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Abstract

Let G be a graph that admits a perfect matching. A forcing set for a per-
fect matching M of G is a subset S of M, such that S is contained in no
other perfect matching of G. This notion originally arose in chemistry in
the study of molecular resonance structures. Similar concepts have been
studied for block designs and graph colorings under the name defining set,
and for Latin squares under the name critical set. Recently several papers
have appeared on the study of forcing sets for other graph theoretic con-
cepts such as dominating sets, orientations, and geodetics. Whilst there
has been some study of forcing sets of matchings of hexagonal systems
in the context of chemistry, only a few other classes of graphs have been
considered.

Here we study the spectrum of possible forced matching numbers for
the grids P, X P,, discuss the concept of a forcing set for some other spe-
cific classes of graphs, and show that the problem of finding the smallest
forcing number of graphs is NP—complete.

* Research is partly supported by the Institute for Studies in Theoretical Physics and Mathe-
matics (IPM)
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1 Introduction and preliminaries

Let G be a graph that admits a perfect matching. A forcing set for a perfect matching
M of G is a subset S of M, such that S is contained in no other perfect matching of
G.

Example 1. In Figure 1 a forcing set of size 6 is shown for a perfect matching in
an 8 X 12 grid; that is Ps X Pia. The bold edges form a matching, and the edges in
the forcing set are indicated by small circles.

Figure 1: A forcing set for a perfect matching in Py x Pys.

The matching in the Example 1 has a pattern which will be used in the next section.
It is called a concentrated alternating cycles matching or a CACM of size 8 x 12, and
is defined in general for a Py, X Py, as follows: a CACM of size 2m x 2n is a special
matching in Py, X P,,, in which the vertices of the first row and also the last row
are matched horizontally, and the remaining vertices of the first column and the
last column are matched vertically, so that these matched edges form an alternating
cycle. We continue this process recursively for the remaining vertices, which form a
grid of size (2m — 2) x (2n — 2).

The smallest cardinality of a forcing set of M is called the forced matching number,
and is denoted by f(G, M), which we will henceforth call the forcing number of
M. Also, let f(G) and F(G), respectively, denote the minimum and maximum of
(G, M) over the set of all perfect matchings M of G. As all our matchings will be
perfect, we drop the use of “perfect” after this point.

The notion of a forcing number originally arose in chemistry in 1987 in the study
of molecular resonance structures [10]. Later, in [9], Harary introduced the concept of
the forcing number of a perfect matching and of other concepts in graphs. Since then,
papers have appeared on the forced orientation number of graphs [4, 7] , dominating
sets [3], and geodetics [5].

Similar concepts have been studied under the name defining set for block de-
signs [8, 17] for graph colorings [13], and under the name critical set for Latin
squares [6, 2]. There has been some study of forcing sets of matchings of hexag-
onal systems (in the context of chemistry), and only a few other classes of graphs
have been considered [14, 15, 11, 16]. One of the interesting problems is the study of
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the spectrum of forcing numbers of a given graph; to this end, the following definition
is taken from [1].

Definition. The spectrum of forcing numbers for a graph G is a set of natural
numbers defined as:
Spec(G) = {k | there exists a matching M of G such that f(G, M) = k}.

The spectra of hypercubes is studied in [1]. In Section 2, we study the spectrum of
P,, x P, and show that there are no gaps in the spectra of forcing numbers of certain
types of graphs which include P, x P, and stop signs. Recall that an (n, k) stop sign
(k < n—1) is a graph obtained from Pa, x Ps, by deleting all of the vertices along the
k diagonals closest to each of the four corners [11]. In Section 3, we further discuss
the concept of forcing numbers for some specific classes of graphs such as P, X Py,
Cpn X P, and Cy, x Cs,. Finally in Section 4, we investigate the computational
complexity of the problem of finding the forcing number of a graph.

2 Spectrum

A natural question is: which finite subsets of natural numbers are the spectra of
some graph or other? In order to answer this question we need the following lemma.

Lemma 1. If G is a graph with Spec(G) = A, then for any integer k, there exists a
graph H with Spec(H) = {z + k | z € A}.

Proof. The graph H can be constructed by adding a union of k disjoint copies of
Cy (cycles of size 4) to G. Trivially Spec(H) = {z +k | = € A} [

Next, for a given n we define a graph G,, by replacing alternate edges in Cs, by
a cycle of size 4. Each of the edges of C5, which is not replaced, is a forcing edge.
This is illustrated for n = 4 in Figure 2. Each of the bold edges from Cg is a forcing
edge.

Figure 2: The graph Gy, obtained from Cj.
The following trivial lemma is to facilitate the proof of the subsequent theorem.
Lemma 2. We have: Spec(G;) = {1,i}.

Theorem 1. For any finite set A C N, there ezists a graph G with Spec(G) = A.
Indeed, G can be chosen to be a planar bipartite graph.
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Proof. Using Lemma 1, we can assume that 1 € A. Firstly, for every i € A (i # 1),
we assign a corresponding graph G;, introduced above. We select one forcing edge
from each G, and construct a graph G by identifying these G; on the selected edges.
Note that this common edge e is a forcing set for G. Thus 1 € Spec(G). We claim
that Spec(G) = A. If we have a matching M which does not contain e, then both
ends of e must be matched with some other vertices in one of the G;, say G;. Then
M generates [ disjoint alternating cycles of size 4 in G}, so any forcing set of M has
at least [ edges from G;. Also observe that a forcing set of size [ for G is also a
forcing set for G. In fact the constructed graph G is planar and bipartite. ]

Next, we study the spectra of some special graphs. First we give a simple proof
of a theorem determining the spectrum of the grid P, x P,. We then generalize
that proof, to show that there are no gaps in the spectra of some specific graphs
including P, X P, and stop signs.

So our result is that the spectrum of any such graph contains all the numbers
between the smallest and the largest forcing number. Hence if we find the largest
and the smallest forcing number for those graphs, then the spectrum is precisely
determined.

Definition. In a graph with a matching M, a matching 2-switch is an operation
defined by the replacement of edges of M in an alternating cycle of size four with the
edges not in M.

The following lemma and its immediate corollary are instrumental to our results.

Lemma 3. A matching 2-switch on a matching M does not change the forcing
number by more than 1.

Proof. Suppose that e; = {uy,v1} and ey = {ug, v2} are two edges of M that form
an alternating cycle (ujv1v9ug). At least one of these two edges must be in the forcing
set of M. Now consider a new matching M’ which is obtained by removing the edges
e1 and ey from M, and adding €] = {u1,us} and e, = {v1,v9} to it. If S is a forcing
set for M, then (S U {e},es})\{e1, ea} is a forcing set for M’; so the forcing number
of M’ is at most one more than the forcing number of M. The same argument holds
when we convert M’ to M. L]

Corollary 1. In a graph G with a sequence of matchings My, Ms, ..., Mg, such that
M1 is obtained from M; by a matching 2-switch, all the numbers between f(G, My)
and f(G, My) appear in the set consisting of the forcing numbers of My, Ma, ..., M;.

Now we are ready to determine the spectrum of forcing numbers of Py, X Ps,. Pachter
and Kim proved the following theorem.

Theorem A. [15] Let M be a matching of Pay X Pay. Then n < f( Py, X Py, M) <

n?.
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In the following theorem we show that f(Pan, X Pan, M) actually takes on all the
values between n and n?.

Theorem 2. We have: Spec(Pa, X Py,) = {n,...,n’}.

Proof. By Corollary 1, it is sufficient to convert a matching with forcing number n?
to a matching with forcing number n, by repeatedly applying matching 2-switches.
We illustrate a process for this, using the example graph P x Py (that is when
n = 3) in Figure 3. The matching M,, has forcing number n? (=9), and M,, which
is a CACM has forcing number n (=3). It is easily seen that it is possible to convert
M,, to M,, and M,, to M,, by applying matching 2-switches. By performing the
same operations recursively on the inner (2n — 2) x (2n — 2) grid in M,,, we finally
obtain the matching M,,.

M, M,, M,, M,,

Figure 3: Applying matching 2-switches to reduce forcing numbers.

It should be easy to see that this procedure is valid for any n. Since f(Pa, X
Py, My,) = n? and f(Poy, X Pay, M,,) = n, so Spec(Py, X Po,) = {n,...,n%}. n

Next we generalize the method applied in the proof of Theorem 2 to more general
graphs. To facilitate this, we label the vertices of P, x P, by ordered pairs (i, 7),
where 1 < 4,5 < n; and ¢ is the row number and j is the column number of that
vertex.

Definition. An induced subgraph G of a grid with vertez set V(G) is called a column
continuous subgrid if it has the following property:

o If(i1,7), (i2,7) € V(G) where iy < i, then for all integers i, such that i, <i <
19, we have (i,7) € V(Q).

A row continuous subgrid also may be defined similarly. Note that a column contin-
uous subgrid is not necessarily row continuous, but by rotating a column continuous
subgrid, one obtains a row continuous subgrid. Suppose G is an induced subgraph
of P, x P, which has a matching M. An (i, j, k)-bracket is a bracket shaped subset
of the edges of M (e.g. Figure 4) as in the following:

{ {G9). @7+ 1}
{(Z+ 1,_]),(2+2,])},{(7+3,]),(2+4,])},,{(Z"‘Qk‘— 1a])>(l+2kaj)}>
{Gi+2k+1,5),(i+2k+1,7+1)} };
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and the following set of edges is called an (3, j, k)-skew bracket (of type I) (k > 0):

{ {G5), 6,5+ 1)},
{(Z+ 17])7(Z+27])}7{(2_’_37])7(["'47])}77{(Z+2k_ 17])7(l+2k7])}7
{(G+2k,j+1),(i+2k,j+2)} }.

A skew bracket (of type Il) is defined similarly as the following set of edges:

{ {G+1), 6.5 +2)},
{0,0), G+ L) +2,5), (0 +3,50)} - {(i+2k = 2,5), (i + 2k = 1,5)},
{(i+2k,4), G+ 2k, 5+ 1)} }.

See Figure 4 for an example.

Figure 4: An (i, j,2)-bracket and (4, j, 2)-skew brackets of type I and II.

Lemma 4. Let G be a column continuous subgrid of P, x P,. If M is a matching
in G which contains an (i, j, k)-bracket, then we can apply matching 2-switches to M
only on the edges which have both endpoints in the following set of vertices:

{(ab) [i<a<i+2k+1,j<b<n}nV(Q),

so that the resulting matching contains the following edges:

Proof. Note that we want to show that M can be changed to a matching such
that all the edges in it which touch the set of vertices (a,j) in the j-th column,
for i < a < i+ 2k+ 1, are all vertical. We apply mathematical induction on k.
The case k = 0 is trivial. Suppose the statement is true for k = p. Consider an
(1,7, p + 1)-bracket. There are two cases.

The first case is where all the edges of M which touch the set of vertices A =
{G+1,5+1),(i+2,5+1),...,(i+2p+2,j+1)} are all vertical (obviously A C V(G)).
It is easy to verify the lemma in this case.

If it is not the first case, then some of the edges which touch the set A are horizon-
tal. The horizontal and vertical edges which touch A make some (x, j+1,t)-brackets,
with t < p. We choose one of these brackets and apply the induction hypothesis to it,
increasing the number of vertical edges which touch A by 1. By repeating this pro-
cess we can convert all of the matching edges touching A to vertical matching edges,
which is the first case. Note that the induction hypothesis ensures that converting an
(z,7 + 1,t)-bracket does not have any effect on previously converted vertical edges.

|
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Corollary 2. Let G be a column continuous subgrid. If M is a matching in G, then
by applying matching 2—switches we can convert M to a matching which contains no
(4,7, k)-bracket.

Proof. Let j (1 < j <n) be the minimum value for which there exists some bracket
in the j-th column. By using Lemma 4, we can destroy this bracket by matching
2—switches. If we continue this process, there will be no bracket left in this column,
and so the value of j increases. Repeating this process removes all brackets. ]

Lemma 5. Let G be a column continuous subgrid. If M is a matching in G in which
there is no bracket, then there is also no skew bracket of any type in M.

Proof. Assume to the contrary that M has no bracket, but that there does exist,
for example, an (i, j, k)-skew bracket of type I in M. Since there is an odd number
of vertices in the set {(i+1,j+1),(¢+2,5+1),...,(i+2k—1,54 1)}, the presence
of matching edges in the (i, j, k)-skew bracket leads to the presence of at least one
bracket in the column j + 1, which is a contradiction. A similar argument holds if
we assume that M contains a skew bracket of type II. ]

Theorem 3. There are no gaps in the spectrum of a column continuous subgrid.

Proof. Assume that G is a column continuous subgrid. We show that it is possible
to convert a given matching of G to any other matching of G, by applying matching
2—switches.

Suppose we have two matchings in G. By Corollary 2 we remove all brackets from
both of these matchings and end up with matchings say M and M’'. If M # M’,
then there exists a cycle which is alternating in M and M’. So if we consider the
first column which is touched by this cycle, at least one of M and M’ contains either
a bracket or a skew bracket, and this contradicts Lemma 5 for neither M nor M’
contains a bracket. ]

Note that the assumption that the graph involved is an “induced subgraph” of a
grid is obviously necessary for the result of Theorem 3. Also the assumption that it
be “column continuous” is necessary, as can be seen from the fact that Spec(Gy) =
{1,4}, where G, is shown in Figure 2. Indeed one can give infinitely many examples
to show the necessity of this condition.

Since both P, x P, and the (n, k) stop sign are column continuous subgrids, we
have the following corollary.

Corollary 3. There are no gaps in the spectrum of forcing numbers of P,, X P, and
in the spectrum of forcing numbers of an (n, k) stop sign.

The spectra of stop signs follow from the following theorem and Corollary 3.
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Theorem B. [11] Let G be an (n,k) stop sign and M be a matching of G. The
forcing number of M is bounded by

n< f(@ M) < - - |5,

and the bounds are sharp.

3 Some special classes of graphs

In this section we study F(G), where G is from some special classes of graphs: a
product of two paths, a product of a cycle and a path, or a product of two cycles.
We also introduce an upper bound for the smallest forcing number of a product of
two paths. Pachter and Kim pointed out the following useful result.

Theorem C. [15, 12] If G is a planar bipartite graph and M is a matching in G, then
the forcing number of M is equal to the mazimum number of disjoint M -alternating
cycles.

3.1 P, xDP,

Applying the same method as in [15] we see that:

F(Pux P) = 5] 5],

In contrast, finding f(P,, X P,) does not seem to be so easy. We introduce a pattern
which gives an upper bound for it.

Theorem 4. We have:

(i) f(Por X Pogriysr) < kl+[FE], where 0 <r <2k and | > 1;

(i) f(Pors1 X Poktoyror) < kl+r, where 0 <2r <2k +1 and | > 1.

Proof. We construct a matching M for which there is a forcing set of the desired
size in the statement of the theorem.

(i) We choose the following [ columns: 1, (2k+1)+1,2(2k+1)+1,...,(I—1)(2k+
1)+ 1; and also the last column if r is even. There are 2k vertices in each column, we
take a matching in each of the chosen columns. Ignoring the chosen columns we have
[ —1 blocks of size 2k x 2k and one block of height 2k and width varying with r. We
substitute a CACM of appropriate size into each one of these blocks (see Figure 5).

This matching M has a forcing set of size k(I — 1) + [ZH=1] = kl + [51] as
shown in Figure 5.
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— ———
2k 2k 2k+1r—1
Figure 5: The pattern of M when r is odd.
8

8 14

Figure 6: A forcing set of size 11 for Py X Pss.

Figure 6 demonstrates M for Py X Pss.

(i) To deal with this case we construct a matching in a similar fashion to that of
the previous case. To facilitate this, we introduce some notation. A UCACM and a
DCACM of size (2m — 1) x 2n are built from a CACM of size 2m x 2n by removing
the vertices of the first row, and the last row, respectively.

In this case we partition Paj1 X Prokr2)i12- to (I—1) blocks of size (2k+1) x (2k+2)
and one last block of size (2k + 1) x (2k + 2r + 2), and then replace each block
alternatively with a UCACM or a DCACM of appropriate size. This is illustrated in
Figure 7 for the case Ps x Pag.

Figure 7: A forcing set of size 10 for Ps X Pag.

Again the resulting matching has a forcing set of the desired size. ]

Note that in the previous theorem, in each case there are appropriate number of
M-alternating disjoint cycles which Theorem C implies that the size of the corre-
sponding forcing sets are smallest. Based on observations of small cases, we conjec-
ture that the bounds in Theorem 4 are sharp.
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3.2 Pm X an

The following theorem gives the exact value for the size of a largest forcing set for
Pm X an.

Theorem 5. For every k,n > 1 we have:

.F(PQ}C X an) = kn and F(P2k+1 X CZn) =kn+ 1.
Proof. Consider P,, x Cy, drawn as 2n “vertical” copies of P,, and m “horizontal”
copies of Cy, on the set of vertices in the columns. The graph P,, x C, is planar

and bipartite, so by Theorem C for any matching M, f(P,, X Cy,, M) is equal to the
maximum number of disjoint M-alternating cycles.

Since the girth of Py, x Cy, is 4, its largest forcing number is not greater than
% = kn. A matching which has all edges horizontal clearly has forcing number kn.
For P11 x Cy,, suppose that M is a matching, and let A be a set of disjoint M-
alternating cycles. If there is an M-alternating cycle in A which intersects a column
exactly once, then it is at least of size 2n. In this case there are at most % =kn

other cycles in A, and we are done.

So assume that there is no M-alternating cycle in 4 which intersects some column
in exactly one vertex. In A, each cycle has at least two vertices of intersection with
each column that it intersects, so each column intersects at most &k cycles in A. Now,
as there are 2n columns, if we count all cycles, we get k(2n). But in this way each
cycle is counted at least twice, as it intersects at least two different columns. So
there are at most @ = kn cycles.

In this case, a matching which has all edges horizontal clearly has forcing number
equal to kn + 1. ]

The following interesting problems remain open.

Problem 1. Find F(Pay X Cony1).

Problem 2. Find f(Py x Ch).

3.3 an X an

It is conjectured in [16] that F(Cay, x Ca,) = n?. A result in this direction is given
in the following theorem.

Theorem 6. We have: F(Cy, x Co,) < n?+

[SIB

Proof. Let M be a matching in Cy,, x Cy, which has the largest forcing number. We
show that there exists a forcing set of size less than or equal to n? 4 5 for M. The
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number of edges in M is 2n?, and at least n? of these edges are in the same direction
(“horizontal” or “vertical”). Without loss of generality, suppose at least n? of the
edges in M are horizontal. So there exists a row, say r in which at least 3 edges of
M are horizontal. Thus, there are at most n + § matching edges which touch this
row. We take all these matching edges in our forcing set.

Removing the vertices we chose in our forcing set, we get a planar graph, and
we consider two cases. First, the case in which all the matching edges of row r are
horizontal. In this case, we have already chosen n edges and the rest of the graph is
a Py,—1 X Cay, which by Theorem 5 needs at most n(n — 1) + 1 edges to be forced.
In the second case, we have chosen at most n + 7 edges and the graph obtained
after deleting those vertices has at most 2n — 1 vertices in each column and also has
at least one column with exactly 2n — 2 vertices. Since we have a column which
contains 2n — 2 vertices, by using the technique of the previous theorem, we can say
that the largest forcing number of the resulting graph is at most n(n — 1). So the
forcing number of M is at most n(n — 1) +n+ % =n*+ 2. (]

4 Computational complexity

In [1], Adams, Mahdian, and Mahmoodian studied the following problem and gave
a proof for its NP-completeness.

e SMALLEST FORCING SET PROBLEM

INSTANCE: A graph G, a matching M in G, and an integer k.
QUESTION: Is there any subset S of at most k edges of M, such that S is a
forcing set for M?

Theorem D. [1] SMALLEST FORCING SET is NP-complete for bipartite graphs with
mazximum degree 3.

They also left an open question which we answer in this section. The question is
finding the computational complexity of the following problem:

e SMALLEST FORCING NUMBER OF GRAPH

INSTANCE: A graph G and an integer k.
QUESTION: Is there any matching in G' with the forcing number of at most k7

We use Theorem D to prove that this problem is also NP-complete even for bipartite
graphs with maximum degree 4.

Theorem 7. SMALLEST FORCING NUMBER OF GRAPH is NP-complete for bipartite
graphs with mazimum degree 4.
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Proof. It is clear that the problem is in NP. We prove the NP-completeness by
reducing SMALLEST FORCING SET to this probem. Let G be a bipartite graph with
maximum degree 3 and Mg be a matching in G. We construct a new graph H with
maximum degree 4 as follows:

e (G is a subgraph of H, and

e For any edge e = {z,y} € FE(G) — Mg, we add vertices z, and y. to H plus
three edges {z,yc}, {zc, e}, and {z.,y}.

Note that H satisfies the conditions of the theorem and any forcing set for the
matching Mg also forces a matching in H. We claim that the smallest forcing
number of H is equal to the smallest forcing number of Mg. We can assume that
Z. 18 matched to y., otherwise we have the following case: x. is matched to y and .
is matched to z. Any forcing set contains one of these two edges, and choosing one
will force the choice of the other edge. So it is obvious that in this case a matching
2-switch on these edges will not change the forcing number. With this assumption,
every matching in G corresponds uniquely to a matching in H and vice versa. For
every matching M{, in G, we denote the corresponding matching in H by M},. Now
consider a matching Lg in G. For every edge e = {x,y} in Lg — Mg, the four vertices
x,Y, Te, and gy, constitute an alternating cycle for Ly, so at least one edge from this
alternating cycle should be in the forcing set, and since choosing the edge e forces the
choice of the other edge, we can assume that e is in the forcing set. Thus a forcing set
F for Ly consists of Lg — Mg plus some edges in Lg N M. It is not hard to see that
F'= (Mg — Lg) U (F N M) is a forcing set for M. Since |Mg — Lg| = |La — M|
and F' C Lg, we have |F'| = |F|. (]

For the problem of finding a smallest forcing set for a given matching in a planar

graph, we have a polynomial algorithm [15], so it is interesting to ask the following
question:

Question 1. What is the computational complexity of the following problem: Given
a planar graph G, find the smallest forcing number of G.

After studying the computational complexity of the problem of finding the smallest
forcing number of a graph it is natural to do the same for the largest forcing number.

So we ask also the following question, and leave it as an open problem.

Question 2. What is the computational complexity of the following problem: Given
a graph G, find the largest forcing number of G.
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