be the center of B, let vy, vs,. .., v, be the leaves of B and let v, = v;.

For any w € W(B), we have w(v;uv;41) < 6 for every ¢, where the index ¢ is taken
as modulo r. Hence

- 6r = 3r.

DO =

1 T
w(B) = §Zw(vﬂwi+1) <
i=1

The constant weight with w(e) = 3 shows that W (B) = 3r. O
Lemma 4. If B is a cycle with length at least 4, then W(B) = 3|E(B)|.

Proof. Let B = vjvy...v,. For any w € W(B), we have w(v;v;+10;42) < 6 for every
i, where the index ¢ is taken as modulo r. Hence

r

1 1
w(B) = B} ;w(vivi+lvi+2) < 3 6r = 3|E(B)].
The constant weight with w(e) = 3 shows that W (B) = 3|E(B)]. O

Lemma 5. If B is a complete graph of order n > 3, then W(B) = n(n — 1).

Proof. Let 7 = {T | T is a triangle in B} and let w € W(B). Then w(T) < 6 for
all T € T. Hence

w(B) = —— 3 w(T)

= n(n-1).
The constant weight with w(e) = 2 shows that W (B) = n(n — 1). O

Lemma 6. If C is a cycle of length r > 4 and B = K; + C, then W(B) = 9r/2.
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Proof. Let C = vvy...v, and let u be the vertex of V(B) \ V(C). Moreover,
let T; be the triangle uv;v;y1, where the indices ¢ and j are taken as modulo r. If
w € W(B), then by Lemma 4, we have w(C') < 3r. Hence,

W(B) < w(B)
_ %(Zw(ﬂ)+w(0))
1
< 5-(67‘—#—31“)
9
< —=r.
=9

On the other hand, there is w € W(B) such that w(e) = 3 for every e € E(C) and
w(e) = 3/2 for all the other edges. This shows W (B) = 9r/2. O

Lemma 7. If B~ K¢ — E(3K3), then W(B) = 24.

Proof. Let E(B) = {a1b1, asbs, azbs}. Then B can be decomposed into four triangles
aiasas, a1babs, biasbs and bibsas. For any w € W(B), each of them has weight at
most 6, hence we have w(B) < 24. The constant weight with w(e) = 2 shows that
W(B) = 24. O

Sumner [7] and Las Vergnas [6] proved that every connected claw-free graph of
even order has a 1-factor. Since the line graph of any graph is claw-free, we obtain
that if B is a connected graph with |E(B)| even, then its line graph L(B) has a
1-factor M. If eje; € M, then e; and ey is adjacent in B, hence this 1-factor
corresponds to a partition of E(B) to pairwise adjacent edges. This implies the
following fact.

Fact 2. Let B be a connected graph with |E(B)| even. Then B can be partitioned
into |E(B)|/2 pairs of adjacent edges. O

And, the following fact is easily obtained from Fact 2.

Fact 3. Let B be a connected graph with |E(B)| odd. Then B can be partitioned into
an edge and (|E(B)| — 1)/2 pairs of adjacent edges. O

Using these facts, we obtain the following lemma.

Lemma 8. Suppose that B is a connected graph. If B is a tree with a perfect
matching, then W(B) = 3|E(B)| + 3. Otherwise, W(B) < 3|E(B)|.

Proof. If |E(B)| is even, then B can be decomposed into |E(B)|/2 edge-disjoint
P;s. Hence, by Lemma 2, W(B) < (|E(B)|/2)W(P;) = 3|E(B)|.

Suppose that |E(B)| is odd. Since B can be decomposed into (|E(B)| — 1)/2
edge-disjoint Pss and one K», then by Lemma 2 again, we have W(B) < ((|E(B)| —
1)/2)W(Ps) + W(K>) = 3(|E(B)| — 1) + 6 = 3|E(B)| + 3. In fact, when B is a
tree with a perfect matching M, if we assign w(e) = 6 for e € M and w(e) = 0
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for e ¢ M, then w € W(B) and w(B) = 3|V(B)| = 3|E(B)| + 3, which shows that
W(B) = 3|E(B)| + 3.

Suppose next that B is a tree without perfect matchings. Recall that |V(B)| =
|E(B)|+ 1 is even. It follows from the fact B does not have a perfect matching that
B is not a path, which implies that there exists a vertex v such that dz(v) > 3.
Since B is a tree, B — v contains at least three odd components B, Bs and Bs. Let
v; be the neighbor of v in B; for ¢ = 1,2,3. It is easy to see that each component of
B—{vv1,vvs, vv3} has even number of edges. This implies that B can be decomposed
into (|E(B)| — 3)/2 edge-disjoint Pss and one K, 3. By Lemmas 2 and 3, we have

W(B) < ((IE(B)| = 3)/2)W(P3) + W(EKy3) = 3(|E(B)| - 3) +9 = 3|E(B)|.

Suppose that B contains a cycle. We use induction on |E(B)| to prove that
W(B) < 3|E(B)|. Let C be a cyclein B. If B = C itself, then by Lemma 4, we have
W(B) < 3|E(B)|. Let T be a unicyclic spanning subgraph of B such that C C T.
Since B # C, we can take a leaf u of T which is farthest from C in T. If we can
take a P ~ P; containing u such that E(P)N E(C) = 0 and E(B) \ E(P) induces a
connected subgraph, then by induction, we have W (B) < W(B\ E(P)) + W(P) <
3(|E(B)| — 2) + 6 = 3|E(B)|. This is the case unless dg(u) = 1 and the unique
neighbor v of w in B is in C' and dr(v) = 3. In this case, let v; and vy be the
neighbor of v in C. It is easy to see that B — {vu,vvy,vve} is connected. This
implies that B can be decomposed into (|E(B)| — 3)/2 edge-disjoint Pss and one
K 3. By Lemmas 2 and 3, we have

W(B) < ((IE(B)| = 3)/2)W(Ps) + W(Ky3) = 3(|E(B)| = 3) +9 = 3|E(B)|.

3 Proof of Theorem 1

Let G be a 2-edge-colored complete graph with 5 vertices. If each edge of G has weight
3 and R ~ B ~ Cj, then w(G) = 30 and max{wg(H),wg(H)} < 6 = w(G)/5b for
every triangle H in G, hence we have WR(3;5) < 1/5. To prove the lower bound,
we assume max{wg(T),wp(T)} < 6 for every triangle T in G. Then it suffices
to prove that w(G) < 30. If G has no monochromatic Kj, it is easy to see that
R ~ B ~ (5. Then Lemma 4 implies that w(R) < 15 and w(B) < 15, hence
we obtain w(@) = w(R) + w(B) < 30. So we may assume that there exists a
monochromatic triangle in G.

Now we consider the case where G has a monochromatic 2K, + K;. Without
loss of generality we may assume that 2K, + K; C B. Note that R C Cy. If
R ~ K, or P;, we have w(R) < 6, and Lemmas 1 and 5 imply w(B) < 24. Hence
w(G) = w(R) +w(B) < 30. Otherwise, 2K, C R. Then B C Cy + K, so Lemmas 1
and 6 imply that w(B) < 18. On the other hand, since R C C4, we have w(R) < 12
by Lemmas 1 and 4. Thus w(G) = w(R) + w(B) < 30.

Therefore, we may assume that G has a monochromatic K3 but no monochromatic
2Ky + K;. Without loss of generality we may assume that K3 C B. Since 2Ks+ K3 ,¢_
B, we have |E(R)| > 3.
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In case of |[E(R)| = 3, R ~ P, K1 3, K3 or PsUK,. By Lemmas 2 and 8, we obtain
w(R) < 121in each case. Let B’ be a graph obtained from B by deleting the edges of a
triangle in B. Then |E(B')| = 4 and E(B') must be connected, hence Lemma 8 shows
w(B') < 12, which implies w(B) < 18. Thus w(G) = w(R) + w(B) < 30. In case of
|E(R)| = 4, E(R) must be connected, hence Lemma 8 implies that w(R) < 12. Since
|E(B)| = 6, E(B) is also connected, hence it follows from Lemma 8 that w(B) < 18.
Therefore, we have w(G) = w(R) + w(B) < 30.

If |[E(R)| = 5, then 3K, ¢ R and 3K, ¢ B. Hence Lemma 8 implies w(R), w(B) <
15, thus we have w(G) = w(R)+w(B) < 30. If |[E(R)| = 6, since E(R) is connected,
we have w(R) < 18 by Lemma 8. If F(B) is connected, Lemma 8 implies w(B) < 12,
and otherwise B ~ K, U K3, so w(B) < 12. Thus we have w(G) < 30. And if
|E(R)| = 7, Lemma 8 implies w(R) < 21. Now the fact B ~ K3 shows w(B) < 6,
hence we have w(G) < 30. This completes the proof of Theorem 1. O

4 Proof of Theorem 2

Let G be a 2-edge-colored complete graph with 6 vertices and R ~ 3K,. If each
edge of R has weight 6 and each edge of B has weight 2, then w(G) = 42 and
max{wg(H),ws(H)} < 6 = w(G)/7 for every triangle H in G. Hence we have
WR(3;5) < 1/7. To prove the lower bound, as in the proof of Theorem 1, we assume
max{wg(T),wp(T)} < 6 for every triangle T' in G, and then it suffices to prove
w(G) < 42. Without loss of generality, we may assume that |E(R)| < 8 < |E(B)].

Case 1. |[E(R)| < 2.

In this case it is obvious that w(R) < 12, and Lemmas 1 and 5 imply that w(B) < 30,
hence w(G) < 42.

Case 2. |[E(R)| = 3.

In this case, R ~ P, K3, K3, Ps UK, or 3K,. If R % 3K,, then we obtain
w(R) < 12 by Lemmas 2 and 8. On the other hand, Lemmas 1 and 5 imply that
w(B) < 30, thus we have w(G) < 42. If R ~ 3K,, then w(R) < 18. Since Lemma 7
implies w(B) < 24, we obtain w(G) < 42.

Case 3. |[E(R)| = 4.

Since |E(B)| = 11, there exists a triangle in B, say T. Let B’ = B — E(T), then it
follows from Fact 1 that E(B') is connected. Hence Lemma 8 implies w(B’) < 24.
Thus we have w(B) = w(B') + w(T') < 30.

Now suppose that E(R) is connected. Then by Lemma 8, we have w(R) < 12,
which implies w(G) < 42. Hence we may assume that E(R) is not connected, then
R~2P;, KhbUK3, KhUK, 3, or Kb UP. If R~ 2P; or Ky U K3, then Lemmas 2
and 8 imply w(R) < 12, hence w(G) < 42. If R ~ K, U K, 3, we have w(R) < 15
by Lemma 3. Let v; and v, be the vertices of K, let vs be the center of K 3, and
let v4,v5,v6 be leaves of K3 in R. Then B can be decomposed into two triangles
V146, VaUsUe and a cycle v;vsvav4vs. Hence by Lemma 4, we obtain w(B) < 27,
which implies w(G) < 42. If R ~ K, U P4, by Lemma 8, we have w(R) < 18. Since
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B C K¢ — E(3K3), we have w(B) < 24 by Lemmas 1 and 7, therefore w(G) < 42. O
Case 4. |E(R)| = 5.

Since |E(B)| = 10, there exists a triangle in B, say T. Let B' = B — E(T). Since
|E(B')| = 7and B'is a graph obtained by deleting a triangle from B, B’ is connected.
Hence we have w(B') < 21 by Lemma 8. Thus w(B) = w(B') + w(T) < 27. If
w(R) < 15, we are done, so we assume that w(R) > 15. Now Lemma 8 implies that
one of the component of R is a tree with a perfect matching. Considering |E(R)| = 5,
we have w(R) < 18 and 3K, C R by Lemma 8. Then B C K¢ — E(3K>), hence by
Lemmas 1 and 7 we have w(B) < 24, which implies w(G) < 42. O

Case 5. |E(R)| = 6.

First assume that E(R) is not connected, then R ~ K, U K, (K, is the graph
obtained from K4 by deleting just one edge) or 2K3. If R ~ K, U K, , then the fact
K, C K, and Lemmas 1 and 5 imply that w(R) < 6 + 12 = 18. Let v; and vy be
vertices of K», and v3, v4, vs, vg be vertices of K; in R such that vzvs ¢ E(R). Then
B has a triangle T = vjvzvs. Let B' = B — E(T), then E(B') is connected and
|E(B')| = 6, hence Lemma 8 implies w(B') < 18. Thus w(B) < 24, which implies
w(G@) < 42. In case of R ~ 2Kj, we have w(R) < 12. Now B ~ K33, hence Lemma 8
implies w(B) < 27. Therefore we have w(G) < 42.

In the case where E(R) is connected, by Lemma 8, we have w(R) < 18. Since
B # K;3 and |E(B)| =9, there exists a triangle 7' in B. Let B' = B — E(T'), then
|E(B')| = 6. So if we change B’ into R and use the same argument as above, we
obtain w(B") < 18. Hence w(B) < 24, this implies w(G) < 42. O

Case 6. |[E(R)|=T.

In case of R is not connected, R ~ K>,UK,. Hence Lemmas 2 and 8 imply w(R) < 18.
And if R is connected, Lemma 8 implies that w(R) < 21. Now suppose that B has
a triangle T and let B' = B — E(T). If w(B') < 15, we have w(B) < 21, this implies
w(G@) < 42. Hence we may assume that w(B') > 15, then Lemma 8 implies that
w(B') < 18 and B’ contains 3K,. Let Fi, Fy and F3 be the components of 3K in B’,
then each of them must contain just one vertex of T'. Let Fy = a1by, Fy = asbs, F3 =
azbsz. Without loss of generality, we may assume that 7' = ayasaz. Let H be a graph
such that V(H) = {a1,as,as,b1,b:,b3} and E(H) = E(T)U E(F,)U E(F;) U E(F3),
then R C H. Since H can be decomposed into three triangles aibybs, byasb; and
bibsas, we have w(R) < 18 by Lemma 1. Now w(B) = w(B') + w(T) < 18+ 6 = 24.
Hence w(G) < 42, therefore we may assume that B is triangle-free.

Next, suppose that B has a Cj, say C. Since B is triangle-free, there is no chord
in C. Hence the vertex which is not in C' must adjacent to three vertices of the C,
however this makes triangle in B, a contradiction.

Therefore, we may assume that B is bipartite. It follows from the fact E(B) is
connected and Lemma 8 that w(B) < 24. If B C K33, then R can be decomposed
into two triangles and a K. Hence w(R) < 18, which implies w(G) < 42. Otherwise,
B ~ Ky 4. Then R can be decomposed into a K, and a K,. Hence by Lemma 5 we
have w(R) < 18, which implies w(G) < 42. This completes the proof of Theorem 2.
O
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5 Weighted Ramsey number for large graphs

In this section, we observe the relation between the value WR(3;n) and the number
of edge-disjoint monochromatic triangles in 2-edge-colored graphs with n vertices,
for sufficiently large n. For a 2-edge-coloring ¢ of K,, we define N(n,k;c) as the
maximum number of pairwise edge-disjoint monochromatic complete subgraphs Kj.
And let

N(n,k) = min{N(n, k;c) | ¢ is a 2-edge-coloring of K,}.

Proposition 5.

4
; > .
WR(3777/) = p2_ 2N(n,3) +n

Proof of Proposition 5. Let G be a 2-colored graph with n vertices and set m =
N(n,3). As in the proofs of Theorems 1 and 2, we assume max{wg(T), wg(T)} < 6
for every triangle T in G and prove that

w(G) < 3n%/2 — 3m + 3n/2.

Let T be a set of edge-disjoint monochromatic triangles of cardinality m, E(T) =
Urer E(T), R be the graph induced by E(R)\ E(T) and B’ be the graph induced by
E(B)\ E(T). Since both of R" and B’ have at most n/2 components, using Facts 2
and 3, we can find (|E(R')| + |E(B')| — 1)/2 pairwise edge-disjoint monochromatic
paths of length two in R'UB’, where | < 2-n/2 = n. Let P be the set of such paths,
E(P) = Upep E(P), and I = E(G) \ (E(T)U E(P)). Then |I| =1 < n and

|E(G)| - |E(T)| - 1]
2
—3m—1
2
n? —6m — 3n
4

Pl =

n(n—1)
2

\Y

\Y

Therefore,

w(@) = Y wl)+ > wP)+ Y wle)

TeT PeP ecl
6|7 | + 6P| + 6]

2 _6m—3
6m+6-$+6n
3 3
§n2—3m+§n.

IN

IN

Then,
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O

In [3], concerning the Turdn graph Ty(n) and its complement, the following conjecture
is given.

Conjecture 1 (Erdés).

N(n,3) = (% + 0(1)> n®.

If this conjecture is true, then Proposition 5 implies

4
>
T n2=2(5+o(1)n?
1
2

(% + 0(1)> —

The coefficient of n~2 in this lower bound is the same as the coefficient of n~2 in the
upper bound of Proposition 3 for s = 3. Considering this, we state the following
conjecture.

WR(3;n)

Conjecture 2.
24 1

In fact, the lower bound of N(n,3) is known as follows.

Theorem 3 (Erd&s, Faudree, Gould, Jacobson and Lehel [3]).

N(n,3) > (% + 0(1)> n?.

By using Proposition 5, we have

4
n?—2 (% + 0(1)) n?

<% 4 0(1)) %

which improves the lower bound in Proposition 4.

\Y

WR(3;n)
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