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ABSTRACT

The objective of this thesis was to explore thetrdoation of remote sensing towards sustainable
management of cultivated sugar cane areas in Westenya. Although widespread, burnt
harvest sugarcane practice bans the use of craguessfor soil cover at the local scale, it
contributes to decrease in physicochemical progenif soils and increase erosion risks. With
this in mind, we worked on three specific invediigas conducted at different scales: (i) the
relationship between remote sensing data and sagangeld (biomass) at regional scale, (ii) the
role of remote sensing data in mapping croppingtpras and (iii) the impact of such practices
on soil erosion at local scalehese questions were answered through a landscapeaap and
so we made use of remote sensing techniques iteelgreith GIS and expert knowledge, to

describe and analyze the link between environmeetaices and landscape as seen from space.

At regional scale, we explored the suitability obrihalized Difference Vegetation Index
(NDVI) from Moderate Resolution Imaging SpectromefdODIS) to forecast sugarcane yield
on an annual base. We developed a statistical ntoetaleen a new NDVI-based descriptor
(WwNDVI), that takes into account the growth permfdthe sugarcane crop, and historical yield
data over 11 years and six growing zones. Corogldbietween yield and wNDVI is mainly
drawn by the spatial dimension of the data set=(B.53, when all years are aggregated
together), rather than by the temporal dimensiothefdata set (R= 0.1, when all zones are
aggregated). A test on 2012 and 2013 showed tledd yorecast with this model realized a
RMSE less than 5t Ra(4.2 t ha' and 1.6 t hd respectively), leading to a mean RMSE of less
than 5%. We showed that despite the use of brosoluton satellite images (250 m) in a
smallholder agriculture conditions, it was possiol@stablish a yield forecast model at regional
scale.

At local scale, a time series of Landsat 8 imagesewbtained for Kibos sugar management
zone over 20 dates (April 2013 to March 2014) tarahterize cropping activities. Sugarcane
fields were mapped with 83.8% accuracy, and thedstimode - green or burnt — was mapped
for each field with 90% accuracy. A t-test on thrggectral indicators - SWIR (Short
Wavelength InfraRed reflectance), NDVI and NDWI (Nalized Difference Water Index) -
between each two dates for sampled fields showaddatrharvest time the change in SWIR were
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strong. Furthermore, NDWI differences (before aftdradharvest) were significantly different at

P = 0.000 for green and burnt harvest modes, wittreshold value of 0.27 (> 0.27 for burnt
harvest fields, and <0.27 for green harvesteddd)el while NDVI differences were not

significant. These results showed the role of A5 band in description of sugarcane harvest
practice. On the same area, the impact of croppiatyities on soil erosion risks was

investigated using a fuzzy based soil erosion méddDSEM. Maps produced exhibited a
mosaic of low to high erosion risk depending onpslocrop type and practices. Seasonal
variation in erosion risk was also demonstratedh wie minimum risk in September (1.08) and
the maximum risk in February (2.04). In conclusiae, showed that free satellite images could
be used to characterize crop and quantify crop ymt@h and environmental services of
agriculture — erosion control — in complex landgcapch in the Kenyan sugarcane production
area. However, future satellite missions like SeitP should permit monitoring sugarcane
production at a finer resolution and so should mwprthe quantification of performances in

agriculture.

Keywords: remote sensing, sugarcane, yield, soil erosionpping practices, environmental
services.
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RESUME

L'objectif de cette these est d'étudier la contridsude la télédétection a la gestion durable
des zones de canne a sucre dans l'ouest du Keaoya.aNons travaillé sur trois questions
spécifiqgues menées a différentes échelles: (lktion entre les données de télédétection
et le rendement de la canne a sucre (biomasségteelle régionale, et (i) le role de la
télédétection pour la cartographie des pratiquesags et (iii) I'impact de ces pratiques
sur I'érosion des sols a I'échelle locale. Pouomdpe a ces questions, nous avons adopté
une approche paysagere et mis en ceuvre des catidédiétection, d’analyse spatiale et
des connaissances expertes, pour décrire et andlyséen entre les services de
I'environnement et le paysage agricole vu de laspA I'échelle régionale, nous avons
exploré la pertinence de I'indice de végétation NIPNormalized Difference Vegetation
Index) calculé a partir de données acquises aveapteur MODIS (Moderate Resolution
Imaging Spectrometer) pour prévoir le rendementlaleanne a sucre sur une base
annuelle. Nous avons développé un modéle statestauire un descripteur original basé
sur le NDVI (wNDVI), qui prend en compte la période croissance de la canne, et des
données historiques de rendement sur 11 ans 6trégions de production. La corrélation
entre le rendement et WNDVI est essentiellementdaéospatial (R2 = 0.53, lorsque toutes
les années sont agrégées ensemble), plus que &rtiRdE 0.1, lorsque toutes les régions
sont agrégees). Un test sur 2012 et 2013 a moungdes previsions de rendement ainsi
modélisées avaient une erreur quadratique moyeri@eeure a4 5t Ha(4.2 t ha et 1.6 t
ha' respectivement), ce qui conduit & une erreur mogeglative inférieure & 5%. Nous
avons montré que malgré la faible résolution sfEtias images utilisées (250 m), il a été
possible d'établir un modele de prévision de remfgna I'échelle régionale pour une
agriculture essentiellement familiale. A I'échellecale, une série temporelle d’'une
vingtaine d’images Landsat 8 (avril 2013 a mars42Cd été utilisée pour caractériser la
zone agricole de Kibos. Les parcelles de canneétitcartographiées avec 84% de
précision, et le mode de récolte - en vert ou br(k été cartographié avec 90% de
précision. Un test statistique sur la différencdreerdeux dates de trois indicateurs
spectraux - MIR (moyen infrarouge), NDVI et NDWI ¢Nnalized Difference Water

Index) - estimés sur des parcelles d’entrainemenomtré un fort changement des valeurs
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dans le MIR au moment de la récolte. En outredli#srences de NDWI avant et aprés
récolte sont significativement différentes (p =0RP pour les deux modes de récolte
étudiés (> 0.27 pour les champs de récolte bréles,0.27 pour les champs récoltés en
vert), tandis que les différences de NDVI ne soaé pignificatives. Ces résultats ont
souligné le rdle de la bande MIR dans la caractios des pratiques de récolte de la
canne a sucre. Sur la méme zone, on a étudié tinges pratiques agricoles sur les
risques d'érosion des sols a l'aide du modele FMDEEs cartes produites présentent une
mosaique de risques d’érosion faible a élevés ectitm de la pente, de la culture et des
pratiques de récolte. Les variations saisonniéneéggalement été montrées avec un risque
d'érosion minimum en Septembre (1.08) et un risepagimum en Février (2.04). En
conclusion, nous avons montré que les images isegefpourraient étre utilisées pour
quantifier la production agricole canniere a I'diheégionale et pour cartographier les
services environnementaux de l'agriculture — letréba de I'érosion - dans les paysages
agricoles complexes de I'Ouest kenyan. Dans uniapeoche, les missions satellitaires
de type Sentinel-2 devraient permettre un suivs fiila de la production canniere et ainsi
améliorer la quantification des performances diesg@gricole.

Mot-clés: télédétection, canne a sucre, rendement, érosmosalg, pratiques culturales, services
environnementaux.
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QUOTE

“We delight in the beauty of the butterfly, but e§r admit the changes it has gone through to
achieve that beauty.”

Maya Angelou
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1. INTRODUCTION

Sugarcane is produced in 127 countries around trwwith an annual contribution of 175.9
million tons of sugar (Andersson, 2010). In thery2@12, the world’s largest sugar producer
was Brazil, followed by India, China, Thailand, Pa&n, Mexico, Columbia, Australia, USA
and the Philippines. Of this production, Africalsase was 5.8% with South Africa taking the
lead, followed by Egypt, Sudan, and Swaziland (Asslen, 2010). Production of sugar in East
Africa in 2012 was 1 million tons with Kenya comuting 50%. Sugarcane growing in Kenya
started in the early 1900 around Lake Victoria,ihg\been introduced by Indians who were
engaged in the construction of the East AfricanviRgi. Sugarcane is now grown in Western
and is currently being introduced in the coastgiae. Compared to the low altitude coastal
zone, the western Kenya landscape is unique witlilyalandscape and two agro-ecological
zones (AEZ) comprising six sugar zones: (i) CheinKlibos-Miwani and Muhoroni within a
sub humid AEZ; and (ii) Mumias, Nzoia and Sony with humid AEZ of Kenya. The western
Kenya sugarcane landscape occupies a surface &r2@2(04 ha with an annual average
sugarcane vyield of 68 t H{KSB 2013). This production is majorly rain fedat the five sugar
zones except in Kibos-Miwani zone where some itioga is undertaken (KSB, 2012).
Additionally, burnt harvest practice is widely cartied in Kibos with farmers giving reasons
for this preference as reduced harvesting labodr mmimized risks to attacks from snakes
(Jamoza et al., 2013). Although burnt harvest siayas practice bans the use of crop residues
for livestock and soil cover, at the local scatecontributes to decrease in physicochemical

properties of soils and increase erosion risks Wwimgpact sugarcane yield. Sugarcane yield is
1



affected by factors that include; climatic, edaphigronomic, and varietal (KESREF, 2012) and
therefore variation in yield differs from one zote the other. Based on such factors, the
sugarcane industry in Kenya is in difficulty todagcause of decreasing sugarcane yield, and

increasing soil erosion.

A decreasing sugarcane production

The Kenyan annual sugarcane average yield, 69 that is based on fresh millable stalk, has
been decreasing from the potential 100t fo rain fed sugarcane (Jamoza et al., 2013) over
the years and is now far lower than most of the Biscan sugarcane growing countries such
as Ethiopia with 120 t fa Egypt 115t hd, or Tanzania 100 t Ha(FAOstats, 2013). In the
leading sugar factory of Kenya (Mumias), this yidetreased by 42% between 1997 (110 t ha
1y and 2009 (64 t KY, while in Kibos-Miwani zone, it decreased by 1B&ween 2008 (73 t ha

1) and 2012 (60 t hY. This worrying trend is reported similarly in tbéner individual factories
(KESREF, 2012) reporting spatial variability in zbnsugarcane yields and yet; the Kenyan
sugar industry generates about Kshs 12 billion aliywand supports directly and indirectly over
7 millions of its population. In this population92000 are farmers, 7,462 are permanent
employees in the factories and plantations; whhie test are their direct and indirect
dependants. Sugarcane is the third largest cotribia Agricultural Gross Domestic Product
(GDP) after tea and horticulture. Kenya’'s domestenand for sugar is 780,000 metric tons
against an average production of 500,000 metris tehich leaves a deficit of up to 280,000
tons that is met by imports from regional sugardpiers. This low yield influences high social

and economic impacts to the farmer and sugar inglastarge and these calls for the urgent



need to investigate the drivers for the spatio-temmral variability of yield and how to

improve sugarcane productivity in this region

Increasing soil erosion

Mendoza et al. (2001) found that sugarcane croppasgan advantage of protecting soil quality
due to its spatio-temporal characteristic that les vegetation cover in the landscape through
the year based on management practices adoptdet igrmer. Further, they realized that green
sugarcane harvesting provides sufficient trash thiatimizes inter-row cultivation by 50%,
increasing water retention of the soils and thudueceng soil erosion. Opposed to green
sugarcane harvesting in the humid AEZ of westernylde majority of farmers in the sub-humid
AEZ, harvest burnt sugarcane exposing bare soisgenmts of soil erosion. Furthermore, this
sugarcane landscape extents from the plains igt@s$larpment foot with Kibos-Miwani zone,
where galleys expose a threat of soil erosion insthe heterogeneous sugarcane farms. The
impact of this heterogeneity on regulatory ecolagjrocesses such as soil transport from the
sloppy terrain into valleys and carbon sequestnatising water as a facet for matter cycling in
sugarcane fields is necessary to determine théuemce on crop production and ecosystem
functioning, for improved crop management and ragoh of environmental services in space

and time.

Whereas disadvantages of soil erosion have beennumted, there is little etiquette in
evaluating soil degradation characteristics in emesKenya. Knowledge on impact of sugarcane
cultivation and harvest mode on soil degradationcrigical in undertaking effective soll
conservation for sustainable management of We#tenya ecosystems (Gunnula et al., 2011;

Oldeman et al., 2001). This is because this stedyraes that harvest mode is a key determinant



of erosion.Therefore, there is an urgent need to investigateheé spatial and temporal
dynamics of soil erosion risk of sugarcane landscepo assess potential soil erosion based

on environmental and human determinants.

A complex land use system

Western Kenya is characterized by a great vartgbdf ecosystems in relation to altitude,
ranging from 1000 to 2000m, topography and soiésypn short distances. The region produces
the bulk of sugarcane besides the subsistencedi@mps$ such as maize, legumes and sorghum,
due to its ideal climatic conditions that favor @lisification and intensification of cropping
systems. Sugarcane growing in the western regianamly under rain fed conditions. It is
grown in large-scale commercial schemes and alstetached small schemes among different
land uses, in different agro-ecological zoness lisually planted between April and September
during the rainfall peaks. Harvesting is conducédidthrough the year depending on variety
maturation using either green or burnt harvestirgghaods. These variable agro-environmental
conditions coupled with crop management practiofisence different maturity periods even
for sugarcane that is planted at the same datedinting high spatial and-temporal variability
in the sugarcane cropland. Monitoring sugarcangivetibn in this landscape is therefore
important in studying interactions in such hetersgris landscapes due to its ratoon ability that

makes it a perennial crop compared to other crops.

Furthermore, the combination of commercial sugadanming, subsistence food cropping and
natural vegetation within the same geographicategaovides configurational heterogeneity
with landscape properties such as fragmentationjersification, intensification and

connectivity. This heterogeneity stems from a caoraton of inherent environmental variables



that affect sugarcane cultivation such as topogragbil types, vegetation type, land use
systems and crop management practices which amgbdied as elements of the landscape.
Spatial heterogeneity in agricultural landscapes been attributed to adoption of ad hoc
behavioral assumptions (KESREF, 2010). Differenpamanagement practices such as tillage,
fertilizer use, crop rotation and weeds and pestsagement contribute to different responses of
the crop to climatic conditions. It is this humanfluence that affects landscape conservation,

water quality, soil fertility and consequently,lirénce crop production.

As a consequence, spatial patterns that are olssémveuch diverse landscapes result from
complex interactions between biological, physicatl &ocial factorsSuch complex spatial
patterning may have an impact on agro-ecosystemsriationing (Martinez and Molliconel.,

2012) and on provision of environmental services ithe landscape.

Remote sensing: a tool to study landscape dynamics

Remote sensing technology provides the tools anithads to study the spatial and temporal
dynamics of the agro environmental conditions armpping practices and their impact on
variations in sugarcane yield through a landscg@pecach. Moreover, temporal remote sensing
data has been commended for monitoring spatio-temhpariability in vegetation development
in response to changes in the environment and hunaaragement practices to which sugarcane
phenology and productivity is dependent (Zarco-dajat al., 2005; Bégué et al., 2010). This is
because of the high spatio-temporal characterisfitse landscape and two growing seasons in

western Kenya.



Working hypothesis

The timelines of sugarcane cropping practices {pignand harvesting) in relation with the
environmental variables (rainfall season, topogyaghd soil characteristics) affect the rate of
soil run off which further exacerbates spatio-tenapwariability of this sugarcane production. It
is important to ensure that planning for land prapan, planting and harvesting of crops in the
hilly terrain is done in cognizance of climate apbtection of soils from degradation for
sustainable production by embracing mitigation addptive measures of soil conservation.
Investigation of the link between crop producti@imate and cropping practices and their
impact on soil erosion is thus important because the demand for enhanced production that
influences land degradation if mitigation and adapmeasures are not observed (Jolande and

Paul, 2009; Oldeman et al., 2001).

We assume that there is a significant link betwenlandscape and environmental services,
and therefore hypothesize that the landscape cadeberibed in its spatial and temporal

dimensions using remote sensing images. Figulestrates this hypothesis.
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Figure 1: The observed agro-ecosystem using remosensing; links between the Landscape and
Environmental services at different scales.

Objectives

Based on these hypotheses, and taking into ac¢baniVestern Kenya contextje general
objective of the study is to examine the relationsp between environmental services and
the sugarcane landscapes in Western Kenya, usingmete sensing and a soil erosion
model.

Because of the scope of this question, we choseotk on two specific services that are very
sensitive for the sugarcane industry in Kenya:ugascane production and ii) soil protection.

These two study cases addrésge specific objectives conducted at differentcales:



- To investigate the relationship between remote seing data and sugarcane yield at
regional scale

— To investigate the role of remote sensing data in apping crop management practices
at landscape (local) scale.

— To investigate the impact of sugarcane cultivatioron soil erosion at landscape (local)

scale.

Providing information on yield and cropping praesde.g. harvest mode) may help growers to
change their actual practices. We therefore chms@swer these objectives through a landscape
approach, and so we made use of remote sensingideel integrated with GIS and expert
knowledge, to describe and analyze the link betwerenronmental services and landscape as
observed from space. This approach is describ#dsrdocument, through the following:
» Chapter 2: Background.
It is a bibliographic review that provides the sugae context of western Kenya and the
associated environmental services
» Chapter 3: Materials and methods.
Presentation of the study area, the agronomic amdlli'e data used, the image
processing methods and the soil erosion model.
* Chapter 4: Results
— Part I: Regional scale: Forecasting regional swageeg/ield based on time integral
and spatial aggregation of MODIS NDVI. This work svpublished inRemote
Sensingjournal (see Annex): Mulianga B., Bégué A., Simdés Todoroff P.,

2013.Remote Sensing, 2184-2199; doi:10.3390/rs5052184.



— Part II: Landscape scale: Cropping practices mapfsrop type, harvest date and
mode) using Landsat8 30 m time series.

— Part lll: Local scale: Analysis of the impact ofetlecropping practices and the
environment on the soil erosion risk using a fuimsed soil erosion model
(FUDSEM).

* Chapters 5 and 6: General discussion and conclusion
The results are discussed in light of the usefdlifesthe sugarcane industry (How can
the results be used by sugarcane industry?) aliwkimvith KESREF research (What are

the remote sensing research perspectives for KESREF

The results have been published (part 1) and impgraegion for publication (part Il) in

international journals. The in-form paper is giverthe annex.

This research should permit to address operationajuestions
1. Which remote sensing indicator and environmentidce$ help in crop and landscape
monitoring and provide information for sustainabfeanagement of sugarcane
production in western Kenya?
2. How can spatial and temporal information contaiimetthe satellite images be interpreted
in terms of indicators for crop and landscape mamamt
3. What is the impact of cropping practices and laagscorganization on soil erosion risk

of Kibos-Miwani landscape?
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2. BACKGROUND

2.1. Sugarcane production context In
Western Kenya

The sugarcane, a semi perennial crop

Sugarcane, Saccharum officinarum is of the tribAmdropogonae and Gamineae family, and is
defined as a semi perennial grass which grows mvithé tropics. It is known as a renewable
agricultural resource, providing sugar, beside®rfifertilizer and biofuel under ecological

sustainability and as a product, it is an indispéles raw material in manufacture of various
food, soft drinks and pharmaceutical products. Aftlanting this crop and its maturing, it is

harvested at variable periods which may be longedéimg on its variety, soil, topography,

climatic conditions and farmer's management prasticThe lengthy harvesting period

influences varied regeneration of the crop (refkrte as a ratooning), which introduces
heterogeneity both in physiological developmentsofarcane and crop yield (Bégué et al.,

2010) even within similar agro-climatic conditions.

Agriculture in western Kenya

Presently, sugarcane is grown in six sugar zonewesitern Kenya under mainly rain fed
conditions. These six sugar zones lie within twatidct agro ecological zones (AEZ) (Figure 2):
the humid and sub humid zones. Mumias, Nzoia antdy Sones lie within the humid AEZ

receiving an annual rainfall of 1700 mm — 1900 nwhjle Chemelil, Muhoroni and Kibos-
11



Miwani zones lie within the sub humid AEZ with amesage rainfall of 1400 mm — 1550 mm
(Ribot et al., 2005). Sugarcane is grown mainlytlos gentle slopes and plain areas within an
altitude of 1000 m to 1600 m above mean sea I&vislplanted between April and September, a
season when there is sufficient soil water moisfuwen the bimodal rainfall (Shisanya et al.,
2011). The sugarcane maturation period in this egthens to between 16-24 months and 14-
18 months for plant and ratoon crop respectiveESREF, 2010) depending on variety.
Examples of diverse varieties planted in westernyiées: C0421 which matures in 24 months
for plant crop and 21 months for ratoon crop; whileeighbor may plant D8484 which matures
in 16 months for plant crop and 14 months for ratecop (KESREF, 2010). In practice, the
crop may not be harvested in time causing over raatun which may result in sugar loss (KSB,
2013). The variation in variety, planting datesaitability of labor and factory preparedness
(capacity transport and mill) introduces differéatrvesting dates which combined with varied

land utilization, introduces spatial heterogenaityhe landscape.

There are diverse farming scales at: i) industtale where the farmer grows sugarcane in pure
stand, mainly under one variety for each field;le/lsmall scale farmers grow sugarcane besides
subsistence crops such as: maize, beans and guatsnéiming at crop diversification and
intensification either through intercropping or ides sugarcane fields. The multiple planting
and harvesting dates, together with these subsesterops lead to a landscape with vegetation
throughout the year which is assumed to reduceatseof run off, consequently reducing soill
erosion (Mendoza et al., 2001). As opposed to tastal region of Kenya where sugarcane is
being introduced at low altitude (less than 10@lmve mean sea level) fully under irrigation,
In western Kenya, an altitude below 1800 m abovarmsea level, an average of 1500 mm

rainfall over the growing period and maximum dadédynperature range, between 20°C- 30°C is

12



ideal for this agricultural system; while rainfalelow 1500 mm attracts supplementary
irrigation (KESREF, 2010). It is assumed that sagae yield and that of other crops is affected
by this variation in altitude, temperature and faindistribution and quantity (Amolo et al.,

2009) which is a threat to food productivity in ea®f climate change and also a threat to local

effects of deforestation on expansion of agricaltland.
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Figure 2: A map of Kenya showing Agroecological zas. The western Kenya region lies within the
humid and sub humid agrocecological zones. Sourdeibot et al., 1985.
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The sugarcane yield and acreage

Sugarcane yield in the humid AEZ is at 69 tonsarfecper hectare (t #3, while that of sub
humid AEZ is at 57.1 t b (KSB, 2012). This production trend contributesibmut 70% of the
domestic sugar requirement in Kenya, while 30%oaite8 met through imports (Wawire, 2005).
There is a rather stable sugarcane yield of abbuthia' between 2001 and 2008; while, during
the 2009 and 2013 period, there is an average gfeb® t ha and this shows a decrease of 6%
in yield. Similarly, the evolution of surface areader sugarcane in western Kenya region has
significantly increased (35% between 2001 and 2@0®8l by 53% between 2009 and 2013),
with inter-annual variations (Figure 3) such asdeerease in the sugarcane surface area by 7%
between the year 2008 and 2009 (KSB 2013), consdgueecreasing the mean calculated
yield, by 8 t h&. This decline in production and yield (Figure B)plies that various factors
such as environmental (rainfall, temperature), lmgmentation, soil degradation, and socio-

economic factors; had an effect on this production.
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Figure 3: Evolution of the annual surface area undesugarcane (grey bars) and sugarcane yield
(blue line) in Western Kenya (2001-2012). Source: ¢iya Sugar Board, yearly book of statistics
(2012).
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The western Kenyan environment and farmers’ adegtat

Western Kenya is characterized by a great divesitgcosystem due to its topography that
presents of hills, valleys and gentle plains andhgex crop mosaics in relation to soil,

insolation and altitude. Moreover, deep fertildsm the lowland that retain moisture for a long
period to support agriculture as evidenced in Hreluse map (Figure 4) (Atlas 2003, FAO

2012).

Deep soils that are well drained with a pH of 5ad dree from toxic metals are ideal for
sugarcane cultivation in Kenya (KESREF, 2010). Sofl western Kenya are dominantly black
cotton cambisols in the low lands and sandy loagnsals in the highlands (Jaetzold et al.,
1985). These soils have been subjected to presistoegh intensification, to satisfy the ever
increasing population contributing to yield deeliover the years (Jaetzold et al., 2005). In their
research, Jaetzold et al. (2005) proposed the catibdn of artificial fertilizers with nutrient
recycling such as from farm manure, crop residasd animal excretions, for a sustainable
increase in crop yields. In practice, farmers ins#®¥en and South Nyanza sugar belts prefer to
harvest green sugarcane and trash line sugarcsideees between sugarcane rows. It is assumed
that nutrient provision from decomposing litter imizes use of artificial fertilizers to enhance
sugarcane productivity (Mendoza et al., 2001). karrhore, Mendoza et al. (2001) emphasize
that sugarcane trash lining minimizes inter-rowtication by 50% by suppressing development

of weeds, increasing water retention of the sail$ @ducing soil erosion.
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The sugarcane industry organization

Until 2010, transportation of harvested sugarcansvéstern Kenya was charged on farmers
depending on distance from the mill. Farmers wereeraged to supply their sugarcane to a
mill within 40 km radius from their farms (KESREBID) to minimize on this cost by industry
and ensure timely delivery of the harvested suger¢a minimize sugar loss (KSB, 2010). This
regulation has since been waived with introductdrprivately owned mills and farmers are
now charged a flat transportation rate (same ti@msmst per ton regardless of the distance).
This flat transport cost is meant to address thedas’ need for a free market and to encourage
competition within the sugar Industry, aimed atr@asing sugarcane production. Although not
yet legalized, the introduction of the free maikethe sugar industry has encouraged farmers to
sell their sugarcane to the factory that pays tighdst rate for higher financial flow. It is
assumed that this competition for high financialM$ motivated farmers to expand the surface
area under cane by 51,000 ha between the year&@l @012 up from the constant average of

10,000 ha since the year 2001 (Figure 3).
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2.2. Link between landscape and
environmental services

The landscape is a spatial human —ecological systatrdelivers a range of functions that are
valued by mankind due to economic, cultural andlaggoal benefits. These benefits, also
referred to as environmental services, includedf@ooduction, climate regulation, erosion
control, carbon storage, clean air, clean waterlaadiversity (Chan et al., 2006; Jolande and
Paul, 2009). Consequently human activities suckegdetion of natural resources, decreased
production and soil erosion may reduce the prowmisid ecosystem services as feedback.
Research has shown that human induced activitiesodnin Africa (Bezuayehu and Sterk,
2010) have subjected agro ecosystems to vulnesabilsoil erosion. Tropical regions are most
vulnerable due to rainy climate, fragile soils dsens et al., 2008) and improper land uses
(Pimetel, 2006; Metternicht and Gonzalez, 2005)laBeed actions of managing natural
resources are critical in achievement of enhancedugtivity of the landscape (Andersson,
2010). The actual functioning of the landscapedfuge depends on the interaction between
physical structures that influence natural processsd human activities. The challenge that
faces populations is to maintain the provisiont@se environmental services under changing
climatic conditions to support the functioning dcdtaral ecosystems (Eswaran et al.,, 2001).
Increase in populations initiate varied demandghenagricultural landscape for provision of
environmental services to the society. These sesvace provided by the landscape if humans
embrace an integrated management approach comgjdboth mitigation and adaptation
measures in their use of the landscape (JolandePand 2009). Further, Jolande and Paul

(2009) state that if management practices of theldeape are changed, both mitigation and
18



adaptation measures will be included in the utilra of landscapes for resilience against
climate change. Figure 5 shows a typical landscdpeestern Kenya providing environmental

services such as: erosion control (hedges, tejracesfood production.

Water source

Terraces

Livestock
keeping

Agroforestry

Sugarcane
production

Food crop

Figure 5: A picture showing an interface between ladscape elements in the escarpment and plain.
The picture shows a spatially heterogeneous landgma with potential properties upward (trees,
wood, hedges, crop mosaic) and open fields with aosaic of sugarcane and food crops. (Taken by
KESREF during a field survey in October 2013)

Different crop management methods applied at gatewations will determine how much water
is retained in the soils, soil organic matter cahtnd status, and its impact on food production,
plant biomass to diversify livelihoods, soil carbstorage, fodder for increased cattle rearing

and natural areas for conservation (Anderssom)201
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2.2.1 Landscape and sugarcane production

The western Kenya sugarcane landscape presenesdbingrasted farming systems namely: (i)
Nucleus systems, (ii) large scale systems andrigll scale systems. Nucleus systems are those
that are owned by the factories with each of tbk&l§ measuring over 10 hectares. Large scale
systems are those that measure over 10 ha andvaezldy large scale private farmers. Small
scale systems are those that measure below 10dheoarprise small scale private farmers. The
Kenya sugar industry refers to private farmers as growers with over 85% of the total
sugarcane in Kenya being supplied by out growefslstvthe remaining 15% is supplied by
nucleus estates (KSB, 2012). The three systemsdarakiree sugarcane stakeholder models in
the landscape as: (i) large scale models, (ii) sstalle models and (iii) the miller as illustrated
by Figure 6. The nucleus and large scale are bothposed of pure sugarcane stand; while
small scale models are composed of mixed croppystes), usually within diversity of land
cover such as trees, hedges, wood. The three madelsharacterized with high level of
intensification (crop types, exchange of servicas)l variability in yield within the same

landscape.

Both large scale and small scale models supplyreaga to the miller for processing and

receive finances paid by the miller. Small scalelets offer labor to both the large scale holders
and millers. The miller provides fertilizer, prosesy, financial services and advisory services
(technology transfer) on crop management to thgelacale and small scale models. The miller
further provides land preparation services for @woted small scale models, while those who
are not contracted together with large scale helgeepare their own land. These variable land
preparation methods include manual and mechangzdintques, which when influenced by

rainfall and soil management practices, impactugascane production.
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The landscape among small scale models is headignfented with both sugarcane and food
crops in respective agronomic fields. A baselinevey by KESREF (2013) revealed that the
minimum agronomic field size for a small scale leolevas 0.2 ha with more than three food
crops in the farm with high levels of crop rotatidinese small fields face high costs of input at
farm level because farm inputs are charged by adloeofy at one hectare unit including land
preparation; and this becomes uneconomical for $aichers. These high input costs impact
negatively on sugarcane yield when farmers lackrdgd inputs due to poor economic returns.
From the baseline survey, about 30% of these farrapply alternative recommendations such
as manure instead of mineral fertilizers, while &h20% prefer intercropping with legumes to
fertilizer use to minimize costs. Some factoriesenmtensified services for small scale models
by combining their fields into blocks for effectipeovision of land preparation, delivery of seed
cane, educative services, harvesting and trangjportat reduced costs. Land preparation for
small scale farmers is equally affected with farsmesorting to manual labor who do not plough
the necessary depth for root penetration and tirepacts negatively on yield. Other land
preparation methods such as no tillage and agrimgg@rinciples have not yet been rolled to
the industry because it is still under experimeataby Kenya Sugar Research Foundation
(KESREF).The blocking approach however does not reduce dkeaf individual farm inputs
on fertilizer and seed cane and this affects sag@rqroduction. Large scale holders on the
contrary, enjoy minimum costs of input at farm lealed are characterized with high profits for
fields that receive all farm inputs. Although smiadliders provide labor to large scale farmers
and the miller for income, they do not spend sintilae for their own fields, and this influences
spatial variability in yield between these threedels in the given landscape. Although the large

scale model benefits economies of scale, it isd¥mataged on the benefits that accrue from
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crop rotation and therefore, their yield is equalffected due to lack of soil nutrients. These
conventional intensive practices increase risksailf erosion and fertility depletion in the long

run.

These diversified crop management systems; farmysgems, land preparation approaches,
planting and fertilizer use introduce heterogeneityspace which this research aims to

characterize using remote sensing.

Labor, processing
fertilizer, advisory,
financial flows

Processing, fertilizer
advisory, financial flows

Labor, advisory

Figure 6: Stake holders in the Kenyan sugarcane agrecosystems and interactions among them as
influenced by economic and environmental relationsps (labor, technology transfer, fertilizer,
harvesting, sugar processing, marketing and finanai services) among others.
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2.2.2 Landscape and soil erosion

Soils fundamentally contribute to primary produntidhrough the supply and recycling of
nutrients and water to plants and microorganisnmainaral ecosystems as well as in agricultural
production ecosystems (Jaetzold et al., 2005).sBreson these soils through agricultural
activities introduce degradation at varied scailetsme and space, depending on the topography,
soil characteristics and crop management pracircése landscape. The loss of soils from the
landscape was seen as a critical phenomenon toahatsources (Saavedra, 2005) in the 21st
century (Reich et al., 2000). Soils are lost fromaa designated as hot spots (Anejionu et al.,
2013) in the agricultural landscape where pooadd# methods and poor soil conservation
measures (Valentin et al.,, 2005) are observed. &o#ion leads to land degradation which
affects crop production and environmental aesthetlandscape degradation therefore remains
important among global issues of the2¥entury due to its negative effects on agricultura
productivity (Eswaran et al., 2001). Continuous udethis landscape without observing
mitigative and adoptive measures declines the fyuadiland, impacting heavily on agricultural
productivity of both the degraded (eroded) areabaras of sediment deposits (Eswaran et al.,
2001; Jaetzold et al., 2005). Research has shoatnptioductivity of eroded landscapes has
declined by 50% in the $century, contributing to a continental mean yikds of 8.2%
(Andersson, 2010), by 30 to 90% in West Africa (lgwa et al., 1984; Lal, 1998) and by 36%

in Kenya (KESREF, 2012; Mutonyi and Muturi, 2013).

Land degradation has been reported to be commaifrica due to human induced activities on
landscape (Bezuayehu and Sterk, 2010) in the @wmbpégion that has a rainy climate, fragile
soils (Claessens et al., 2008) coupled with impréoged uses (Pimetel, 2006; Metternicht and

Gonzalez, 2005). Soils washed away from such lap¥sc carry along nutrients and are

23



deposited in water ways. This erosion is influenbgdexogenetic processes such as wind or
water flow, exacerbated by human activities. Indicaof soil erosion in agricultural landscapes
include rills, gullies, granites and siltation (Qko and Sterk, 2006), which influence crop

production and soil fertility.

It is therefore important to investigate the susibdpy of the landscape to erosion to prevent
soil and nutrient loss (Cohen et al., 2008) foustainable productivity of any ecosystem. As
suggested by Sara et al. (2012), it is importantfdomers in the uplands to embrace erosion
control measures such as use of terraces and ethaatural vegetation for continuous soil
cover to minimize downstream flooding (Anderssodl@. Such a conservation measure will
minimize erosion and enhance crop productivityha tiplands. In the low lands, siltation of
water streams will be reduced and thus clean vws#erice provided for the ecosystem. In the
hilly landscape of western Kenya, the multiple @iog system, planting and harvesting dates
introduce spatial heterogeneity in the landscapé&lwlontribute at different scales to soil
erosion risk. As argued by Jolande and Paul (20@®2)jable land preparation practices may
introduce different levels of soil degradation e tandscape unless conservation measures are
observed. Although effort has been made on sodeamtion, the sensitivity of the landscape to
erosion risk has not been documented in westerry&enhis documentation should include

potential soil erosion risk for a sustainable lam@hagement system at landscape level.
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2.2.3 Role of sugarcane in the western Kenya landgme

Sugarcane farming in the western Kenya landscaigeir@-2) provides trash that is useful for
improving levels of soil organic matter and in censtion of soil moisture (Eldridge, 2004).
Improvement of soil organic matter improves saitifiy and yet enhances sugarcane yield. The
more dry mass produced the more organic mattetad@ito the soil. This is influenced by
conservation practices such as: no tillage, cowgpscand crop residue preservation on fields.
Yield in clay soil within the valleys and plainsimproved through raking of burnt cane trash
from rows (Eldridge, 2004). This partly explains yMarmers in the clay rich soils of Kibos-
Miwani sugar zone burn their cane before harvestivigle those found within sandy loam,
well drained soils in western and south Nyanza isbgét prefer green cane harvesting. It is

assumed that sandy soils are more sensitive antive#o soil organic matter decrease.

Recent studies have found that burnt cane hargestduces yields by 20% while 8% sucrose
content is increased in thé?3atoon for green harvesting (Wiedenfeld, 2009)tHa south

Nyanza and western sugarcane belts of Kenya, d¥8¢6 @f farmers harvest green sugarcane
while 85 % of those in Kibos-Miwani sugar zone btimeir cane before harvesting. These two
harvesting methods impact the environmental sesvzevided by sugarcane farming such as
production, clean air and soil protection. Theserésting modes influence risks of erosion first

mechanically with residues or no residues on saitl secondly, by improving the soil structure.

An exploration on the average yield over 10 yearganes that harvest green cane and burnt
cane harvesting in Kenya realized an average yidlcbetween 65 thh and 57 tha
respectively, statistically computed at regionahlsc(KESREF, 2013). The reason for this
variability in yield in the different agro ecologic zones is therefore attributed to soil

degradation, and the different cropping practigeanting date, harvesting mode) coupled with
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variable rainfall (over 1500 mm in humid agro-egp@al zones and below 1500 mm in sub
humid agro-ecological zones) (Amolo et al., 2008il carbon emission has also been found to
increase in burnt fields impacting on soil moistared temperature and therefore sugarcane

yield variability (Panosso et al., 2009).

2.3. Remote sensing

2.3.1 Earth observing systems and their derived mets

Current Earth observing systems have optical ssmsmging from submetric spatial resolution
for local studies to hectometric resolution forioegl studies (Table 1). These systems provide
descriptors of the land cover based on pattermuepltexture and dynamics of the image
radiometry (Table 2). This study will utilize lownd high resolution (250 m to 30 m) optical

images from MODIS and Landsat respectively, to abi@rize the landscape of Western Kenya.

Table 1: Examples of optical Earth observing system

Satellite/sensor  Description Resolution

Qu,l.Ck Bird Very high spatial resolution images Metric and sodtric resolution
Pléiades

SPOT . . o . .

Landsat High spatial resolution images Decametric resotutio

MODIS . . . . . .
VEGETATION Low spatial resolution Hectometric / Kilometric odgtion
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Table 2: Contribution of satellite image data propeties in the description of the landscape
elements.

Satellite image Landscape elements

Spatial resolution Pattern, networks, textureuditire of the landscape
Spectral bands Land cover and land use types ahoedand dispersion.
Repetitivity Annual and seasonal variations

Altitude Topography / 3D landscape

2.3.2 Remote Sensing and sugarcane yield evaluation

The advantage of remote sensing over ground systwrk as that used by the millers, is that
they cover wide areas explicitly, providing timelgatial and temporal data. Such temporal data
has been commended for monitoring vegetation dpwabmt in response to changes in the
environment and in response to human managemeatiqaes (Pettorelli et al., 2005; Zarco-
Tejada et al., 2005; El Hajj et al., 2009; Béguélet2010). These conditions vary over large
areas due to diverse topography, soil type, rdimfigtribution and management practices, to
which sugarcane phenology and productivity is ddpah(Gunnula et al., 2011). Most
vegetation indices have proven successful in estuigidiomass and crop yield (Lofton et al.,
2012). The Normalized Difference Vegetation Ind&OYI1) (Rouse et al., 1974), from remote
sensing imagery for example, has been expansiwag to determine crop phenology, biomass
and productivity. Methods developed depend on tlaéesof study and on the crop management
practices, which influence the temporal and spaéisblutions of the relevant data. The cost of
satellite imagery, however, is high when fine rasoh is required. Crop monitoring studies

have therefore resolved this impasse by succegsfsihg free low resolution images from the

27



Moderate Resolution Imaging Spectroradiometer (M®DEPOT-VEGETATION, or NOAA-

AVHRR sensor data for crop studies (Atzberger, 2013

Recent studies have used low resolution imagergstomate sugarcane yield production in
different countries. In Brazil for example (Fernaacet al., 2011), 1 km SPOT-VEGETATION
data was used, taking advantage of its daily teamlpoesolution and coupling it with
meteorological data to monitor sugarcane developn@opping seasons were identified by the
study using the NDVI data and further classificatmf the yield data was performed in three
classes for analysis. In the three vyield classessaged (24-73tfa 42-110 t h&', and 74-
85 t ha'), the yield predicted was consistent with thedrisal yield with accuracies of 8.3%,
66.7% and 86.5%, respectively. The low accuracyhef first class would be attributed to
coarseness of the 1 km image that limits discritmaof individual phenology for plots that
are smaller than the pixel size, a case similéineéssmall scale sugarcane farming community of
Kenya. Accuracies for the second and third classewethe municipality areas, characterized
with large farms such as the nucleus fields of Kengugar mills that are under pure sugarcane

stand.

A similar study, Gunnula et al. (2011) noted thaitimer average rainfall nor MODIS NDVI

integrated over the entire cropping season wageckl®o the average sugarcane yield of the
farmers’ fields situated within the 5 km radiustioé nine weather stations in Brazil. On a larger
scale, MODIS NDVI had a positive correlation (R .51 with yield when averaged across all
nine management zones with data collected duriadathg season planting for planted cane. In
a different study (Bastiaanssen and Ali, 2003), M@AWHRR 1 km data was utilized to

develop and validate a model for forecasting cnapdyin Pakistan. District data was then used

to validate the model, resulting in a root mearaseerror of 13.5 t-hhfor sugarcane yield. In
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their recommendations, actual daily sunshine hoairstemperature, and a crop map were

argued to be indispensable for refinement of thdeho

A recent study on forecasting sugarcane crop seasBrazil using simple correlations between
time series NDVI from AVHRR and an agro-climaticdex on sugarcane yield, realized
significant correlations (R =0.69 to 0.79) aftggplying a cross correlation method on the
datasets used (Goncgalves et al., 2012). In ardiftestudy on maize (Funk and Budde, 2009),
MODIS NDVI was used in Zimbabwe to realize stromfptionships with the national maize
production estimates after the data was adjusteshtoh onset of the rainy season. The strength
of correlations in these two studies is attribut@shormalization of the time lag in the climate
and NDVI data through the methods used. It is mefitrthat normalization of satellite data
through an appropriate method improves the streofgtorrelations and is appropriate in future
studies. It is also important to note that a coratiam of satellite and climatic datasets such as
those used in these studies utilizes newer methads forecasting sugarcane
productivity (Gongalves et al., 2012) as opposettdditional NDVI measurements. A similar
study in Louisiana used thermal variables (Growdegree Days accumulated from planting to
sensing) to adjust in-field NDVI measurements, &mdievelop a sugarcane yield forecasting
method (Lofton et al., 2012). They obtained a pesitexponential correlation, with R
improving from 0.20, when using unadjusted NDVI,Ro= 0.46, when using adjusted NDVI.
These authors argued that a weak correlation figphication of the model was attributed to the
spatial variability of sugarcane fields due to eliéint crop ages and diverse environmental
conditions in different locations.

In the agricultural landscape of Kenya, sugarcargp exhibits extreme age differences

alongside diversified subsistence cropping in d#fé environmental conditions and is thus
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highly heterogeneous (Mulianga et al., 2012). MORBB m data has been used successfully to
determine temporal dynamics of crops at local scdlee to its good geometric and radiometric
properties that make the data interoperable witleroGIS datasets (Nguyen, 2005). However, at
MODIS 250 m resolution and in a small agricultuegion such as in Kenya, the measured
radiation is a mixture of different crops and natwegetation. It is therefore important to apply
a method that will decrease the effect of mixegp@nd natural vegetation pixels in the satellite
data on aggregated NDVI data used for yield fortogs The effect of mixed pixels while
developing a maize yield model using the land coveighted NDVI rather than the traditional
NDVI reduced the unknown variance by 26% in thedgtaf Rojas (2007). It was argued that
yield estimation using NDVI may vary during respeetmonths of the crop growth because
NDVI is reduced at the end of the rainy season,hasiging the need for careful consideration

on time integration (Bégué et al., 2010).

Therefore, this study will test a new method ofdyestimation using time
integration that takes into account the age of¢h® in the contribution of the
different sugarcane fields to the final annual restv tonnage. This time
integration was considered in order to minimize oesr that accrue from
variations in environmental variables during theogith period of sugarcane

crop.
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2.3.3 Remote sensing and sugarcane cropping pracg

Remote sensing approaches play a crucial roleuitystg cropping practices of a given area.
This is due to their capacity in capturing realdimformation at any scales of study to enable
scientists to develop useful decision support tdols agricultural sector. This is because
vegetation changes are a sensitive indicator ferremmental changes (Van Wijgaarden, 1991).
Remote sensing provides useful information conogrnthanges in environments and this
facilitates management of available natural resssiréemporal samples of remote sensing data
play an important role in monitoring trends in quop practices of a given area. This is because
dynamics in vegetation growth cannot be deduceah moe date imagery. Lei and Bian (2010)
noted that interpretation of temporal variationssirch vegetation growth provides valuable
information on its spatial dynamics, and estimatégphenological indicators which help to
describe cropping practices in the landscape. Teémges vegetation indices derived from
satellite images is useful for analyzing the spaiatterns in vegetation and in assessment of
such vegetation dynamics. Through time series aiglyf these indices, the observation of
seasonal and annual trends in vegetation coveidqa®wseful conclusions in cropping practices

in the given landscape (Wardlow and Egbert, 2008).

In the recent past, the normalized difference \aget index (NDVI) derived from MODIS

250m time series has helped in understanding thgpdeal dynamics of vegetation in the
landscape by exposing vegetative seasons in tliy strtea, while Landsat 30m NDVI has
facilitated exploration of the spatial variabiligf such landscape due to its finer resolution
(Mulianga et al., 2012). A different remote sensimdex, the normalized difference water index
(NDWI) has been used to monitor moisture conditiohgegetation over large areas (Gu et al.,

2008). High NDVI values reflect the vigor and phsytothetic activity of the vegetation, while
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NDWI which is derived from the near infrared (NIBR)d shortwave infrared (SWIR) channels,
illustrate the changes in water content in the mbglb of vegetation. Through time series on
variations in vegetation moisture and vegetatioailaiility conditions, a combination of these

two indices facilitates detection of harvesteddgeand their mode of harvest (Gu et al., 2008).

Thenkabail and Wu (2012) emphasized the need faor lse maps to address food security. This
Is because updated information on land use en#iidesuthorities to find solutions for increased
efficiency on food production (Adami et al., 2012)hey further suggested the need for
automated methods to map land uses for precisé foetcasts. In the Kenyan scenario where
85% of sugarcane is grown among other land usegpimz of cropping practices is important
in ensuring proper planning and management of #teral resources. Until the 1990’s, land use
mapping was dominated with pixel based classificatmethods (Blaschke, 2010) that
facilitated identification of the land use, eveniyigroviding land use maps. The pixel scale
however may sometimes not match the spatial ext#nthe land cover, sometimes being
smaller or larger than the actual object (Fished Bathirana, 1994). In either case, remote
sensing imagery will provide a guide to identifioat of the land use through image
classification. Sugarcane farming in Kenya is nombgeneous due to multiple planting and
harvesting calendar. The mapping situation is edeated with small scale fields usually smaller

than the Landsat pixel size.

Advanced remote sensing tools offer a solutionnfmmitoring development stages of a crop
(Zarco-Tejada et al., 2005) and delineating homegas pixels from the neighborhood to form
homogeneous development units (HDU) that facilitel@ssification of sugarcane fields of
similar age as an agronomic field or object (Viatal., 2012). Recent studies have used remote

sensing images to map sugarcane fields througlaisterpretation of multi temporal Landsat
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data (Rudorff et al., 2010) that categorizes swgadields into similar age units. This approach
diminishes inaccuracies in mapping disparate fiétdsn a single image that would classify
harvested fields as bare land, thus capturing sagarfields of different ages from temporal
series. In Brazil and other countries, where swgeds distributed over large areas such as in
Kenya, advanced remote sensing tools based on MQIBIEBm) data were preferred to provide
timely information on location of sugarcane fielsd their respective area (Vieira et al., 2012)

through an object based image analysis (OBIA) aggro

In Kenya where sugarcane fields are small, a fiesolution such as 30m Landsat image that
can aid in locating sugarcane fields of similar agenecessary. Similarly, information on
sugarcane area and harvesting method in westergaklandscape is vital in computation of
sugarcane yield and advice to the farmers on sagervation measures. Additionally, in Brazil,
remote sensing images have been used to faciligtextion of sugarcane harvest and harvest
mode (Aguiar et al., 2011). Either burnt or grearvest methods were detected from time series

Landsat TM images through a change detection psame®verlaid images.

Therefore, this study will use Landsat 8, 30 m N@/ktudy the spatial and
temporal variability in cropping practices focusiran crop type and harvest
mode in Kibos-Miwani landscape, using the tempdyalamics in MODIS NDVI

and Landsat NDVI and NDWI series.
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2.3.4 Remote sensing and soil erosion

Remote sensing data, integrated with the digitaVaion model and soil datasets have been
used in the recent past to account for vegetatiopgsties, (Cohen et al., 2008; De Jong et al.,
1999). Among other studies, De Jong et al. (19885u_andsat TM data to represent vegetation
conditions and developed soil erosion model for téethnean regions (SEMMEDNodel,
which is applicable at regional scale. Cohen e{2008) used temporal series of Landsat TM
normalized difference vegetation index (NDVI) tpresent the annual variations in vegetation
growth and integrated it with spatial data setsnfrine heterogeneous landscape to develop a
fuzzy based dynamic soil erosion model (FUDSEMIpe&l scale. Remote sensing techniques
have therefore proved successful in characterizatd heterogeneous landscapes when
integrated with spatial dynamic models and expadvKkedge to investigate the extent of soil
losses in agricultural landscapes (Cohen et a08R0This is because remote sensing is able to
detect both spatial and temporal characteristicsheterogeneous landscape patterns and
processes and identify areas vulnerable to sadi@no(Anejionu et al., 2013). Soil management
influences changes in physical, biological and dbahproperties of soils in landscapes that
produce sugarcane (Panosso et al., 2009). A sindye spatial and temporal variability of
these landscapes is therefore crucial in estimatib potential soil erosion from which
environmental services that are provided by mair lases to the ecosystem are ascertained
(Saavedra, 2005). Remote sensing is thereforermaéogy that facilitates the exploration of
spatial and temporal variability in landscapestt@elli et al., 2005; Zarco-Tejada et al., 2005;
El Hajj et al., 2009; Bégué et al., 2010). Rens®asing provides temporal series datasets that
are used in studying the evolution of such landssdyy depicting spatial and temporal changes

over the desired study period (Zarco-Tejada eRaD5).
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In the recent past, information from remote sensimggery was integrated with spatial data to
increase accuracy in monitoring changes in land(Aslami, 2012) to provide information on
the impact of soil quality on this land use. Adalitally, satellite images provide temporal
information on changes in environmental variablespace and time, and permit to study the
impact of vegetation cover type on soil protectiona sustainable ecosystem. In the Kenyan
context where 85% of sugarcane is grown among d#ret uses with multiple planting and
harvesting crop dates, time series normalized réiffee vegetation index (NDVI) from satellite
imagery of such landscape facilitated understandfripe seasonal variations in vegetation and
the impact of management practices that determemgations in spatial productivity and

susceptibility of such landscape to soil degradatio

Recent studies have used NDVI to identify changesegetation cover that are presumed to
have resulted from crop management practices. Wege acquired on a specific date was
presumed to reflect results of crop managementtipesc as impacted by environmental
variables such as soil characteristics for thati@dar space in time (Cohen et al.,, 2008;
Blaschke, 2010; Rudorff et al., 2010). On the otieend, temporal NDVI captures the different
stages of land cover from temporal series whengrated with ground data and expert
knowledge. This integration provides spatial anchgeral information that is critical in
fuzzification of the landscape elements used inetiog) the vulnerability of an area to different
degrees of erosion in order to quantify potent@l srosion over a heterogeneous landscape

(Cohen et al., 2008), and investigate their impacsoil erosion control in space and time.

In western Kenya, Kibos-Miwani sugar zone contrésubne third of Kenya’'s sugar demand,
while Mumias contributes the highest percentage.this area, a mosaic of subsistence,

sugarcane farming and natural vegetation is foaritie escarpment foot. Unlike Mumias which
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mainly uses green method of harvesting amidst plalfplanting and harvesting dates, Kibos-
Miwani zone is characterized with multiple plantiagd harvesting dates for sugarcane crop and
mainly burnt harvesting method. Data on land usmvshclose to 80% of the landscape under
sugarcane and this draws our interest in investigahe sensitivity of Kibos-Miwani sugarcane
landscape to soil erosion. Sugarcane managemetensy/qplanting, harvesting) affect soil
conditions which have a direct impact on soil esosiFurther, Panosso et al. (2009) add that
sugarcane crop and its residues reduce the radeiloérosion. Whereas disadvantages of soil
erosion have been documented, there is little etiquin evaluating impacts of cropping
practices on soil degradation. Knowledge on imp&stugarcane cultivation on soil degradation
Is critical in undertaking effective soil consefeat for sustainable management of Kibos-

Miwani ecosystem (Omuto, 2008).

In this objective, this study will investigate tiigk of soil erosion in Kibos-Miwani
sugar zone using remote sensing data and an erosmgtel. The study will focus

on sensitivity of erosion risk in relation to sloged vegetation conditions.
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2.4. Soil erosion models

Cohen et al. (2008) described soil erosion modalsinaportant tools for planning and
management of built up, natural and agriculturatikcapes. There is need therefore, for spatial
modelling and prediction techniques to identify stoo risk areas so that appropriate
conservation measures can be put in place. A revieverosion models (Jetten et al., 2003)
presents the difficulties related to calibratiord aralidation of spatially distributed soil erosion
models. It is explained that soil erosion modellis@ssociated with the variability in spatial and
temporal distribution of soil characteristics antbssoon occurrences and the uncertainty
associated with input parameter values in predictid these values. Jetten et al. (2003)
conclude that the use of spatial information ofiaas nature types would resolve this paradox.
Likewise, Cohen et al. (2008) stated that the dsmarlels was cumbersome for finer scales at
catchment or landscape scales due to the tediauardk for labour and detailed data input.
They also concluded that inclusion of temporal iinfation was critical in modelling soil
erosion through time for a given landscape. Suoh $cales are important since they provide
information for implementation of efficient soil wservation planning (Dejong et al., 1999;

Jetten et al., 2003).

Different large scale soil erosion models have beported, applied and investigated for their
performance on calculating erosion values. Theyude the WEPP (Nearing et al., 1989),
EUROSEM (Morgan et al., 1992), LISEM (De Roo ef 4898), EROSION 3D (Schmidt et al.,

1999) and MEDRUSH (Kirby and McMahon, 1999). Reswit these models have been useful
in soil conservation measures but their predictmh erosion yield over heterogeneous

landscapes is unreliable (Trimble and Crosson, ROB@asons attributed to this limitation
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include (i) little input data of high spatial anemporal resolution (Dejong, 1994); (ii) poor
calibration of the models (Folly et al., 1999) afii) uncertainties associated with model
parameters (De Roo, 1998). Most soil erosion modatailate steady erosion processes to
obtain solutions in the absence of temporally dyicaimformation such as from vegetation
growth and ground water dynamic variables (JettehRoo, 1999). Results from such models
depended on the number of times that the iteratiegr® run, high accuracy being associated
with many iterations and this made results subjectMoreover, when estimating soil erosion
over heterogeneous areas, most models are limifeichifle and Crosson, 2000) due to
insufficient spatio-temporal information necessdoy the computation of the landscape’s
erosion risk change. A more recent erosion mod& diadresses the three limitations (listed
above) of large scale models is SEDEM (Van Rompategl., 2001) which uses RUSLE to
resolve the problem of little distributed data @amge catchments. This model however requires

intensive calibration due to its empirical naturattis labour intensive.

In the recent past, spatially dynamic models hasenbused in computation of potential soil
erosion in order to recommend appropriate conservaneasures for enhanced agricultural
productivity (Cohen et al., 2008). Modelling potahsoil erosion in heterogeneous landscape
patterns such as in Kibos-Miwani requires a mobat ts applicable at local scale (De Jong et
al., 1999) to facilitate recommendations on soilsgyvation measures that minimize impacts of
erosion in a specific environment. There are laagecerosion models that are able to compute
temporally dynamic erosion values such as SIBERMIIgoose et al., 1991), GOLEM (Tucker
and Slingerland, 1994), LAPSUS (Schoorl et al., ®O@HILD (Tucker et al., 2001) and

CAESAR (Coulthard et al., 2002). These models perfeuccessful simulations of spatial and
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temporal distribution of erosion sediments but dquire intensive data input and powerful

processors.

More recent studies have addressed problems as=beiith such conventional models by use
of artificial intelligence technologies (Metterntcand Gonzalez, 2005) such as fuzzy logic to
simulate complex environmental processes and toowepspatial characteristics of a given
model (Ahamed et al., 2000). This is because theg@ghic Information System (GIS) based
fuzzy models have the advantage of being used magiag uncertainties commonly associated
with spatial databases and ecological modellingo{Rson, 2003; Robinson, 2007). Moreover,
fuzzy logic is important in simulating complex eronments since it is capable of processing
and representing uncertain data from complex dgatieesses in continuous classes (Cohen et
al., 2008; Svoray et al., 2007; Metternicht, 2004)spatial classification of soil characteristics
(Burrough and McDonnell, 1998), and in provision @fsion solutions in heterogeneous
environments (Tayfur et al., 2003). These advarstagdow modellers to minimize

overdependence on empirical features when designodgls.

The fuzzy based dynamic soil erosion model (FUDSEMbhen et al., 2008) was developed
based on physical principles to simulate landsqapeesses at catchment scale for enhanced
decision making. This is because FUDSEM has tharadges of simulating erosion processes,
while using known principles; (i) using a fuzzy logstructure that reduces calibration
requirements and (iii) using accessible input dateat minimizes pre-processing
(Cohen et al., 2008). In this case, satellite imsgesed to provide information on vegetation.
The advantage of using satellite images is that teeord timely information without altering
the state of vegetation, as opposed to the crorfdbat has to be computed from global

datasets for other models like RUSLE. Another ath@e of input data into FUDSEM is its
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fuzzy nature that permits integration of sampledadthrough fuzzy models to provide
information for areas that were not sampled. Lopgi al. (2005) note that collection of
physical datasets is quite tedious, costly, timesaming, and is usually associated with errors
due to fatigue. Moreover, FUDSEM has been validaedoth small and medium scale

heterogeneous catchments (Cohen et al., 2008; KESREL3), landscapes that are similar to

Kibos-Miwani.

Owing the high spatio-temporal heterogeneity of tfiestern Kenya landscapes,
this study will utilize FUDSEM at a local scalerntmdel potential soil erosion risk
using remote sensing data and soil physical charétics data. This is due to the
temporally dynamic fuzzy structure of FUDSEM asdatility to simulate erosion

using little information (available data).
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3. MATERIALS AND METHODS

3.1. Study area

Part 1 of the study covers the entire western Keswgmrcane growing region (all the six sugar
zones) at the regional scale, while part 2 coverssaf the zones, the Kibos-Miwani sugarcane

zone at a local landscape scale.

3.1.1 The western Kenya region

Western Kenya region (Figure 7) is located withie tvestern part of Kenya, comprising six
sugar management zones that include: (i) Chenkglibs-Miwani and Muhoroni within the sub
humid agro-ecological zone; and (ii) Mumias, Nzaim Sony within the humid agro ecological
zone of Kenya. These zones are further groupedruhde(i) western sugar belt (Mumias and
Nzoia); (i) south Nyanza sugar belt (Sony) and ¢ine Nyando sugar belt (Kibos-Miwani,
Chemelil and Muhoroni). These sugar zones are ddcétetween longitudes 34.18°E and
35.87°E, and latitudes 1.25°N and 1.50°S, covedangarea of 120,000 ha. Mumias is the
highest producer of sugar placed at 39% in 2012B(K®12). The western Kenya region is
characterized with a high diversity of agro-ecosgstbecause of contrasted topography. The
altitude ranges from 1,000 m (Kibos-Miwani) to 106@ (Mumias and Nzoia), and to 1,800 m
(in Chemelil). The slope rises between 2%, in tlaéng of Kibos-Miwani zone, and 38% in the
hills of Chemelil zone. This topography influendhe agro-ecological zones into receiving an

average of 1,400 mm and 1,800 mm of rainfall ingbb humid and humid zones respectively
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(Ribot et al., 1985). Rainfall in this area is buhab (Shisanya et al., 2011) with a long rain
season between March and July, with planting indddor food crops and April for sugarcane;
and a short rain season in September to Decemlibrphanting in September for all crops
(Amolo et al., 2009). This variation in rainfallstlibution influences an intensified cropping
system with crop diversification and rotation obfocrops and sugarcane development stage.
Soils of the study area are dominantly black cottambisols in the low lands and sandy loamy
acrisols in the highlands (Jaetzold et al., 1985 hilly undulating landscape is unique with

most hilly areas dominantly covered by the loamydyaacrisols.
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Figure 7: Cane growing area in Western Kenya (greearea).
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3.1.2 Kibos —Miwani sugar zone

Kibos-Miwani sugar zone (Figure 8) is located betwe34.8 E to 35.08 E and 0.01S to
0.11 S. It stretches from the Kano plains with an adté of 1000 m to 1800 m in the
escarpment. The slope rises from 2% in the pla20% in the hilly areas. It is located within
the sub humid agro-ecological zone receiving rdlimfabetween 1400 mm and 1550 mm. The
main crop in the zone is sugarcane, besides maadarticultural crops. Sugarcane is planted
in the months of April and September in accordanith the bimodal rainfall in February to
June and September to December. Soils of the lalathare dominantly black cotton cambisols
that easily clog with increased rainfall and craltking prolonged drought with temperatures
rising to 33C. The highlands are dominantly well drained satmhmy acrisols. It is the
spatially heterogeneous terrain, diversified crogpsystems, varied soil types and rainfall in
this zone that provide an enabling environment dealuation of a soil service offered by

sugarcane crop to the ecosystem within a space4ofrir.
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Figure 8: Elevation map of Kibos-Miwani sugar zoneThe map was established using 30m ASTER
Digital Elevation Model (Mulianga et al., 2013).
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3.2. Data

3.2.1 Agronomic and environmental data

Agronomic data
Table 3 presents the main agronomic and climatia tfaits used in this study. Average annual

rainfall varies from 1,421 mm and 1,869 mm depegdin site.

Table 3: Summary of the agronomic and climate dataused in the study: mean and standard
deviation (in parenthesis) calculated over the 9-y& period (2002—-2010).

KIBOS MUMIAS CHEMELIL MUHORONI __ SONY NZOIA

(Rn?r':f(?'rll) 1,421 (102)  1,835(186) 1,426 (263) 1,486 (214) 63,@21) 1,763 (252)

PMR** 0.07 -0.03 0.04 0.06 -0.07 0.01

AEZ Sub-humid Humid Sub-humid Sub-humid Humid Humid

Water Rr?unfed Rainfed Rainfed Rainfed Rainfed Rainfed
Irrigated

Yield (-ha®)  71.1(9.6) 756 (11.1)  62.6 (9.6) 63.9(7.9) 8&al3) 75.0(5.2)

Sugarcan 6,480 54,173 12,757 12,264 18,417 21,014

area (ha)

Sugarcan 32.2 (4.5) 48.7(2.5)  38.8(6.3) 50.5(7.3)  33.3)5 22.2(2.7)

fraction (%)*
* The sugarcane fraction is calculated as the segae surface area divided by total surface areaeuridrming in
the zone
*PMR is the Precipitation Marginal Response congzlifrom the yield-NDVI slope.

Sugarcane grown in regions with less than 1,500rainfall is recommended for supplemental
irrigation (KESREF, 2010). This irrigation coverboait 10% of the nucleus estate of Kibos-
Miwani. The reason for higher yield in Kibos (7hd*), compared to the government owned

Chemelil and Muhoroni sugar mills in the same AERose yield is around 63t Hais

44



associated with this irrigation. Globally, yield tihe humid AEZ (Mumias, Sony, and Nzoia) is

higher (between 75 t Haand 80 t hd) than in the sub-humid AEZ. The vyield in Sony (8Gi%)

is boosted by large scale farmers within the feftighlands of Sony sugar zone. The agronomic
(vield and cropped area) and environmental (rdintidta were obtained from the respective

sugar mills.

Two yield datasets were provided from the facto(estimatedvs measured yield). Estimated

yield is obtained by use of the visual physicalrapph (VPA) method, where color, vigor, stalk
population, and weeds, pests and diseases areysdramd scored in the fields by a team of
observers and averaged to provide the estimatdd fge the assessed plot. Measured yield is
obtained based on the area harvested and thetdotage recorded at the factory. Figure 9
illustrates these two yield datasets showing aelagattering of the points, thus demonstrating

the limits of actual estimation process.

The measured yield only includes contracted farmetisin the zone. Non contracted farmers
yield is excluded since they choose where to mairtsugarcane. Estimated yield on the other
hand considers all sugarcane within the respestigar zone. It is the reason why, estimated

annual yield data was therefore used in this sagihe reference data set.

45



100 100
95 . V/-{
90 X # Chemelil
T 55 * .
= A Kibos-Miwani
5 80 - X
2 75 .,\X > Muhoroni
E 70 X ® &( X
£ *A X7 X ¢ Mumias
E 65 »X\’
60 ® Nzoia
SO X @
55 SN e X
/ Sony
50 : T T T 1
50 60 70 80 90 100
Measured yield (t/ha)

Figure 9: Relationship between measured and estimatyield for the six sugarcane zones in western
Kenya during the 2001-2011 period.

In each of the six sugar zones, we got the evaiuticestimated sugarcane yield and evolution
in the yearly cropped area (Figure 10) for theque2001-2013. This is because production is
the product of yield and cropped area and therefowestigation into evolution of this
production through time is useful in enhancemergugfarcane production in Kenya. Crop area
data are estimated by physical measurement of thegahas been harvested or during land
preparation. The yield data for the year 2012 abti32vere used for quantitative validation of
the sugarcane yield model established on the 20Q1-Reriod.

Annual variations are observed in both yield arnflesie area from one zone to the other because
of crop management practices that vary betweemtiodeus and out grower fields such as:

tilage methods, variety choice, weed managementilizer application, edaphic and climatic
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factors (Jamoza et al., 2013) due to financial alitp between mills and private farmers.
Besides, variations in annual surface area deperuap cycle and availability of land.
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Figure 10: Annual variations of the surface area mder sugarcane and sugarcane yield for the six

sugar zones (2001- 2013)
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Ground survey data

This section details data collection procedure dapping practices and soil characteristics.
Information on the cropping calendar was obtairredhfall the six factories and summarized in

Figure 12.
I.) Cropping Calendar

Information on the cropping calendar was obtainexinfall the six sugarcane management
zones. Planting is undertaken between March andeB®éer, while harvesting is conducted
throughout the year depending on variety and cymbec(plant crop or ratoon) as presented in
Figure 11. The choice of variety to plant dependsagailability of seed cane within the agro-
ecological zone. Well managed ratoon crops exdeex tcycles depending on sugarcane vyield.
During the planting season, other food crops ae planted which mature within a maximum
of six months. The continuous harvesting is aimegraviding a regular supply of sugarcane to
the factories throughout the year and minimizingecaurplus that the milling capacity of

factories may not handle.

Dirv Season I Heavw Rains » Lught Rans * | Drv Season
'h I — — — —— — II-'E""T"'til-.IE . . . . . . . . .. +
‘Jan  [Feb [Mar | Apr May [Jun  [Tul | Aug ' Sep [Oct [ Nov | Dec

[ : Planting —*

Figure 11: Sugarcane cropping Calendar in Western Knya.
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ii.) Cropping practices
Random sampling was used to collect data on crgppiactices in Kibos-Miwani zone using a
questionnaire for oral interview and the mobile pepCX global positioning system (GPS) for
field encoding.
During the survey, 384 farmers were interviewededasn a random sample of the population
size of 4,000 farmers. This number of sampled fasnweas calculated according to Cochran
(1963) formula that was developed for selecting@esentative sample in an investigation from
large populations:
no= Z°p q/é
Where;
nNp= sample size;
Z? = abscissa of the normal curve that cuts off @aarat the tails ((1 ) equals the
desired confidence level);
e = desired level of precision;

p = maximum variability of farmers that will be diad,;

q=1p

In this study, Z = 1.96 (for 95%); e= 0.05, p= J570.5; leading to a theoretical numbegoh

384 farmers to be interviewed.

In total, 1280 fields (800 sugarcane fields and d48ter land cover) belonging to this farmers
set were used to create the following datasessi tover type (sugarcane or other), ii) planting
and harvesting dates and iii) methods of harvestiigure 12 illustrates the location of the
surveyed points in Kibos-Miwani zone. The ‘othend cover referred to in this study consist of
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other crops, natural vegetation (shrubs and pgstooads and buildings. These data were
collected during (i) a ground survey conducted ictadDer 2013, and (ii) from Kibos Sugar
Factory data base.

(i) The ground survey data was composed of 831rgasens, where 530 points were sugarcane
and 301 points were other land cover. These poimse encoded during a ground survey
conducted between T4and 18 October 2013 using the Magellan professional neolibpper
CX global positioning system (GPS) in the Kibos-Miw sugar zone. Figure 13 illustrates the
location of the surveyed points in Kibos-Miwani eorshowing location of those used for

training and those used for validation.

(i) The Kibos Sugar Factory database was compasetd9 points, where 270 points were
sugarcane fields and 179 points were other lanercovhese data were adopted from the
existing land use data set compiled dhZfigust 2013 by Kibos Sugar factory. Attributes for
these fields (planting and harvesting date) wetered in our database in accordance with the
factory office record. The factory data was reldwince it was collected within the study time

frame of this research.

50



34°51'0"E 34°54'0"E 34°57'0"E 35°00"E 35°3'0"E

y P e %
; ! t > , ] ® . s L]
. ‘ k . L e © o 0
® 9 p e — E? F L o *® % ®
“§LN . § BT y o’ i
° ) ® L/ @ o Pet ° o ° g .
s s e . o
F 4 - ® . @ .
] ® ® . ® ® ® ° 4
p L] L) @ i
e® -}
Legend
= Training data
*  validation data
‘N\ 0 25 5 10 Km
¥ Facto ‘
ng| v 10°4
34°51'0"E 34°54'0"E 34°57'0"E 35°00"E 35°3'0"E

Figure 12: Ground survey points collected in KibosMiwani. The field survey was conducted from
14" to 18" October 2013. 75% of the points were used for landse classification training, the other
25 % were used for classification validation.

lii.) Soil characteristics

In total, 23 soil samples were collected from Kifddisvani sugar zone on 32and 2% October
2013 (Figure 13) by GIS specialist and soil teclams. During sampling, we took cognizance of
spatial variability in soil types (based on theitdigsoil map for Western and Nyanza region at
the scale of 1:100,000) of the area, land covee &pd relief. Each soil type formed the basis
for the layer within which a random number of 3 péas were collected between 0-20 cm, 20-
40 cm, and 40-60 cm of depth. These samples wellectm using stainless steel cans
considering disturbed samples (for texture andiglartensity) and undisturbed samples for
analysis of soil physical properties: bulk denshydraulic conductivity and porosity. These
samples were collected before tillage and not atgd compacted by tractors. The soils were
mechanically analyzed at KESREF using ISO 17026rktory procedures to provide soil input

variables for the erosion risk model used in thislg.
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Figure 13: Soils of Kibos-Miwani sugar zone and thgositions of 23 sampled soils. Source of the
soil map KARI (2012).

These samples were analyzed and computed forteéheture, bulk density, porosity, erodibility

factor, field capacity, soil moisture content, drydiraulic conductivity. The approach used was

the constant head method using a permeameter (Aeganz1989) together with the sieve

analysis method (Gee and Bauder, 1986) to deterthenparticle size distribution of coarse and

fine aggregates in soils. Results of soil chargsties analyzed in this study are presented in

Table 4. The analyzed values of erodibility indexrev then compared with the USDA

Department of Agriculture (USDFA) soil textural stafication triangle (Mitchell and Bubenzer,

1980) for consistency and together with resultssgméed in Table 4, were used as input

variables in FUDSEM model.
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Table 4: Soil characteristics used in the FUDSEM natel. Texture = texture in US system; BD=bulk
density; P=Porosity; Erod (k)c=Erodibility factor; FC = Field capacity; Moisture=soil moisture;
HC= Hydraulic conductivity. See correspondence oblcation on figure 14.

Soil No texture BD P Erod (K) FC Moisture HC
0 silty loam 1.3 0.43 0.38 34 0.27 0.39
1 silty loam 1.46 0.45 0.38 34.1 0.7 0.39
2 silty loam 1.44 0.46 0.38 34.2 0.27 0.39
3 silty clay loam 1.31 0.5 0.32 43 0.82 0.73
4 silty clay loam 1.04 0.61 0.32 43.1 082 0.73
5 silty clay loam 1.31 0.51 0.32 43.11 032 1.94
6 silty clay loam 1.49 0.44 0.32 43.14 032 1.94
7 silty clay loam 1.2 0.55 0.32 43.17% 02 194
8 silty clay loam 1.11 0.58 0.32 43.14 032 0.25
9 silty loam 1.25 0.53 0.38 34.3 0.27 0.25
10 silty loam 1.27 0.54 0.38 34.5 0.p9 0.3
11 silty clay 1.16 0.56 0.26 43.19 0.84 0.58
12 silty clay 1.3 0.51 0.26 43.2 0.34 0.14
13 silty clay 1.17 0.56 0.26 43.21] 0.4 0.58
14 silty clay loam 1.21 0.54 0.32 43.22 0§32 1.26
15 silty clay loam 1.29 0.51 0.32 43.23 0§32 1.26
16 silty clay loam 1.44 0.46 0.32 43.24 0§32 1.26
17 silty clay loam 1.42 0.47 0.32 43.2% 0{32 0.75
18 silty clay loam 1.25 0.53 0.32 43.26 0§32 0.75
19 silty loam 1.3 0.51 0.38 43.27 0.7  0.75
20 silty loam 0.89 0.66 0.38 43.29 0.p7 0.74
21 silty loam 0.93 0.65 0.38 43.29 0.p7 0.74
22 silty loam 0.94 0.64 0.38 43.3 0.7 0.74

Sediment suspension data

In situ data was measured from fields in Kibos-Mwwkndscape, comprising sugarcane and
other crops respectively. This data was used tdaesgmplementation of FUDSEM model in the

study area.
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Climatic data

Rainfall data were recorded using 113 rain gaugssiltited unequally among all the sugar
zones (Figure 14) The rainfall data is submitted to respective endll by weather station

attendants who record daily data and monthly rdidéta for the period 2002 to 2012.
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Figure 14: Location of rainfall stations in westernKenya sugarcane growing area.
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The annual variations in rainfall in each of the sianagement zones are shown in Figure 15, while
intra-zonal variations in rainfall in the six mameagent zones are illustrated through the mean and

standard deviations presented in Table 3.
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Figure 15: The annual variability of rainfall for each sugarcane zone (2001-2013).
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Digital Elevation Model

The 30 m ASTER Digital Elevation Model (DEM) wasvddoaded from the United States
Geological Survey (USGS) website. The DEM was pgsed using the 3D — raster surface
analyst tool in a geographical information systegiS) to compute the slope curvature and
aspect which were required for modelling potensi@il erosion of Kibos-Miwani sugar zone
(see Figure 8). The slope of Kibos-Miwani risesir0% in the green area within the plain to

10% in the red area within the escarpment footuifed.6).

34°51'0'E 34°54'0'E 34°57'0'E 35°0'0"E 35°30"E

0°30'S g
Legend
|
\“ g kibos
{ o — o Slope%
q T wo High 2 10
0°60"S 0 25 5 10 Km o 0°
| !
34°51'0"E 34°54'0"E 34°57'0"E 35°0'0"E 35°30"E

Figure 16: Topography of the studied portion of lanlscape in Kibos-Miwani, established using a
30 m slope that was computed from ASTER Digital Ekation Model.
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3.2.2 Satellite data and preprocessing
MODIS time-series

A complete 11-year time series (2002-2012) of thddse Reflectance 8-Day L3 Global 250 m
product (MODO09Q1) and a 13-year (2000-2012) timeeseNDVI for Kibos-Miwani; were
downloaded through the online Data Pool at the NAS¥d Processes Distributed Active

Archive Center (LP DAAC:_https://Ilpdaac.usgs.gov/gata. MOD09Q1 product provides

bands 1 (red reflectance; 620—-670 nm) and 2 (méeared reflectance; 841-876 nm) at 250-
meter resolution. Each MODO09QL1 pixel contains thest possible observation during an 8-day
period as selected on the basis of high observatwmerage, low view angle, the absence of
clouds or cloud shadow, and aerosol loading. Theuracy of the version-5 MODIS/Terra
Surface Reflectance products has been assesse@ avidely distributed set of locations and
time periods via several ground-truth and validatafforts, and so they are ready for use in
scientific publications (Cunha, et al., 2010). Tad (R) and (NIR) reflectance data were used to
compute the Normalized Difference Vegetation IngEVI) (Rouse et al., 1974) for all the

460 images.

In addition to the MODIS time series, a multispac{Green, Red, and Near Infrared) 2.5 m
SPOT image was acquired over Mumias in Decembet.ZlMis data was used to appraise land
cover and use in different sectors of one of theeso(Mumias sugar zone) in a 250 m grid
(Figure 17). The data shows the large heterogewéitiie landscape at MODIS scale, and the
impossibility to use a sugarcane crop mask onellgatimage at MODIS scale in the area that

has heavily fragmented fields (average of 2 ha).
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Figure 17: (a) MODIS 250 m color composition of Murias zone (sectors within the zone are
delineated by a yellow line), and (b) subsets of Recember 2011 SPOT 2.5 m image on three
sectors; the overlaying yellow grids correspond tthe 250 m spatial resolution of MODIS pixels.

Landsat 8 time series

A complete two week time series (April, 2013 - Mar2014) of 20 Landsat 8 Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) geswere downloaded through the online
Data Pool at the NASA Land Processes DistributedivAcArchive Center (LP DAAC:
https://Ipdaac.usgs.gov/get_data). The list ofiteges is given in Table 5.

Landsat 8 products consist of nine spectral banitls & spatial resolution of 30 meters for
Bands 1 to 7 and 9. New band 1 (ultra-blue) isuldef coastal and aerosol studies. New band
9 is useful for cirrus cloud detection. The resolutfor Band 8 (panchromatic) is 15 meters.

Thermal bands 10 and 11 are useful in providingemamcurate surface temperatures and are
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collected at 100 meters. Approximate scene size/@& km north-south by 183 km east-west
(106 mi by 114 mi). Table 6 summarizes Landsatr&lbdhat were used in this study.

The image were acquired orthorectified and georeefeed in WGS84 UTM zone 36S.

Table 5: List of the Kibos-Miwani Landsat 8 imagesused in this study.

Date Sun elevation Sun azimuth Cloud conditions

1 19-avr-13 61.61 0%
2 05-mai-13 59.93 haze in the east part
3 21-mai-13 57.82 0%
06-juin-13 100% (not downloaded)

4 22-juin-13 54.90 0%
5 08-juil-13 54.94 30%
6 24-juil-13 56.15 0%
7 09-ao(t-13 58.37 0%
8 25-a00t-13 61.19 0%
9 10-sept-13 63.92 10%
10 26-sept-13 65.71 93.28 10%
11 12-oct-13 65.81 108.58 80% + haze
12 28-oct-13 64.17 121.62 60%
13 13-nov-13 61.42 130.32 10%
14 29-nov-13 58.50 134.58 0%
15-déc-13 56.14 135.17 80% (not downloaded)

15 31-déc-13 54.82 132.87 30%
16 16-janv-14 54.76 128.24 0%
17 01-févr-14 55.84 121.56 0%
18 17-févr-14 57.73 112.86 50% haze
19 05-mars-14 59.81 102.08 0%
20 21-mars-14 61.38 89.49 0%
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Table 6: Landsat 8 bands used in this study (source
http://landsat.usgs.gov/band_designations_landsatatellites.php)

Landsat 8 Wavelength | Resolution
: Bands .
Operational (micrometers) | (meters)
Land Imager -
(OLI) Band 4- Rec 0.64- 0.67 30
Band 5- Near Infrared (NIR 0.85-0.8¢ 30
Launched Band 6- SWIR 1 1.57-1.65 30
February 11, 2013
Band 8 - Panchromatic 0.50-0.68 15

3.3. Methods

3.3.1 Time-Integration of MODIS NDVI Values

A thematic layer of the limit of the sugarcane girgvmill zones was used to extract 8-day
NDVI values for each zone. These NDVI values wedrent spatially aggregated to allow
comparison with the mean annual yield, at the ssraée. Generally, time integration of NDVI
is done throughout the calendar year (KSB, 2012y&d et al., 1987; Funk and Budde, 2009).
At the field scale, Bégué et al. (2010) and Nguy2005) considered a seasonal integration
approach which utilized either the sowing or thevhsting date, while at the regional scale,
Lofton et al. (2012) used growing degree days tomate in season NDVI for estimating yield
and obtained good results. At regional scale inugat, Cunha et al. (2010) correlated yield of
the current year with a 10-day NDVI data to devedoyield estimation model which explained
77% - 88% of wine yield. At state scale in BraBljveiller et al. (2013) used growing degree

days instead of the calendar year and estimatedrcame yield with a RMSE of 1.5 tha
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(around 2% of accuracy); however, they used a anapk and selected sugarcane pixel purity

above 95% for the establishment of the regressions.

We tested here a new way of time integration ireotd account for the duration of the cropping
cycle and harvest calendar. In effect, since ted&yis estimated on annual basis, a ratoon crop
growing from November 2009 to its harvest in Japu2011 - at the age of 15 months -
accounts for the 2011 annual yield data. Theretbre,complicates the yield prediction scenario
where, in this case, the 2011 annual yield incluttes yield of a crop that was almost
nonexistent on the 2011 satellite time series (gxoa the January image). It is argued that
predicting yield in such rain fed sugarcane figklsomplicated since NDVI from all land uses
declines at the end of the rainfall peri@ugnula et al., 20119nd requires a keen consideration
of the integration period. In a similar case, aghéd land cover NDVI was used to account for
the influence of other land uses on maize yi&@djds, 2007)We therefore applied a weighting
matrix over a period of time corresponding to thengng calendar, and not to the calendar year
in order to take into account the active vegetasiages of the crop and minimize any shift in
NDVI during sugarcane developmemtattens et al., 2005)o do this we chose two different
periods of integration, (1) an 11-month period Wmhoeorresponds to the approximate length of
the growing cycle before maturation, and (2) a X&ith period which corresponds to the
approximate length of the whole growing cycle. Both configurations, we calculated a weight
for each month corresponding to the probabilityasfugarcane field to be harvested during the

calendar year of yield estimations, and thus tad@munted for in the annual yield (Figure 18).

Annual NDVI (NDVI) and weighted NDVI (WNDVI_15 an@NDVI_11) for each year was
calculated according to Equation (1), witlequals to 15 and 11, respectively. The value 15

corresponds to the length of the usual croppindecg€ the sugarcane (in months), while the
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value 11 corresponds to the length of the vegetgiart (in months) which is mainly related to

cane yield Bégué et al., 2010)

WNDVI_i = Y NDVI, w, Equation 1

m=1

where, NDVIm is the value of the NDVI for month my, is a coefficient equal to the NDVI
normalized weight (Figure 3), and i is the lengthhe time integration (in months). The sum of

the wy, coefficients is equal to 1.
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Figure 18: Three sets of weights used to calculatene integration of monthly NDVI values for
annual yield estimation (yearn). The green line (between months 14 to 26) correspds to weights
generally used to calculate the annual NDVI (the dandar year corresponding to the yield
measurement). The blue and red lines correspond tweights that take into account the sugarcane
cropping calendar (15 months for the whole cycle,ral 11 months for the growing period) in the
NDVI time integration.
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3.3.2 Modelling drivers of spatial variability in yield

Statistical models were used to investigate theedsi of sugarcane yield in western Kenya. A
linear regression established through time and espmsing a one-tailed probability test was
adopted (Nguyen, 2005; Rasmussen, 1992; Loftoh,e2@l2) while assessing the role of the
environmental variables in the relation betweendysnd wNDVI, by correlating the slope of
the “yield-wNDVI” relationships with the rainfalland with the sugarcane fraction in each
respective zone.

The investigated drivers (environmental effectgreifiore, were; the zone, yearly sugarcane
fraction, rainfall, precipitation marginal respon¢EMR) and MODIS NDVI effects on
sugarcane yield (estimated yield data). PMR waspeded by correlating the slope of Yield-
wNDVI with the sugarcane fraction in each zone. PM&S tested to investigate the response of
sugarcane to each millimeter change in soil magstlihe zone effect was used because these
zones are spatially located in different agro egiolal zones presenting variations in climatic
and edaphic factors. The yearly sugarcane fragtias also considered for this analysis because
over different years, the surface area under sagarcs variable (Figure 10). It was presumed

that through these models, the accuracy of foregastigarcane yield is improved.

3.3.3 Landsat 8 image analysis

Image processing was performed using ERDAS Imagifiet®rgraph Corp.).
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Pre-processing

Subset of the Landsat image, and band selectisiblgj NIR and SWIR) was performed based
on the extent of the study area. The multispedtasds were merged with the panchromatic
band using thdBrovery transform algorithnresulting in multispectral images at 15 m spatial
resolution. Cloud and cloud shadow masks were tirepared based on tlggow properties

drawing tool that was able to trace out areas @aaith clouds and shadows.

Calculation of NDVI and NDWI

Two vegetation indices were derived using the feilg formula:
NDVI = (NIR — RED)/ (NIR + RED) (Rouse &it, 1974)

NDWI = (SWIR — NIR)/ (SWIR + NIR) (Gao926)

NDVI (Normalized Difference Vegetation Index), whits the normalized difference between
the near infrared (NIR) and visible RED reflectanieresponsive to changes in vegetation
cover and greenness. Higher NDVI values reflecatgrevigor and photosynthetic capacity (or
greenness) of dense vegetation canopy, whereadl@vi values are reflective of vegetative

stress or senescence, or low vegetation cover.

NDWI (Normalized Difference Water Index), derivedbrh the NIR and SWIR channels,
responds to changes in both the water content (jati@o of SWIR radiation) and structure
(reflectance of NIR radiation) in vegetation carespirespectively (Gao, 1996). SWIR is used in
computation of the NDWI due to its ability to ddtemisture absorption by plants. SWIR index
is useful in detection of a harvest because it re¢ps harvested residues from any other crop

status (Lebourgeois et al., 2010).
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Field limits digitalization

A map layer showing the limits of agronomic fieMas digitized from the 15 m multispectral
Landsat 8 image of 19April 2013, in ArcGIS 10.1 software. This digitalap was used to

extract spectral variables from the cloud-free lst@ image time series.

Spectral variables extraction per field

NDVI, NDWI and SWIR images were sequentially statke generate 3 images of 20 layers
each (20 dates between April 2013 to March 2014]€r'd). The mean and standard deviation
of these three image time series were then exttactie each digitized field using thzonal

attribute function. Cloud pixels were set to 0, and weretakén into account in the statistics.

3.3.4 Mapping cropping practices

Cropping practices (in this document) imply thepctgpe, sugarcane harvest date and sugarcane
harvest mode. These practices were identified tiirdime series analysis of temporal profiles
of NDWI, NDVI and SWIR profiles, and classificatioof the Landsat 8 image time series
(table 5). We hypothesized that changes in thededa at harvest time were significantly
different. To understand the spatial and spectaaiability of the land cover types and crop
conditions (harvested crop or standing crop, hamegle), we studied for a given set of known
fields : (1) the temporal variations of NDVI, NDV@hd SWIR. The choice of these indices was
conducted by Lebourgeois et al. (2010) who docueatkrthe use of spectral indices for
characterization of sugarcane conditions. (2) Taler composites of different sets of Landsat 8

images were examined for color, pattern, shapetextdre to visualize and interpret the land
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cover type, the harvest date and mode, and ex@atate combinations identified through
temporal analysis of MODIS NDVI. These spatial aethporal analysis were conducted to
identify the best index to detect crop type, a bar\(harvest date), and harvest mode in Kibos-

Miwani.

Classification of sugarcanefields

A map for sugarcane was produced using the temptaak of NDVI images (Wardlow and
Egbert, 2008) extracted from the 20 Landsat NDVages in Table 5 with assumption that
NDVI was a good descriptor of land cover type. Theice of time series images was in order
to investigate the seasonal variability of vegetatin the area based on the main vegetative

seasons identified from the temporal analysis oINM®NDVI.

The sugarcane classification map was producedorsteps:

First, the Landsat time series was classified uginmund survey points and a supervised
classification into six classes (five classes afgarcane’ at different ages, and one class of
‘other’; Table 7). 75% of the 1280 dataset (96fmiwhere 600 were sugarcane and 360 were
other land cover,) were used as training data &oatterize the multispectral variability of each
thematic class, while 25% of the data (320, wh@@ Rere sugarcane and 120 were other land
cover points from the ground survey) were usedvididation of the classified map. A recent
study reported that the decision tree (DT) classifs superior to the maximum likelihood
classifier in areas with large fields over 100 harazil (Vieira et al., 2012). The Kenyan case
is of small fields over 0.20 ha and therefore theximum likelihood classifier algorithm was

adopted in this study for its ability to utilize gierior probability of a pixel to belong to a given
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class to classify each pixel (Campbell, 2006) giveen space. This algorithm classified the time
series into heterogeneous and homogeneous unisl loaiscrop age and land cover type. The

six characterized units were assigned class naas=lion field surveyed attributes.

Secondly, recoding and management of the assigasses (five sugarcane classes and ‘other’)
followed so as to form one sugarcane class, angr ¢dhd cover class using the Erdas Imagine
recoding and management modules which group relgthomogeneous NDVI pixels that form
agronomic fields into a land cover class. The testlmap became the sugarcane map for
Kibos-Miwani.

Table 7: Distribution of survey points used in clasification of five of ‘sugarcane’ classes at
different ages, and one class of ‘other’.

Class name Age (months) Number of points % coverage
Sugarcane #1 0-2 131 14%
Sugarcane #2 3-5 129 13%
Sugarcane #3 6-8 150 16%
Sugarcane #4 9-11 100 10%
Sugarcane #5 Over 12 90 9%
Other - 360 38%

Characterization of cropping practices (harvest date and mode)

We investigated the best index for characterizirgpping practices (harvest date and harvest
mode). For each field, we computed differences DWWN, NDVI and SWIR between each two

dates for the 20 image dates (April 2013-March 2014
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First, we assumed that the larger change in SWilRxrhappened at the harvest time. So it was
easy to detect for each field the harvest periedirfdd in days between two image acquisitions)

that corresponds to the maximum difference betviwerdates.

Secondly, for each field we computed the NDVI andWl differences before and after the
harvest, for both burnt and green harvest sepsrais a set of 58 sample fields, where 29
fields were of green harvest and 29 were of buanvést. We checked the significance of these
differences for the burnt and green harvest fieklag a t-test. In case of 99% confidence level,
the frequency of occurrence of the most significgectral variable was plotted and fitted with
polynomial models to check for the threshold thatiniguishes between burnt and green

harvest.

Accuracy Assessment

Accuracy assessment is important because it estintae accuracy of the classified image by
comparing the classified map with the reference.ngreover, accuracy assessment provides
information on the product quality and identifie®Ipable sources of errors. A confusion matrix
Is a standardized method to represent the accwfachassification results derived from remote

sensed data by calculating accuracy measurememth wiclude: overall accuracy, producer’s

accuracy, and user’s accuracy (Congalton and GE&69).

For the SC map, we evaluated accuracy of the Gilzstsdn by creating a confusion matrix

based on the 25% of the unused ground data (32@spoi

For the harvest mode map, we evaluated accuratyeoflassification by creating a confusion

matrix based on the 25% of the unused ground @8 goints).
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3.3.5 Soil erosion modelling

This study has used FUDSEM model to estimate tengpal soil erosion risk in the sugarcane
landscape of Kibos-Miwani zone for informed deamsimaking to improve sugarcane yield
based on cropping practices. The FUDSEM model (€adteal., 2008) is computed using

ArCGIS software®.

The principles of FUDSEM model according to Coheal.&(2008) are:
» It simulates soil erosion processes by utilizingwn deterministic processes.
e It uses fuzzy logic structure to reduce calibrattequirements and simplify the results
for easy interpretation by providing potential reskd not quantitative maps

* It uses accessible data as input, such as somdegistics and Landsat data.

This model was computed at the catchment scale dhye€ et al. (2008). In our case, we
compute potential erosion risk at a local scaleethasn a 104 kfKibos-Miwani landscape
within which sugarcane growing is undertaken.
The main features of the model presented in FigQrare:
« Soil moisture potential is computed spatially basadhe field capacity, aspect,
time taken after last rainfall and soil moistureasigred from the field data.
* Runoff potential is calculated spatially, based swoil moisture potential,
vegetation data and digital elevation data
» Transport capacity potential is calculated in cdesation of runoff potential and
the slope

« Erosion potential is calculated based on transgapéacity potential.
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Figure 19: FUDSEM flow chart, adopted from Cohen egl. (2008).

To calculate potential erosion risk, we followeck thteps outlined in Figure 19. First, we
analysed soil characteristics from the 23 soil dampsing methods discussed under SETS 1,2
and 4 (see the characteristics in Table 4). Next,oemputed the aspect, slope and slope

pedoform, from the 30 m digital elevation model @Eusing the ArcGIS spatial analyst tool.
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We then computed the rainfall erosivity as describeder SET 2. Finally, we selected four
Landsat 8 NDVI images corresponding to Februarg fitst minimum vegetative season); May,
(the first maximum vegetative season); Septembergecond minimum vegetative season); and
November (the second maximum vegetative seasoa)seasons exposed by MODIS NDVI
(Figure 24). These images were aimed at captuhedemporal variations in vegetation. In our
simulations, we used soil characteristics data fi@sugarcane’ fields (13 of burnt harvest and
6 of green harvest) and 4 ‘other’ fields from thigarcane map to assess the effect of cropping
practices on erosion risk. We interpolated theda tta the other fields within Kibos-Miwani
through spatial analysis in GIS, using ordinarygirg, based on a linear semivariogram model.
The choice of a linear semi-variogram was in linthwhe semi-variogram scatter plot used in
this study. These data (listed in Table 8) weraiirip FUDSEM model using fuzzy equations

detailed under equations 2 to 12.

Soil moisture potential (SET 1)

Soil moisture potential is the energy of water @il svhich is measured in energy/mass soil
(J/kg). It controls the movement of water in soilfiese moisture conditions vary over time
(Jetten et al., 1999) depending on soil charatiesjsrainfall events, crop development,

harvesting method.

SET 1 is computed based on the: i) moisture corfid@y, ii) field capacity (FC), iii) the aspect
(AS), iv) time elapsed from previous rainfall (Tepd iv) the bulk density (BD)
The moisture content is calculated for each samgbédas:

MC = (mass of wet soil - mass dry soil)/ mass of wet soil
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A sigmoidal membership score is assigned to MEdgnation 2 due to the exponential ratio in soil
moisture decrease with time (Hillel, 1998).

A=1/{1+ epMC-o} Equation 1
Where;

A = the mid membership value of moisture content

MC = moisture content for each sampled soil in %

B = the function slope of MC values.

a = user input variable estimated based on thetyod in accordance with Cohen et al.

(2008).

The field capacity, FC, represents the water hgldiapacity of the soil which may locally vary
depending on soil moisture, texture, organic mattet permeability of the soil (Hillel, 1998). A
linear membership score is assigned to FC in Eqou&i

FC = - (X - Rir) / (Prmax— Phi) Equation 2
Where;

X = FC values in %

Pmin @and Raxare function parameters; and are therefore themmoimi and maximum values of
the dataset in accordance with the approach of I€@teal. (2008). The linear function in
Equation 3 is chosen from ArCGIS fuzzy membershimctions library based on the

exponential ratio in soil moisture decrease witheti(Hillel, 1998).

The aspect AS takes into account the influence abérsradiation on soil moisture. The
membership score assigned to AS therefore increaithsradial distance from 180AS is

therefore calculated based on a cosine membenshitién in Equation 4 (Cohen et al., 2008):
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AS = CO§{(1T(X - Bnin)) / (2 (Rnax- Pmin))} Equation 3

Where;
X = input value of the aspect in %
Pmin @and Rax are function parameters; and are therefore thenmim and maximum

values of the dataset in accordance with the approfCohen et al. (2008).

The time that has elapsed since the previous fhififg is assigned a sigmoidal membership

function:

Te=1/[1+ €& Equation 4

Where;
B = the function slope of¢lvalues.

a = the mid membership value of x in accordance @Witthen et al. (2008)

The bulk density, BD was measured using the ovgimgrmethod based on dry and wet soil

weights in Kenya Sugar Research Foundation (KESR&B)certified laboratory.
A combination of the four membership functions comepthe soil moisture potential (SET 1) in

this study using Equation 6

SET 1 A4BD+02AS+0.2FC+0.2MC >

=0
= 0.0 Te =0 Equation 5

73



Runoff potential (SET 2)
We calculated the runoff potential using four vaks: 1) wetness potential (SET 1); 2)

hydraulic conductivity (HC); 3) rainfall erosiviiRE); 4) vegetation cover (NDVI).

Hydraulic conductivity, HC, represents how easywaer moves through the soil profile. This

parameter was computed using a constant head mesinogia permeameter.

Rainfall erosivity, RE, was computed based on ayenainfall amount and intensity (average
monthly rainfall (MR) and average daily rainfall R)), above a 40 mm threshold (RI) and
below a 40mm rainfall (RS)) and was used becauskestribes the potential for soil to be

washed off by rainfall. RE is calculated using dtpra(7).

RE = (MR DR) + (RS RI) Equation 6
Where;
DR = Daily rainfall depth
MR = Monthly rainfall depth
RI = Daily rainfall above threshold of 40 mm/day

RS =Monthly rainfall above threshold of 40 mm/month

NDVI was used to represent vegetation cover datsilobs-Miwani. It was computed from the
Landsat 8 images (Table 5) using the zonal ateilparameter in Erdas Imagine based on the
digitized shape file of Kibos-Miwani sugar zone. MOmage for &' May, 10" September, 13
November and 17 February for this area was used to simulate tfeeedf vegetation growing
seasons on soil erosion risk. February NDVI represkthe first minimum vegetative season,

May NDVI for the first maximum vegetative seasorep&mber for the second minimum
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vegetative season and November for the second maximegetative season (see Figure 25).
The choice of these images was because they ae#sons this study used. These were the
best images because besides corresponding to theumn and maximum vegetative seasons,

they were also cloud free.

In our simulations, we used seasonal NDVI imaggsal level as the variable input to enable
us capture the influence of management practicdsclmatic conditions on crop cover in the
landscape during different weather seasons. Im #i@iulation, Cohen et al. (2008) chose their
images based on each simulation year. Whereas &alan(2008) captured seasonal variations
as in our approach they referred to each yearseasons, opposed to our seasons which were
within one calendar year. The approach in thisystithed at assessing the sensitivity of crop
type, slope and soil physical properties of thiglicape to soil erosion risk. The functions used
(Table 8) are those proposed by Cohen et al. (2808)xlso additional information from ground
surveys on sugarcane harvesting practices (mufpipleting and harvesting dates; and green and

burnt harvest modes).

Cohen et al. (2008) stated that weights assign&Didl are higher than those assigned to other
variables due to its importance in semi-arid envinents. In this study, Kibos-Miwani sugar
zone does not fall within semi-arid environmentd #rerefore the weights assigned are derived

from the cropping calendar and harvesting practteke particular field scale.

The potential runoff is thus calculated by combinihese variables in equation 8:

SET 2 0.0 HC<O,
0.2HC +0.2RE+ 0.2NDVI+ 0.2 SET 1 HC>0 Equation 7
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Transport capacity potential (SET 3)

The influence of vegetation cover and topographtheflandscape on runoff is investigated here
in accordance with Cohen et al. (2008). Sedimergdransported by water from hill slopes in
rills which develop into galleys and eventuallytagion of the downstream. This capacity is

calculated by combining two variables: the slopégierm (SP) and the slope (S).

The slope pedoform SP is the convexity of the slepenputed from the 30 m Digital elevation
model using the 3D analysis curvature function lie@S software. Cells found within convex
slopes have a high runoff potential and are comstdeo be the sources of erosion for

downslope cells; while concave slopes have lowafficell values and are considered as sinks.

The slope (S) illustrates effects of gravity onafinwhere steep slopes accelerate runoff which
results in higher transport capacity. S in thiglgtis computed from the 30 m Digital elevation
model using the 3D analysis slope function in Aig&oftware. A sigmoidal membership

function in Equation 9 was used to describe thipesl

S =1/ [1+ 9] Equation 8
where;

x = Slope

B = the function slope of the dataset.

a = user input variable estimated in accordance @iahen et al. (2008)
The two variables. andp were assigned equal weights since they were asstoneontribute
equally to the transport process. Equation 10 coeshithe parameters to calculate transport
capacity as follows:

SET 3= 0.33S+0.33SP + 0.33 SET 2 Equation 9
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Sail erosion potential (SET 4)
Top soil erodibility is assumed to influence sedmtgansportation, accelerating erosion in soils
that are susceptible to runoff detachment and p@msPotential erosion is therefore calculated

based on the transport capacity and the soil efigdiimdex (K).

K represents the average soil loss per ton pearedbr a particular soil type and is computed
according to Goldman et al. (1986) in equatian). High K values denote higher erosion
potential. Cohen et al. (2008) adopted K-valuemfi/ischmeier and Smith (1978). This study
calculated the soil erodibility factor (K) from tlsampled soils using the method proposed by

Lu et al. (2004).

K =(1.292) [2.1 10 f,"** (12 - R + 0.0325 (Sruct- 2) + 0.025 (ferm- 3)]

Equation 10

In which, § = P (100 - Rjay)

Where;

fp = the particle size parameter (unitless)
Pom = the percent organic matter (unitless)
Ssiruc =the soil structure index (unitless)
fperm= the profile-permeability class factor (unitless)
Pcay = the percent clay (unitless)
Psit = the percent silt (unitless)
The potential soil erosion is thus calculated bynbming transport capacity and soil erodibility

in equation 12:

SET4=0.1K+ 0.9 SET 3 Equation 11
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Comparison of FUDSEM model with RUSLE model

For the year 2013, we compared FUDSEM model resulestimating potential erosion risk
through correlation analysis, with results of pbgsiRevised Universal Soil Loss Equation
(RUSLE) model for Kibos-Miwani. The IntergovernmahAuthority on Development (IGAD)
conducted the survey through the African Monitoriofy the Environment for Sustainable
Development (AMESD) project that used RUSLE modelune 2013 through Regional center
for mapping and regional development (RCMRD) oficdairobi Kenya (AMESD, 2014). This
map was produced at national scale for drought @imdate change predictions. We used
RUSLE model because its input variables were masthylar to those used in FUDSEM model
in this study which include: (i) 30 m Landsat NDafter each six months to represent the first
and second vegetative seasons of the year; (ijfathierosivity from daily rainfall; (ii)
erodibility factor from soil analysis; and, (iine¢ slope from 30 m Aster DEM; and (iv) crop
management factors (land use). The different viriab RUSLE model was the slope length,

while in FUDSEM we used the aspect and slope peaofo

For this comparison, we extracted potential eros@alnes for the 23 soil sampled fields from
both FUDSEM and RUSLE models. We computed the geedd the four seasons (February,
May, September and November) of FUDSEM model valdlesn evaluated these against
RUSLE values through regression analysis. The re&sousing IGAD data is because in situ
measurements were lacking for this validation. Pueyv researches have also shown the
difficulty in evaluating large scale models duelack of sufficient insitu data (Merrit et al.,

2003).
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Influence of cropping practices on potential soil erosion risk

For this investigation, we used the classified stey@e map. First, we observed erosion trends
and examined the influence of vegetative seasansigh time on potential soil erosion risk by
identifying and describing unique areas in theyhdhd plain areas of the landscape on all the
four erosion risk maps. Secondly, we used an aisabfsvariance (ANOVA) in R software to
evaluate the significance of crop type and harmresies on soil erosion risk. Erosion risk values
from 23 fields from the sugarcane map were use@reyhl3 were of burnt harvest, 6 were of

green harvest while 4 were of other land cover.

Comparison of erosion risk simulationsto field data

A survey by KESREF conducted between 2012-2013 &HEHS 2013; Unpublished data)
conducted measurements on sediment suspensiorfifloi® measuring approximately 30 m x
30 m. Ten run off plots (five comprising sugarcarel five comprising other crops such as
maize and natural vegetation) were establishedgatbe same contour line with a distance
interval of 30 m for replications within a slope2% and within the silty clay loam soils. The
choice of this slope was to minimize on the rateusf off, while the choice of silt clay soils
(soils 2, 3, 6 and 7; Figure 34) was because thesdhe dominant soil type of Kibos. The
experiment was set up for one year from May 2012pnol 2013 in the same landscape studied
here (see Figure 13) using FUDSEM model. In thipedrment, plots were isolated from
upstream fluxes using terraces while metal bordene inserted to a depth of 10 cm at each
outlet (Rumpel et al., 2006). The total run off wasasured after each rainfall event and
sediments dried in the oven at @0 In total, 70 samples were collected and theiamse

computed. Results of these measurements were cedpeth the mean potential erosion
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values from FUDSEM (Table 16). The simulated valiaes aggregated at the pixel level which
measured the size of experimental plots in ArcGi&tial analyst tool. The purpose of the

analysis is to ensure the relevance of simulatéal idaerms of magnitude and trends.

Table 8: Input variables used in FUDSEM model fundbns.

VARIABLE |NAME [UNIT METHOD REF DATA SPATIAL | Temporal
(membership SOURCE | property | property
function) (resolutio

n)

Moisture MC Ovendrying | Barling et| Ground Poin Daily

Content (Eq.2) al. (1994) | Survey

Field FC Sieve analysi| USDA Texture Poin Constar

capacity (Eq.3)

Erodibility K Sieve analys | Goldmen | Ground Poin Constar

factor et al. Survey

(1996)

Aspec AS degre: | Spatial analy: DEM 30mr Constar
(Eq. 4)

Bulk densitr | BD Oven drying Ground Poin Constar

Survey

Hydraulic HC Constant hea Ground Poin Constan

conductivity using a survey
permeameter

Rainfall RE Equation 7 | Cohen e| Daily & |30 Constar

erosivity al. (2008) | monthly

rainfall,
rainfall
intensity

Vegetatior NDVI Satellite | 30mr Seasor

cover image

Slope degre: | Spatial analys | De Jong e| DEM 30 Constani
(Eqg. 9) al. (1999)
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4. RESULTS AND DISCUSSION

4.1. Yield estimation models at regional
scale

In this chapter we present results from the twore@g@ghes we used to identify the remote
sensing indicator (NDVI, wNDVI) and environmentdfeets (zones, rainfall) on sugarcane

yield are presented in this section.

4.1.1 Spatial aggregation and temporal analysis

4.1.2 Relationship between Yield and NDVI

When the whole data set (6 zones and 9 yearskt tise analysis shows that the annual NDVI
is not strongly related to the sugarcane yield (bE Figure 20a). This finding is close to those
of Gunnula et al. (2011) whose results showed ligwiicance when correlating historical yield
and NDVI at annual level (P = 0.1) (Bastidas-Obaadd Carbonell-Gonzalez, 2007). However,
when adjusted NDVI (wNDVI) is used, the relationshs highly significant for wNDVI_11
(P = 0.001) (Figure 20b) and significant for WD¥5 (P = 0.01) (Figure 20c) with the’ R
increasing from 0.01 for yield-NDVI relationship t&8”=0.12 for yield-wNDVI_15 and
R?=0.13 for yield-wNDVI_11 respectively, through diar relationship. This result is in
agreement with a study demonstrating that yieldnedions based on metrics obtained a little

after the peak of APAR can be done without seripasimpromising performance (Duveiller et
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al., 2013). However, the strength of these coriaiatis weak, justifying further analysis by this

study on other factors that affect yield.

When the whole dataset is aggregated over the wpaled (2002-2010), at the zone level
(spatial analysis), the correlation between yiahd avNDVI is significant (Figure 21a) with
R?= 0.53, P < 0.001; while when the whole datasegigregated over the six zones, at the year
level (temporal analysis), there is no significaatrelation between yield and wNDVI (Figure
21b). The good result obtained through the spatialysis is due to different environmental
variables exuded through rainfall distribution. Thlesence of significant results through the
temporal analysis could be explained by (1) théadilty to make coherent yield measurements
over a calendar year and wNDVI (considering thegtlerf time sugarcane takes to mature), and
(2) the sugarcane cover fraction changes during20@2-2010 period. This interpretation is
exemplified by the variable standard deviation feguover the years (see standard deviation

values of the fraction of sugarcane cropped areadan zone, Table 1).
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Figure 20: Relationship between §) yield and annual NDVI, () yield and wNDVI_11, and ¢€) yield
and wNDVI_15.
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Figure 21 Variability with wNDVI_11 averaged (a) at zone level on the 2002—-2010 periods, arg (
at annual level on the six zones.
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4.1.3 Relationship between Yield and Rainfall

In order to better understand the spatial and teabpeariability of yield, we studied the
relationship between yield and annual rainfall. Whesing all the data (6 zones * 9 years;
Figure 22a), the relation between annual yield mimwfall was significant, but weak {” 0.08;

p = 0.03). Such a weak relationship has been at&tbto the time lag between yield and rainfall
because vegetation takes a considerable periogsfmond to soil moisture (Shisanya et al.,
2011). This effect is amplified in Western Kenyajaene the annual yield is dependent on the
rainfall of the previous year due to the lengthhef sugarcane cycle. On removal of the time lag
through spatial and temporal averaging over the gear data (6 zones * 9 years; Figure 22b,c),
this study showed a strong relationship as notedtbgr studies (Lofton et al., 2012; Shisanya
et al., 2011) with R= 0.8 and p < 0.001 at the spatial level (Figu2b)2lt is assumed that this
relationship is stronger because yield is not oaffected by rainfall but by other agro-
environmental factors that may be specific to défeé zones. The relationship between yield
and rainfall (Figure 22b) is stronger than the treteship between yield and wNDVI (Figure
21a) at the zone scale. This is because unlikdathiwhich is an environmental variable,
wNDVI value integrates not only sugarcane cultidaéeea, but also other types of land covers

that are in different proportions according to toae.

The temporal analysis of yield and annual raindalbws no correlation between both variables
(Figure 22c), because (1) rainfall is not the oyilid driving factor, and (2) because annual
rainfall should be integrated on a longer period aiith different weights (as wNDVI) in order
to take into account the particular cropping caéeraf the sugarcane crop. These results are in
agreement with a study that pointed out that rdliafmounts and pattern may not be a reliable

predictor of yield Gunnulaet al., 2011). However, rainfall aggregated at kdenel (Figure
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22b) shows a significant correlation®[R 0.80, P = 0.001) with yield because each zorse ha

unique agro environmental conditions that impagtield.
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Figure 22 Relationship between yield and rainfall using: a) all the data, b) the data aggregated a
the zone scale (spatial analysis), and)(the data aggregated at annual scale (temporal alyais).
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4.1.4 Relationship between Yield-wNDVI Slope and wh Rainfall and

Yield-wNDVI Slope and sugarcane fraction

In order to better understand the main drivingdesiof the yield-wNDVI relationship, we
correlated the slope (residuals or values) of ¢haion between yield and wNDVI aggregated at
the zone scale with the rainfall (Figure 23a), awith the fraction of sugarcane in each zone
(Figure 23b). Results show a strong correlatiom\wigh significance at p < 0.001 in both cases.
The sensitivity of the yield-wNDVI variations to &a millimeter rainfall received in each
management zone also called the Precipitation Matdresponse, or PMR (Veron et al., 2005)
separates two groups of these sugar zones, thoggagdically located in sub humid AEZ from
three located in the humid AEZ (Figure 25a). Thiditglio separate the two climatic regimes in
this study therefore strengthens the ability to wDVI in forecasting crop yield. Results of
the PMR relationship were highly significant witff R 0.75; P = 0.001. The positive slope of
this relationship (Figure 23a) indicates that thes#tivity of the yield to rainfall is higher than

the sensitivity of the wNDVI to rainfall.

The negative slope (the higher the fraction, tiveelothe slope) resulting from the relationship
between yield-wNDVI slope and sugarcane fracti6neR0.42; P = 0.01 (Figure 23b) indicates
that wNDVI is not only affected by the amount ofnfall received in the zone, but is also

influenced by other surrounding vegetation cover.
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4.1.5 A Quantitative Evaluation of the sugarcane yld Model

WNDVI_11 data for the period 2001-2011 was use@&sbmate the 2012 sugarcane yield
(Table 9), while wNDVI_11 data for the period 20PQ12 was used to estimate yield for the
year 2013 (Table 10) using the models establishédtkazone scale (Figure 21a). This was done

in order to utilize data that is independent fréra bne used in development of this model.

Table 9: Zonal model validation using 2012 yield da.

Zone wNDVI_11 Model Yield(t-ha™)  Measured Yield (tha™)  Error (t -ha™)

Mumias 566.t 54.2 48 6.2
Nzoie 602.¢ 68.£ 64.7 3.7
Chemeli 586.¢ 62.2 59 3.2
Muhoron 604.2 69.1 63.¢€ 5.t
Kibos 596.1 65.¢ 62.7 3.1
Sony 610.t 71.t 69 2.t
RMSE 4.2¢

In 2012 (Table 9), we obtained a Root Mean Squaredr (RMSE) of 4.25 t Ha, with all the
zones modelled to have higher yields than the miedsyields in each zone. The highest yield
over-estimation was realized in Mumias zone (hd1), where the land holdings are
particularly small (up to 0.1 ha), and where thedkcape is very heterogeneous (Figure 18).
This result is similar to the low accuracy obtainked fields smaller than the pixel size
(Fernandes et al., 2011). When excluding Mumiaseztine RMSE decreases to 3.41tha

which is below the user specification of RMSE %it'h
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Table 10: Zonal model validation using 2013 yield data.

Zone  WNDVI_11 Model Yield(t-ha™) Measured Yield (-ha™) Error (t -ha™)

Mumias 568.< 56.7 54.2¢ 2.41
Nzoie 601. 68.7 67.6¢ 1.04
Chemeli 588.¢ 62.¢ 61.¢ 1.2
Muhoron 589.2 60.1 58.2 1.6
Kibos 591.1 62.c 60.7 1.€
Sony 615.7 67.1 66.2 0.¢
RMSE 1.€

In 2013 (Table 10), we obtained a Root Mean Squireat (RMSE) of 1.6 t hid. Like in 2012,
all the zones are considered with higher modeliettly than the estimated yields in each zone

with the highest over-modelled yield in Mumias @tsha®).
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4.2. Mapping of cropping practices using
remote sensing data

In this chapter, we tested if the spatial and tenrapgaformation contained in the satellite images

could be interpreted in terms of cropping practi@esp types and sugarcane harvest mode).

4.2.1 Temporal variability

Results of time series analysis on MODIS normaligéference vegetation index (NDVI)
captured seasonal variations in vegetation thafitré®m the rainfall pattern in Kibos-Miwani.
These seasonal variations facilitated the choickamidsat images used in characterization of
cropping practices in this area and in soil erosisk modeling. Results demonstrate four main
vegetative seasons for the sugarcane crop. Thegksrexhibit two peaks (May and November)
and two minimum vegetative seasons (February anpteBer), corresponding to the
interaction between sugar-cane physiology and tmedal rainfall (Shisanya et al., 2011) with
a one month time lag (Figure 24). Two minimum vageé seasons in February and September
are also exhibited, corresponding to the dry seaBe@bruary indicates the first minimum
vegetative season while September is the secondmomim vegetation season. The first
maximum vegetation season is experienced in Maylewthovember is the second maximum
vegetative season. We infer that rainfall distridutis the main driver of temporal NDVI
variations and that farmers plan their crop managenactivities based on these two rainfall

seasons.
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Figure 24 Mean seasonal vegetation conditions as measured BMODIS and monthly rainfall
variability for the period 2000-2012 in Kibos.

4.2.2 Spatial variability

A color-composition of 15 m NDVI Landsat images ftiree vegetative seasons (May,
September and November) is displayed in Figure R&sults show varied cropping practices
such as fields with young crop whose germinatiommenced in May, those harvested in
November, mature crop that is due for harvest aherocover crops within Kibos-Miwani.
These results have revealed multiple planting argidsting dates at pixel level, between fields
in the area with different types of crops, vegetatad harvested fields exemplified on the image
composite. In this study, the variable NDVI pattermifferent fields is an indicator of different
types and ages of crops in the area where envinstameonditions such as the dry season may
affect mature crops thereby reducing their NDVLisTfinding compliments the cropping
calendar of Kibos-Miwani, where food crops are panduring the same period as sugarcane.

This result is similar to a different study whichosved that low NDVI may indicate start of
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growth season, for young crop or; for crop of highge, low NDVI may depict crop stress or

start of maturation (senescence) (Vintrou et @12). Landsat8 images have demonstrated
spatial variability in vegetation conditions at thixel scale with vegetated, harvested, planted
fields and natural vegetation being identified be tmage composite for the selected months.

We assert that these cropping practices are the dnier of these local variations.

Sugarcane
harvested
in November

Mature
sugarcane

Figure 25: Landsat 8 NDVI colored composite image (R: May 2@® G: September 2013; B:
November 2013) Located at 380’E to 35E and between (5 to 045’S.
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4.2.3 Time profile analysis in terms of cropping pactices

The harvest date was detected thanks to an abrapgaise in the SWIR band (see example in

Figure 26).
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Figure 26: NDVI, NDWI and SWIR for a field that is harvested by burnt method. Where SB=
burnt harvest. This field was harvested on 8th Jul\2013. The dotted line indicates the harvest day.

The harvest mode map was obtained through a cleawation of spectral indices selected
through a t-test. Table 11 shows results of thest-on the values of two spectral indices, NDWI
and NDVI, before and after the harvest, for sampields. Results show that, at harvest time,
changes in NDWI are high (mean=0.41) for burnt Barvand low (mean = 0.10) for green
harvest. The differences for green and burnt harvesdes are significantly different for

NDWI_Diff at P = 0.000, while they are not signditt for NDVI_Diff (P = 0.345). These

results show that both SWIR and NDWI are usefudescription of sugarcane harvest time and

harvest mode respectively.
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Table 11: Statistics of NDWI and NDVI values for geen and burnt harvest fields, and p-value for
testing the difference between the two harvest mod€Bef = value before harvest; Aft = value after
harvest; Diff= value difference between before andfter harvest). Bold values indicate a significant
difference at 0.01%.

NDWI_Bef NDWI_Aft NDWI_Diff | NDVI_Bef NDVI_Aft NDVI_Diff
Mean
Green harvest 0.21 0.11 0.10 0.65 0.39 0.26
Std
Green harvest 0.07 0.08 0.06 0.06 0.07 0.08
Mean
Burnt harvest 0.26 -0.15 0.41 0.59 0.35 0.24
Std
Burnt harvest 0.09 0.07 0.12 0.06 0.05 0.07
P-values (difference 0.002 0.000 0.000 0.000 0.026 0.345
Green/Burnt harvest

Figure 27 illustrates the mean and standard dewiaif these results which show that at harvest

time, NDWI values between green and burnt harvessignificantly different.

® GREEN
HBURNT

NDWI_Bef NDWI_Diff NDVI_Bef NDVI_Aft NDVI_Diff
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0.20 -

0.00 -

-0.20 -

Vegetation Index Difference

-0.40 -

Figure 27: Mean and standard deviation (+/- 1 std)of NDVI and NDWI vegetation indices
differences (Bef = value before harvest; Aft = val@ after harvest; Diff= value difference between
before and after harvest), for two harvest modes (feen bars: green harvest — Red bars: burnt
harvest).
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Figure 28 shows the frequency in value occurrecalifferences in NDWI before and after
harvest (NDWI_Diff), for green and burnt. The NDWiff frequency of occurrence shows that
at harvest, over 90% of the green harvested fiedd® NDW!I_Diff below 0.27 while over 90%
of the burnt harvested fields have NDWI above OV®@.infer that NDWI_Diff value of 0.27 is

a threshold for separating the burnt and greendsailasses.
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Figure 28: The bars correspond to the frequency digbution of NDWI differences, for green and
burnt harvests. The lines correspond to Gauss-fittéfrequencies.

The significance in NDWI value differences at hatvieas facilitated the use of NDWI in field

by field classification of the harvest mode map.
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4.2.4 Sugarcane classification

The NDVI image was used in characterization oflé#mel cover map. Figure 29 illustrates these
results which show a classified NDVI image of Kibdavani into six classes. Five classes are

‘sugarcane’ that results from variation in sugaecage and one for ‘other’ class (Table 7).

34°51'0"E 34°54'0"E 34°57'0"E 35°0'0"E 35°3'0"E

0°2'0"g

0°4'0"g

0" Legend Sugarcane#5 .
eo's| N g B sugarcane#2 [ sug 0°6'0"
A Kibos limits Sugarcane#3 Other 0 o5 5 —
- Sugarcane#1 Sugarcane#4 Unclassified

34°51'0"E 34°54'0"E 34°57'0"E 35°0'0"E 35°3'0"E

Figure 29 The classified Landsat image of Kibos-Miwani shoimg six land cover classes: five
classes of ‘Sugarcane’ based on different stagestb& crop, and one class ofOther’.

A zoom on area “A” shows spatial heterogeneity imittand between sugarcane fields
(Figure 30). This zoom exposes heterogeneity inl#melscape resulting from the cropping
calendar and alternatives in the crop managemestersg in Kibos-Miwani. The spatial
heterogeneity between sugarcane fields in figurergdies that crop management such as weed
control, harvesting mode, fertilizer applicatiordasoil characteristics (Jamoza et al., 2013) are
the drivers of these local variations. This redaltsimilar to a study which showed that
sugarcane landscapes are spatially heterogeneeut diariable cropping practices (Mulianga

et al., 2012; Zarco-Tejada et al., 2005).
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Figure 30. A zoom on the classified Landsat image of Kibos-Mani sugar zone in area “A”.

Figure 31 shows the classified Landsat image ofo&ibliwani after post classification. The
figure illustrates two classes: Sugarcane and offtex figure shows over 85% of the landscape

Is under sugarcane and heterogeneity in the lamdrads driven by cropping activities that are

influenced by intensification in the heavily fragnted landscape (Mulianga et al., 2012).
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Figure 31: A classified Landsat image of Kibos-Miwani sugazone after re-coding of all sugarcane
and other pixels in two classes: sugarcane and otheover.
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Figure 32 presents the result of the crop type mapduced through a field by field

classification method.
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Figure 32: The sugarcane field map classificatiombtained using a majority filter applied on the
classified Landsat time series (Figure 31)

The sugarcane classification accuracy was basathtanthat were not used for classification.
Results derived from the confusion matrix (Tabl¢ gi¥e an overall classification accuracy of
83.8%. The class “sugarcane” has a user accura8$.8%6, while the class “other” has a user

accuracy of 83.1%.
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Table 12: Confusion matrix of the classified Landsat image dr Kibos-Miwani after post-
classification. The bold values are the pixels thatere classified correctly.

Classification
Sugarcan  Othel  Unclassifiec  Line Producel Omission
total Accuracy error
% Sugarcan 160 22 18 20C 80.00¥% 20%
= Othel 7 108 5 12C 90.00¥% 10%
£ |Rowtota 167 13¢ 23 32
o
O User Accurac 95.8% 83.1% 83.8%
Commissior 4.2% 16.9%
error
where;

User accuracy = Number of pixels of the groundsttagal pixel in classification class
Producer accuracy = Number of pixels of the classibn class/ total pixels in the ground class
Omission error = 1 - Producer's Accuracy

Commission error = 1- User's Accuracy

Results of this classification show that sugarcaless has 20% omission error and 4.2%
commission error, while; the ‘other’ class has 168tission error and 16.9% commission error.

Only 20 pixels (6% of the sugarcane data set), wetelassified.

4.2.5 Sugarcane harvest mode classification

The sugarcane harvest mode was classified using ND¥&rences. NDWI Differences > 0.27
were classified as burnt harvest, while NDWI Diffieces< 0.27 were classified as green
harvest. The classified harvest mode (green hamedtburnt harvest) map is displayed in

Figure 33. Our results have shown that changestin 8BWIR and NDWI are highest at harvest.
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We therefore accepted our hypothesis and also wded! that the highest NDWI difference
occurs at harvest. NDWI was used in this sectioa wuits ability to distinguish between the
two harvest modes. This map shows three classesndrarvest, burnt harvest and fields with

other cover.
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Figure 33 : Map of the sugarcane harvest mode andtwer cover in Kibos-Miwani.

Table 13 shows the fraction area covered by eadscArea under green harvest mode accounts
for 25% of the total area, while area under burmvest accounts for 75% of the total area.
These results confirm ground information, wherenbbarvest is a dominant practice in Kibos-

Miwani with 74.5% coverage compared to 25.5% faegrharvest mode.
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Table 13: The harvest mode and the percentage coege in Kibos

Harvest mod Total (ha % coverag

Greetr 2,284 25.t

Burnt 6,672 74.%
8,957 100

Results derived from the confusion matrix (Tabl¢ g&e an overall classification accuracy of
90%. The class “green harvest” has a user accuwa88%, while the class “burnt harvest” has

a user accuracy of 92%.

Table 14: Confusion matrix of Kibos-Miwani after post classification of sugarcane fields into burnt
and green harvest modes. The bold values are thexpis that were classified correctly.

Classification

- Green Burnt Line Producer Omission
5 Harvest Harvest total Accuracy error
~ | Green Harvest 90 8 98 0.92 0.08
B | Burnt Harvest 12 90 102 0.88 0.12
g Row total 102 98 200

User Accuracy 0.88 0.92 90%

Commission error 0.12 0.08

Results of this classification show that green &sarwlass has 8% omission error and 12%
commission error, while the burnt harvest class 8&% omission error and 12% commission
error. This result shows the effective use of NDWIdistinguishing harvest modes from a

satellite image.

102



4.3. Soil erosion risk at local scale

In this chapter, we present results on the impaarapping practices on soil erosion risk of

Kibos-Miwani landscape using FUDSEM model at Iq@ald) scale.

4.3.1 Erodibility factor

The erodibility index K for Kibos-Miwani ranges beten 0.26 in the lowlands (with silt clay
soil), and 0.38 in the uplands (with silt loam ¥ajiving a range of 0.20. These values
correspond to the particle size distribution ofteaoil type and 4% and 2% organic matter
respectively on a USDA Department of AgricultureS@FA) soil textural classification triangle
which has a range of 0.20 between the highlandslantinds of the sugarcane landscape
(Mitchell and Bubenzer, 1980). Figure 34 illustsatresults of the distribution of these
erodibility values and the patrticle distributionee for each soil in Kibos-Miwani. Further, this

range is within the standard range of 0.02 to d@&@umented by Mitchell and Bubenzer (1980).

This local variation in the erodibility index inigharea is due to variations in soil type with the
silt loam soil in the hilly areas resulting in higlrosity values (66%) in the silt loam soils of
the hilly areas that allows fast percolation of @vatompared to porosity of 44% in the silt clay

lowland soils that retain water.
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Soil 4
Silt loam
K=0.38

Soil 5
Silty clay
K=0.26

Soil 6
Silty clay loam
K=0.32
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Figure 34. Particle size distribution and erodibilty factor (K) for each of the eight soil types
observed in Kibos-Miwani. Where soil 1=Luvisols andCambisols; soil 2= Chromic Vertisols and
Eutrific Planosols; soil 3=Lithosols; soil 4=Gleysls; soil 5=Eutric Fluvisols; soil 6=Chromic
Vertisols; soil 7=vertic Fluvisols; soil 8=Solodi®lanosols (US classification).
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4.3.2 Potential Soil Erosion risk

i.) Temporal vegetative seasons and potential soil erosion risk
The functions and weights used in FUDSEM are theamne of generalized interpretation of
common knowledge of erosion processes. Unlike sirahdphysically-based models, the
weights are not intended to represent an accuratmtiative relationship between the
parameters, but to provide a general interpretatioime process, as envisaged by the modeller
(Baja et al. 2002; Robinson 2003). This is accdptatince the model predicts the potential of
the parameters, thus representing its relativeiagdpahd temporal distribution, rather than
providing a quantitative prediction of erosion dielnherently, FUDSEM produces potential,

qualitative erosion maps, and not quantitativeierogalues.

Resultant erosion risk values range from 0 to 8th w mosaic of low to high erosion risks in
both the cropped area and natural vegetation (€ig6). Globally at the portion of the selected
landscape, the mean value for erosion (1.71) clsatigeugh time between 2.04 February,
1.92 in May, 1.08n September and 1.8 November. Generally, September presents thesbwe
erosion risk and this is attributed to presencéighly vegetated sugarcane crop having been
planted in March or ratoon which has regeneratéer d&farvest, while February presents the
highest erosion risk value due to land preparadidivities that expose soils to rainfall (Amolo,

2009).

Marked areas in Figure 36 are distinguished baseds# criteria: always high through time

(area 1), low and intermediary (areas 2, 3, 4grmediary only in September otherwise high
(area 5). The spatial pattern realized by thisyamalis also linked to the slope, soil map and
crop type. Area 1 is within a slope of over 7% le tescarpment foot, covered by perennial

vegetation (woodlot) and food crops (other crops)sdt loamy soils. Areas 2, 3 and 4 are
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within a slope of over 3% with 80% sugarcane an&bo26f other crops (maize, natural
vegetation) growing on silt loamy soils. Area Fasnd within a plain with slope < 3% and on

silt clay loam soils, where 100% of other cropsfatend (natural vegetation).

Results show a consistent high risk pattern ofienos; area 1 throughout the four seasons

studied. Being an area under the escarpment fabto#émer crops (forest), we infer that the
erosion pattern is influenced by slope and the tfperop The consistent high erosion patches

shown in area 1 is likely to be presumptive spdtgudley erosion in the hilly terrain as also
found by Valentin et al. (2005) in areas of higskrof gulley formation. Further, Valentin et al.
(2005) recommended use of continuous vegetatioarcavnimum tillage and use of terraces as

conservation measures for sustainability.

Areas 2, 3 and 4 show a spatially variable inteiargcerosion pattern through the four seasons.
Being an area dominated with sugarcane crop, auneidf low, moderate and high erosion risk
is seen in February. This result is related tolémel preparation activities mostly conducted in
February-March (Amolo, 2009). In May, moderate @nosisk is seen and this can be attributed
to growth of young crop either planted at the omgetiins in March-April or regenerated after
harvest; and this has reduced the rate of trangapdcity. We infer that enhanced vegetation
during the main rain season (May) minimizes erogisk. Low erosion seen in area 3 is
attributed to the impact of pure sugarcane stanlilods (Milimani) nucleus which is able to
reduce run off and transport capacity except wharvdsted. We infer that sugarcane crop
protects the landscape from erosion risk. In Sepb&gnpotential erosion map exhibit a general
decrease in risk value, while in November, an isifead mixture of low and high erosion
pattern is seen in areas 2, 3 and 4. The lowenagrassk in September is attributed to the

combined effect of dry weather conditions at thd ehthe main rainy season, minimal land
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preparation activities, and the presence of veigetatover over the landscape. The exposed
soils in young cropped fields planted during thershainy season increases erosion risk in
November. We infer that this cropping practice hie driver of this erosion pattern. Area 5

exhibits a consistent high erosion risk in Februarg November, while in May and September
this erosion intensity has reduced to moderateisoidted high risk pixels in this area. Being an
area covered with other type of vegetation andnulthat has not been cultivated for over five
years (fallow land), we infer that vegetation coigesparse in February and November due to
open grazing activities exposing soils in area &utooff, and therefore crop type is the driver of
this erosion risk. This finding is similar to thaf Valentin et al. (2005) who found that

overgrazing was a driver of soil erosion due toasxpe of soils to run off and suggested soil

conservation measures to be put in place to miipaential erosion risk.

Further, our survey results show that crop residt@s green harvest are trash lined between
rows and this is assumed to protect soils from daimps, consequently reducing transport
capacity and erosion risk. On the contrary burmtést exposes soils to rainfall, consequently
increasing erosion risk. This presumption is simtitefindings of a study which found that green
harvesting increases the number of crop cyclesraptbves soil physical properties (Mendoza
et al., 2001), thereby improving sugarcane progiigtiThis result is verification that FUDSEM

model correctly represents the trends cited imdttee implying that burnt harvest destroys soil
nutrients and depletes soil moisture which is mtet® by crop residues on harvest thus
increasing soil erosion risk. In addition, becapesitive NDWI values have been observed on
green harvested fields, our results have showngdtesin harvesting method provides available
crop residues for soil conservation. Observed Hatpresented positive soil moisture after a

green harvest using the normalized difference wathex (NDWI). This implies that on green
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harvest, crop residues retain soil moisture thaipseus the next crop cycle. This result
corroborates findings of Mendoza et al. (2001pwalized that trash increases soil moisture
retention, improves soil nutrients and increasaeisresilience to erosion risk. Moreover, other
studies recommend green harvesting to provide uesiébr soil cover to reduce soil erosion risk
(Valentin et al., 2005). Besides crop residuesektiah et al. (2005) and Okoba et al. (2007)
recommend increase in vegetation cover; reducedudésn of soil structure through minimum

tillage of hilly areas; use of terraces to redueedlope e for soil conservation purposes.
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Feb | 2.04
May | 1.92
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Legend Dark green : risk index = 0 (low)
Light green : 0 <risk index < 3.6 (medium)
Orange : risk index 3.6 (high)

Figure 35: Potential soil erosion risk in Kibos-Miwani sugarcane zone, calculated using FUDSEM
for (a) February, (b) May, (c) September, and (d) Mvember.
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Relevance of FUDSEM simulated resultsin Kibos-Miwani

Potential soil erosion risk values calculated ustn®SEM (calculated by averaging all the four
vegetative seasons) were regressed against thesponding potential erosion values using
RUSLE (Renard et al.,, 1997), a model dedicatedatergial risk simulation that do not use
fuzzy based approach. Results are shown in Figiréd 3trong linear correlation is observed in
23 sampled fields with an’R 0.73; P=0.001. This result shows the advantafidguDSEM

that allows drawing maps of potential erosion bsksed on limited input data requirement.
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Figure 36: Preliminary validation of FUDSEM versusRUSLE (Renard et al., 1997).

Magnitude of erosion risksin Kibos-Miwani
Table 15a shows observed potential risk resultsibos-Miwani (KESREF, 2013) as measured
in sugarcane experimental plots and plots with rotheps. The observed erosion yield values

ranged from 1.4 to 3.4 kg fy . These values fall within the range of erosiork Nglues
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observed by Lufafa et al. (2003) as 0 - 9 (k§ i), for an agricultural landscape in western
Kenya, under environmental conditions similar tosth of Kibos-Miwani. These values were
compared with the simulated erosion risk valuessurgro-environmental conditions similar to

that of experimental plots (Table 15b).

Table 15: (a) Measured erosion yield (KESREF, 2013) and (lgimulated potential erosion risk, in
Kibos-Miwani.

(@)  Measured erosion yield (kg m~y™)

Station Erosion yield Crop
1 14 SCG
2 1.7 SCB
3 2 Other
4 2.1 SCG
5 2.5 Other
6 15 SCG
7 2.3 SCB
8 29 Other
9 3 Other
10 3.4 Other

(b) Potential erosion risk per year using FUDSEM

Station| X_Ordinate Y_Ordinate Crop Slope %  Erosiskvalue  Soil
1|34°49'32.93"E 0°1'57.964"S SCG 2.9 1.7 Silty
2 | 34°51'28.755"E 0°2'3.233"S SC B 2.6 2.9 loam
3| 34°51'51.912"E 0°2'3.986"S Other 2.7 2.4 clay
4 | 34°52'32.998"E 0°2'5.492"S SC G 2.5 2.1 soil
5|34°49'6.829"E  0°1'59.467"S  Other 2.9 2.7
6 | 34°52'D.587"E 0°2'7.747"S SCG 2.4 2.2
7 | 34°52'54.662"E 0°1'56.468"S  SC B 2.8 2.5
8 | 34°49'53.888"E 0°1'57.213"S  Other 2.7 3.3
9| 34°5023.02"E  0°1'58.718"S  Other 2.5 3.8
10| 34°50'49.165"E 0°1'55.711"S  Other 3 4.7

Where SC G = Sugarcane hasted by green mode; SC B = Sugarcane harvestbdroy mod
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On Figure 37, simulated potential erosion risk datae plotted with measured erosion yield
data. A significant linear relationship was founidhaR* = 0.86, P = 0.001 (Figure 37). Results
from KESREF (2013) have shown that higher riskaiff lIess occurred in fields with other crops
(1.5 - 3.4 kg rif y?) than fields with sugarcane crop (1.4 to 2.5 kg y). Owing the
significant linear relation obtained, FUUSEM reprds correctly the differences in erosion risk
due to cover characteristics and environmental itiong (slope, location in the landscape).
Simulations suggest that burnt harvest mode inegetige risk of erosion (2.9) vs. green harvest
mode (1.7). Under similar environmental conditiobgfafa et al. (2003) found higher erosion
yield out of covers with food seasonal crops thamsé with perennial cover. In this study,
sugarcane crop is a perennial crop but with a seagphase to erosion after harvest. Except on
burnt harvest fields with bare soil, sugarcaneec®goils over several years including mulching
on green harvest, minimizing soil erosion risk. Werefore infer that crop type and sugarcane

harvest modes are the main drivers of soil erosgkin a heterogeneous landscape.
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Figure 37: The correlation between measured erosioyield and simulated potential erosion risk
within Kibos-Miwani landscape.
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5. GENERAL DISCUSSION

5.1. Estimating regional sugarcane yield
with remote sensing data

This research has investigated the influence gbpirgy practices and environmental conditions
on sugarcane yield at regional scale through twwagzhes. Firstly, historical yield was related
to annual NDVI with the assumption that yearly segae yield is significantly correlated to
annual NDVI. This hypothesis was rejected sincedilgaificance of this correlation was only
achieved after adjusting the NDVI time integrattbnough the sugarcane growing period. The
strength of this relationship was then enhancednvthe data were aggregated over the whole
period (2002-2010) at the zone level. Secondlytohisal yield was related to rainfall and the
strength of this relationship was low, although tmerelation was of high significance. The
relationship was equally strengthened through apaggregation and through rain use
efficiency. The relation between yield and raing&dists owing to the fact that sugarcane yield is
significantly related to rainfall on removal of #mlag at zone scale since crops take a

considerable period to respond to rainfall.

This study has shown that remote sensing techndloggther with environmental information
has potential to be used to estimate crop yield ewauate the impact of environmental
conditions to crop production as opposed to physiedhods. In effect, it has been reported that
accuracy of physical methods such as visual phlysigproach (VPA) on yield estimation is
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minimized due to gross errors associated with di&jgvariability in assessment of natural
phenomena using the naked human eye, and lack r&idsration of diverse environmental
variables (such as rainfall) during the growth pérof the cane crop. The use of remote sensing
data can highlight variations in environmental &hleés within respective zones, and this is
uniquely evidenced by the separation of the twoo-agological zones through spatial
aggregation. Additionally, variations within and tween the zones are influenced by
environmental variables such as soil charactesisticd rainfall distribution over different years.
Our findings are in agreement with a study notimagf rainfall was not the single determinant of
crop yield in different environments, but rathethey factors such as soil characteristics, and

other agricultural land use need to be includedd@d ejada et al., 2005).

In summary, our results are in agreement with noddhe previous studies on this subject.
Through this study, we have contributed knowledgerémote sensing fraternity (1) by

developing an original method for NDVI time integjoa that takes into account the local
cropping practices (length of the growing seasangl (2) by analyzing the spatial and temporal
dimensions of the yield-NDVI relationship and resge of its slope to rainfall. Sugarcane yield
forecasting has been exemplified through spatiaresgpation of weighted NDVI. The

information presented in this study is useful fospger, foresighted and informed planning in the
Kenya’s Sugar Industry at the zone management.sthig is because the information explains
the influence of environmental conditions on sugaecproduction, thus providing knowledge

for monitoring sugarcane productivity at the zooale.
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5.2. Mapping crop management
practices using remote sensing

This research has investigated the spatial anddeahmformation contained in the satellite
images through three approaches.

Firstly, we investigated the temporal variabilitiy spectral response from the effect of rainfall
pattern, the effect of the land cover type andetfiect of the cropping calendar of sugarcane. To
realize this, we compared the time series profdésNDVI with rainfall (2000-2012) to
understand crop conditions in the year, with theuagption that rainfall is the main driver of
seasonal variations in vegetation. This hypothesis accepted when four vegetative seasons
(minimum seasons in February and September andnmaxiseasons in May and November)
were identified from this relationship, corresporglito the interaction between sugar-cane
physiology and the bimodal rainfall with a one nforiime lag. Our finding is similar to
Shisanya et al. (2011) who realized a bimodal &lirfattern in Kenya and argued that its
pattern influenced vegetation growth. In effectarping activities in Kenya are scheduled in
accordance with climatic conditions (Amolo et 2009) and this has been realized by the four
vegetative seasons which correspond to the cropgalemdar. This study has shown that remote
sensing data together with rainfall data can beduge exemplify the effect of agro-

environmental variations on physiological condisaf the crop.

Secondly, we undertook crop mapping at field sdalainderstand the spatial and spectral
variability of the land cover types using two apgrbes: (i) identify the best index to undertake
crop mapping, detect a harvest date, and charaetbarvest mode; and (ii) undertake crop

mapping and harvest mode characterization usingekeindex. In (i) we assumed that changes
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in NDVI, NDWI and SWIR (April 2013 - March 2014) dtarvest time were significantly
different. We investigated this significance byretating value differences in NDVI, NDWI
and SWIR at harvest. Results have shown that NB\A good descriptor of land cover having
shown significance in value before harvest. We efwge conducted mapping of crop types
using time series NDVI. Through a supervised cfecsgion our results provided an overall
accuracy of 83.3%. This result is similar to a gtwdhich used NDVI to separate green
vegetation from other surfaces (Sader et al., 2@0®) recommended accuracies over 80%
(Wardlow and Egbert, 2008) as acceptable. We &edepur hypothesis that NDVI is a good

descriptor of land cover type.

Our results have also shown that SWIR is a usedstiiptor of sugarcane harvest time. Our
finding is similar to a different study that alssuhd SWIR a good descriptor of a harvest time
because it presents an immediate increase in \&tae a harvest (Lebourgeois et al., 2010).
Moreover, our results are similar to Daughtry ef{2004) who realized high reflectance for dry
residues and low reflectance for wet residuesenSWIR band due to its ability to separate crop
residues from other crop status, presenting highegafor harvested fields and low values for

vegetated fields.

The harvest mode map was obtained through chaiaatien of NDWI whose results presented
significant values for both green and burnt harvesides. In this classification, NDWI
differences > 0.27 were characterized as burntdsarwhile those< 0.27 were classified as
green harvest, yielding an overall accuracy of 90Phis accuracy is higher than the
recommended acceptable accuracies of over 59% (€bdl, 1980; Longley et al., 2005) and
over 80% (Wardlow and Egbert, 2008), implying th&W!I is an effective descriptor of the

harvest mode. Moreover, NDWI results have showratieg values on burnt harvest opposed to
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positive values on green harvest. These resultsianiéar to recent studies that used NDWI to
monitor spatial variations in moisture conditions vegetation over large areas and found
negative NDWI values on burnt harvest (Gao, 199@) @n vegetation stress (Sader et al., 2003;
Gu et al., 2008; Chen et al., 2005). We infer that burnt harvest, moisture in the soil
evaporates and this is compared to drought st@gsef al., 2008) in crops. NDWI has been
proposed and evaluated for extraction of surfacemf@atures and change detection Rokni et

al. (2014) and for vegetation drought monitor(@y et al., 2008). Findings of this study

associate harvest with crop stress due to drotgihtdrains water from vegetation. Detection of
harvest mode using NDWI is a new idea which thiglgthas developed using an original

method through a t-test.

5.3. Impact of sugarcane cultivation on
soil erosion at landscape scale

This study has used the fuzzy based dynamic smsi@n model (FUDSEM) model to investigate
the influence of sugarcane cropping practices dresasion risk in Kibos-Miwani zone at local
scale through three approaches: (i) Run off paér(ii) Transport capacity and (iii) Erodibility
factor. Input variables in the FUDSEM model inclddiéne slope, soil physical properties,
rainfall, aspect and vegetation. NDVI was usedgarésent vegetation because this study has
found NDVI value before and after harvest signffiita linked to both crop type (sugarcane and
other crops) and harvest mode. NDVI was therefeeduo represent the spatial and spectral
responses to the effect of environmental varialflegnfall and soil characteristics). We
hypothesised that cropping practices are the mauwerd of soil erosion risk. This hypothesis
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was accepted because results suggest that bothtygwepand harvest mode impact on soil
erosion risk. Our results give us confidence in osEUDSEM model with potential simulated
risks highly correlated to measured data such asddoy Cohen et al. (2008). Based on
observations, erosion risks out of sugar cane +anp&l crop- and food crops are consistent
with erosion yield found by Lufafa et al. (2003)den similar environmental conditions in

Western Kenya.

Moreover, our findings on harvest mode are sintbathose of Lovett et al. (2005) who found
that post fire erosion on loose soils is usualghhiwWe infer that in Kibos-Miwani where 75% is
burnt harvest, post fire erosion in harvested $eldfluences the spatial and temporal
susceptibility of the landscape to erosion riskeffect, the multiple planting and continuous
harvesting together with the crop type (naturaletatjon) in areas marked 1 and 5 contribute to
the erosion risk pattern which varies from one picethe other due to the spatio-temporal
heterogeneity exemplified between the sugarcardsfim the area (Mulianga et al., 2012).
These results show that cultivation of sugarcare aminimizes erosion intensity of the

landscape on which it is grown, due to its physiaal characteristics.

In his study, we found that minimum erosion riskcweed in September. High risk of erosion
occurred in May and November, respectively corradptg to mid long and short rainy seasons.
Surprisingly, high risk of erosion also appearedr@bruary (2.04) at the beginning of the long
rainy season, similar to that in May (1.92) wheimfid! is at its first peak. This study attributes
the increase in erosion in February to the effétarnd preparation activities that expose soils to
rainfall in readiness for planting in March (Amola009; Jamoza et al., 2013). On harvest,
management of crop residues, land grading, leeHind terracing among other factors follow,

to enhance growth of the ratoon crop and this erfaes the rate of surface run off (FAO, 2012)
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depending on the harvest method. In Kibos-Miwanereh75% of sugarcane residues are burnt
before harvest, increase in erosion risk is unadal This result shows that cropping practices
(crop type and harvest method) and rainfall are rtfan drivers of erosion risk in the four

seasons. This result is similar to a study whichalestrated that soil loss varied according to

crop type (Kirkby, 1980).

Transport capacity increases in November (secoinfafiapeak / short rainy season) rather than
May (first rainfall peak / long rainy season) igriduted to influence of cropping practices such
as land preparation, harvest mode and crop typer&3ults are similar to those of Cohen et al.
(2008) who concluded that continuous vegetatiorecavluences rain drop intensity and rate of
infiltration at different levels depending on typevegetation. Cultivation of sugarcane alongside
other crops increases erosion risk on localizedss{snch as area 3 in Figure AA) over different
vegetative seasons. This is because the pereroodhg system in sugarcane favors quick
regrowth which provides quick cover for the soiltis finding is similar to different studies

which realized that root network of perennial crgpstects landscapes from soil erosion risk
(Wood, 1991, Gravois et al., 2011). This result lieg that appropriate management of the
landscape such as planting of perennial cropsadieig and trash lining of crop residues may

reduce the overall risk at the local scale foraustble crop production.

The K values computed in this study are similathtwse of the USDA values for different types
of soil (Mitchell and Bubenzer, 1980). Spatio-temgdvariability has been shown within fields
during classification of land cover and throughseeel variations of erosion risk. We infer that
erodibility index is a driver of these spatial \ions in erosion. Our findings are similar to a
different study which showed that different typdssoil influence heterogeneity in landscape

vulnerability to erosion risk (Reich et al., 200Tis result is similar to a different study which
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noted that the impact of heterogeneous landscapesgulatory ecological processes such as
soil transport from the sloppy terrain into valleysd carbon sequestration using water as a facet
for matter cycling in sugarcane fields is importait a different study, Martinez and
Mollicone (2012) also found that this matter cyglimfluences crop production and ecosystem
functioning for improved crop management and regutaof environmental services in space

and time.

Moreover, our findings are similar to a study thedlized sugarcane trash facilitates a reduction
in soil loss from sloppy areas and that changegegetation conditions such as introduction of
trash on harvesting and development of root netwonk crop maturity introduces other
environmental factors such as organic matter windluence erosion amounts in space and
pattern of a given landscape (Wood, 1991). Furtrod (1991) complements our findings by
asserting that sugarcane crop offers almost pembanglch to the landscape in which it is grow.
Other studies also found that during vegetatives@es, there is almost no tillage on the gentle
sugarcane slopes and this is simultaneous withraimy season (April to June and October to
December) (Shisanya et al., 2011). Our results Ishesvn a higher erosion risk in fields with
burnt harvest than those with green harvest. Th& hf residues for mulching the sloppy
landscape if harvested during the rainy seasdmeidikely reason for the higher erosion risk. The
mulch provided by green harvested sugarcane in SMisvani thus lessens occurrences of
erosion even when heavy rains (April-June) areivede Additionally, this mulch has effects on
soil physical properties (FC and BD) because of aganic matter content and soil cover after

green harvest (Wood, 1991; Mendoza, et al., 2001).

This study attributes the effect of crop type topés root network and harvest modes as

documented by Wood (1991). This result implies tpatential erosion is consistent with
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transport capacity. This is because burnt harvgsbses bare soils to erosion by rainfall while
green harvest provides trash that prevents sosi@mo The study has shown that cropping
practices (crop type and harvest mode) are the drarers of local variations in erosion risk in
Kibos-Miwani. A comparison of FUDSEM with RUSLE n®ld has been undertaken in this
study. Validation of this model with in situ datashbeen conducted and significant correlations
realized. Implementation of this model for similagro-environmental conditions requires

validation of this model with data from varied sgpof the sugarcane landscape.

5.4. A synthesis on landscape: the
Intermediate object between remote
sensing and environmental services

This study has shown that remote sensing is aigéscof spatial and temporal environmental
conditions that result from environmental servio#ered by the main land uses of a given
landscape. In this study, spectral indices fromatensensing have been used to (i) develop
yield estimation models, (ii) describe croppinggbi@es and (iii) simulate erosion risk. This is
because signatures drawn from spectral indiceassaciated with a particular vegetation cover
type in response to agro environmental conditi®&esults of this study have shown that spectral
signature variations of respective land cover ibdstMiwani are complementary to variations
in climatic (rainfall) seasons of western Kenya.danally, the study has shown that remote
sensing offers opportunities for data that reprissende spatial extents with detailed feature

characterization that is collected across spatales
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Firstly, this study has developed sugarcane yieddets at regional scale using remote sensing
indicators. Our results have shown that remoteisgns complementary to crop models
because it takes into account the impact of the@-agvironmental conditions on the crop
development while a crop model is limited by thaikbility of the spatial input data that is
costly and time consuming to collect. Our resuls similar to a different study which used
climate variables to study the effects of climatearmge on sugarcane yield through a crop
model. In this study, vegetation indices have besed because they are indicators of rainfall
and soil characteristics of a given space, whil¢heir study, Wuld et al. (2004) realized that
sugarcane productivity was positively related totamperature and rainfall. The response to
temperature and rainfall is reflected in the vetpeandex through NDVI and rainfall as used in
this study. Further, these models may also be asedput data in crop models and production

estimations at the zonal level.

Secondly, this study has described cropping pregticsing remote sensing at landscape scale.
The landscape scale has exemplified heterogeneityap type and harvesting modes. NDVI
has been used to characterize the crop type, eKgmgldifferent ages in sugarcane and other
crops. The normalized difference water index (NDWA} been used to describe harvest modes
because at harvest time NDWI difference betweerrgi@nd burnt methods is significantly
different. Further, NDWI presents negative valuedarnt harvest and positive values on green
harvest. NDWI is therefore an environmental indicatf stress conditions in soils and dry crops
(Gao, 1996). These varied cropping practices inicedocal variations in the landscape that has

diversified soil types and characteristics whiclpaot on crop productivity.

In this study, remote sensing has exemplified theaict of rainfall on vegetation conditions of

the landscape. Through time series NDVI, a bimodadetative season comprising two
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maximum vegetative seasons (May and November) amd rhinimum vegetative seasons
(February and September) has been exemplifiedseTlseasons are similar to the bimodal
rainfall pattern of western Kenya. This resultiisque because rather than no vegetation during
dry seasons in the area, the bimodal seasons fedlw presence of vegetation through the year
with maximum and minimum variations being respaasagro environmental conditions. These
changes impact environmental services such aspmaguctivity and soil protection that have
been examined in this study. These results asralted by a different study facilitate policy
applications that are focused on understanding rible of the agricultural sector on

environmental changes (Wardlow and Egbert, 2008).

Thirdly, FUDSEM model was used to model soil ernsiisk using remote sensing and
landscape data over four vegetative seasons. Tudy $ound that the amount of rainfall
influences the rate of run off, while based on s|gbe crop type and harvest mode influences
transport capacity of sediments. Globally, the iemsisk ranged between low to medium in
sugarcane cultivated areas and low to high erasi@neas with natural vegetation, presenting a
variable pattern between 30 m pixels in the langsc&hese results have shown that crop
management activities such as land preparatiop, tyyze (sugarcane or other crops) and harvest
mode are the main driver of erosion risk and patt&his is because based on crop type the
intensity of raindrops determines the amount ofirsedts that are transported by rainfall in
Kibos-Miwani. Moreover, results of this study haskown that variations in environmental
variables through time are studied through tempaiote sensing data to reveal changes in

environmental services such as production andosoiéction services.
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5.5. Impact of the results for the
Kenyan sugarcane industry

This chapter presents four main results obtaindthigistudy and the expected impact of these

results for the Kenyan sugar industry:

Firstly, significant statistical sugarcane yielddets have been obtained in this study at P>0.00.
These statistical models will be improved each ymathe introduction of a year and fraction
area under sugarcane in the linear model. Theselsadll address sugar Industry census needs
such as: (i) Increased accuracy using real timeotensensing data. (i) Reduced time in
conducting sugarcane census by 50%. (iii) Reducqukrediture on sugarcane census by
1.5 million Kenya shillings which if relieved frorfarmers’ levy, will improve their lives
through subsidized farm inputs and consequentlgr®age productivity. This is a paradox shift
from the previous method which estimated yield gsmanual methods whose results were
prejudiced with errors. Information from sugarcaemsus is useful for effective planning of
sugar industry operations. Production being a prbdf surface area and sugarcane yied, the

sugarcane map is key in realizing effective plagnin

The sugarcane map was obtained using NDVI at theracy of 83%. Results have proved that
time series of NDVI as measured by Landsat (dea@&neesolution) is important in
classification of land cover in Western Kenya. Byng NDVI, the Kenyan sugar industry will
address their need for a sugarcane crop map aagcsung production estimates. This is because
NDVI is able to visualize locations of sugarcaredds for increased accuracy compared to the

conventional methods currently being used. Thispmagpapproach minimizes errors accrued
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during physical methods of survey to increase aawurs estimating sugarcane production. The
sugarcane map, coupled with NDVI is also a decisigoport tool. This is because by knowing
sugarcane fields, managers will use NDVI, for mamiitg crop conditions by identifying critical
stages of crop development that need the atterdfoexperts for improved productivity.
Cropping practices such as harvesting modes impactoil fertility and hence productivity,

necessitating the need for a harvest mode map.

The sugarcane harvest mode map was produced usiegseries NDWI differences at an

accuracy of 90%. NDWI was used because valuesrmngand burnt harvest are significantly
different. The sugar Industry needs this map toluata the impact of harvest modes on
sugarcane productivity through time and develogasnable measures for improved sugarcane
productivity. The Kenya sugar industry may use ¢h@sdices to characterize sugarcane
landscapes, identify harvested fields, and deterrhiawrvest modes for effective planning and

management of operations such as transportatiofeatiiczcer supply at the zonal level.

Seasonality of vegetation in the landscape is digrgon cropping practices and rainfall. This
study has evaluated soil erosion risk using seas&@VI in FUDSEM model to evaluate

erosion sensitivity during different vegetative s@as. This information could contribute to the
limited documentation on vegetative seasons andithplication on environmental services. A

comparison of this model with RUSLE model has shalat that FUDSEM could be used to
produce potential erosion risk maps with lower ¢@sts on data input thanks to fuzzy
approach. Moreover, our results are consistent thitse of Valentin et al. (2005) who also
found crop type a driver of soil erosion. Greenvkat method investigated in this study avails

vegetation cover on the landscape tremendouslycieglierosion risk. Other studies have also
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recommended methods such as use of perennial @emstillage and terracing for sustainable
management (Valentin et al., 2005; Okoba et aD720

The Kenya sugar Industry may use the harvest mode amd erosion risk information to
develop tools dedicated to sustainable managememitégrating data at the field, water shed,
and mill management scales for enhanced produgtitofitability, and environmental
considerations. If validated, FUDSEM model couldused by the industry to recommend soll
conservation measures for sugarcane landscapesnyakbased on severity of soil erosion risk

in specific areas.
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6. CONCLUSION AND
PERSPECTIVES

6.1 Main research results

The overall objective of this study was to examtihe relationship between environmental
services and the sugarcane landscapes in WestagaKising remote sensing and a soil erosion
model. The study investigated this objective thtoegtablishing (i) the relationship between
remote sensing data and sugarcane yield at a mdgoale, (ii) the role of remote sensing data
in mapping crop management practices at landsclygal) scale; and (iii) the impact of
sugarcane cultivation on soil erosion at lands¢lymal) scale. The relationship between remote
sensing data and sugarcane yield at a regiona beal been achieved by using MODIS data to
(1) develop an original method for normalized d#fece vegetation index (NDVI) time
integration that takes into account the local crogpractices (length of the growing season);
and (2) by analyzing the spatial and temporal dsrers of the yield-NDVI relationship and
response of its slope to rainfall and sugarcanetifna. Sugarcane vyield forecasting has been
exemplified through spatial aggregation of weighhdVI at eleven months, considering the
unique agro-environmental conditions in each suganagement zone. The discrimination of
the main agro-ecological zones (humid and sub huthicbugh spatial aggregation of yearly
information has proved the potential of MODIS NDW exonerating the impact of

environmental conditions on sugarcane productioregibnal scale. Additionally, the positive
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slope exemplified through precipitation marginakpense (PMR) is an indicator of crop
response to environmental variable, rainfall, ahdstan implication for production as an
environmental service to Kibos ecosystem. The megalope presented on yield-NDVI slope
with sugarcane fraction is an indicator of intereleglence of available biomass and cropping
practices (area under crop). Remote sensing datdbden used to study these environmental
effects on sugarcane production and also develepyigtld estimation model at the regional

scale.

The role of remote sensing data in mapping cropagament practices at landscape scale was
achieved by using (i) MODIS and rainfall data tesc#e vegetative seasons and (ii) Landsat
data to describe crop type and harvesting mode. NM¥Odfata has exemplified a bimodal
minimum and maximum vegetative seasons complengerthe bimodal rainfall pattern in
western Kenya with a one month time lag, an indicaf a multiple cropping system that is
driven by rainfall in the area. This result is imamt in characterization of land cover and also
in choice of images for simulating soil erosiorkrisandsat NDVI has shown great potential for
detecting crop type, crop conditions (harvestedyrmwing) and mapping sugarcane cropped
areas for medium sized farms over 1 ha in Kibos-diiv Farms that are less than 1 ha are
however difficult to map at this image scale (15 8 m). Landsat normalized difference water
index (NDWI) has been used to develop an originathod to characterize sugarcane harvest
modes because its values for green and burnt hamees significantly different. The sugarcane
map prepared in this study will be used to proypdecise acreages for increased accuracy in

yield forecasting, while NDWI will be used in mappgisugarcane harvest modes.

The impact of sugarcane cultivation on soil erodias been investigated at local scale using
fuzzy based dynamic soil erosion model (FUDSEM)rohgmic variables; crop type, rainfall,
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slope and soil characteristics were input varialiksderate slope sensitivity to erosion risk has
been realized through the four vegetative seasBesults have shown that sugarcane crop
minimizes erosion risk during rainfall peaks andittithe erosion pattern shown between
neighboring pixels is due to management practiced fs crop type (age, cycle) and harvest
mode. This study attributes low erosion potentralKibos-Miwani to continuous sugarcane

cover in the landscape throughout the year. Thidystecommends validation of these results
using insitu measurements. Satellite imagery ham ksble to characterize the spatial and
temporal dynamics of Kibos-Miwani landscape by tifging relevant images to feed in the

erosion model.

6.2. Research perspectives

The use of MODIS 250 m NDVI in the medium to snsalhle farms of Kenya has been limited
at the zonal scale. There is need for consideratfcavailable data to increase remote sensing
strength in monitoring sugarcane crop. Furtheraeteis recommended by this study, to refine
the zone scale to farm level. The issue of scakiggested to minimize the influence of other
crops and natural vegetation on NDVI extracted fsargarcane fields; and also to address site
specific effects of varied crop management prasticethe sugarcane landscape of western
Kenya. Future Earth Observing satellite systemsh sas Sentinel-2 (ESA), with decametric
spatial resolution, and a high visiting frequent§ ¢(lays in 2015, and 5 days in 2016), will give
access to farm level information. This satellitession will also benefit for sugarcane mapping
that is presently done using Landsat time seria) @ resolution that is able to capture

boundaries of nucleus fields, but not for smallvgecs.

131



Additionally, the effect of crop residues on saiganic matter has been implied in this study.
This study recommends experimental research tosagbe effect of harvest mode on soll
organic matter in Kibos-Miwani landscape to asgerits environmental impact on spatially
heterogeneous landscapes. The soil erosion sétysitigdel in this study is a desk top solution.
The study proposes a further study to validate thiedel for improved soil conservation
measures that will improve soil quality and enhaswgarcane productivity. Moreover, a study
to validate the presumed galleys in the simulatesults will be important to recommend site
specific conservation measures for that portiorthef landscape. The effect of sugarcane root
network on soil erosion risk has also been impiiedhis study. This study recommends
research to assess the effect of sugarcane roetomet tilage methods, terraces and
agroforestry on soil erosion risk in the sugarcgreving landscape of Kenya for sustainable

management.

6.3. Operational perspectives (other
environmental services)

This research documents the use of remote sensthdymamic soil erosion model to exemplify
environmental services provided by sugarcane cngppiactices in Western Kenya. The Kenya
Sugar Research Foundation (KESREF) will implemesults of this study in assessment of
forecasting of crop yield, harvest modes and erosgk at the field level in her hilly environs.

Similarly, the sugar Industry will implement findjs of this study for industrial and sustainable
purposes. This is because the use of climatic mmétion to predict sugarcane yield facilitates

information on the influence of climatic conditioms crop production. Influence of rainfall
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amounts on crop production is important in evah@tsoil water balance that would inform
irrigation rate in stressed crops. Additionallyyeéstigation of soil organic matter in fields that
are harvested by burnt and green harvest is impartarder to find out its impact on sugarcane
production and soil protection.

Additionally, this study found that the multipleogr variety, planting and harvesting practice is
the reason for a heterogeneous landscape thas @ffi@ost permanent mulch to the landscape.
Sugarcane being a conservative crop in the wortth widense crop cover and root network
offers a soil protection environmental serviceha hilly sugarcane landscape of western Kenya.
In the future, other environmental services offebgdsugarcane such as: climate regulation,

carbon sequestration and emission, clean air adivarsity should also be studied.
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Abstract: This study explored the suitability of the NormalizDifference Vegetation Index
(NDVI) from the Moderate Resolution Imaging Speoteger (MODIS) obtained for six
sugar management zones, over nine years (2002-2@1f)recast sugarcane yield on an
annual and zonal base. To take into account theactsaistics of the sugarcane crop
management (15-month cycle for a ratoon, accomgamith continuous harvest in Western
Kenya), the temporal series of NDVI was normalig@mugh an original weighting method
that considered the growth period of the sugar@aop (WNDVI), and correlated it with
historical yield datasets. Results when using wNDre consistent with historical yield
and significant at P-value = 0.001, while resultsew using traditional annual NDVI
integrated over the calendar year were not sigmficThis correlation between yield and
wNDVI is mainly drawn by the spatial dimension betdata set (R= 0.53, when all years
are aggregated together), rather than by the texhgimension of the data set’(R0.1,
when all zones are aggregated). A test on 2012 gslimation with this model realized a
RMSE less than 5 t-Fra Despite progress in the methodology through teighted NDVI,
and an extensive spatio-temporal analysis, thiempapows the difficulty in forecasting
sugarcane yield on an annual base using currestlitgatiow-resolution data. This is
particularly true in the context of small scalenfi@rs with fields measuring less than the size
of MODIS 250 m pixel, and in the context of a 15atio crop cycle with no seasonal
cropping calendar. Future satellite missions sh@ddnit monitoring of sugarcane yields
using image resolutions that facilitate extractioh crop phenology from a group of

individual plots

Keywords: MODIS; NDVI; Environment; Sugarcane; Yield foredagt
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1. Introduction

Sugarcane SaccharumSpp. Hybrid¥ is a graminae of the tribe of Andropogonae and
Poaceae family. It is defined as a tropical semeipeial crop which is harvested through the
manual system in Kenya at variable periods depgndim the date of planting, variety, tiny
climatic variations along the year and mill prephkress. Consequently, re-growth of sugarcane,
known as ratooning, matures at different periodspducing spatio-temporal variability in the
sugarcane landscape. In Kenya where sugarcana ifedq this variability is exacerbated with
an unspecified cropping calendar and diversificatid the cropping system both at spatial
(sugar management zone) and temporal (inter-andesbls, presenting a heterogeneous
sugarcane landscape. Sugarcane being the secaadtlaontributor to Kenya’s agricultural
growth saves the country in excess of USD 229,8854nnually in foreign exchange, while
contributing to poverty reduction and national depenent [1]. Knowledge of crop productivity
is therefore necessary for proper, foresightediaftdmed planning for competitiveness in the
sugar industry [2] and national development.

In Kenya, sugarcane yield is estimated usingzentional approaches through biennial field
surveys by millers and the Sugar Board, basing thethodology on visual physical assessment
(VPA) [3]. In VPA, a stratified random sampling appch is used, considering 15% field
coverage in each administrative sector of the zoAeshonthly productivity index ranging
between 0 and 5 is then applied to sample cane ttop the age of one month, while
considering the parameters: (i) crop vigour, (ipE colour, (iii) crop density, (iv) weed status,
pests and diseases at the time of yield assesshenaverage scores are then computed against

preset reference yields for each crop cycle withabsumption that the crop has been managed
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under recommended standard guidelines [1]. Thenattd yield is used by the Sugar Industry
to project sugarcane production for the current sutosequent year. Although this method has
been used since sugarcane was first grown in Kesyeyracy of manual methods has been
proven to introduce gross errors in the results wuvariability in time scale and fatigue [4].
This manual method assumes that the crop propemiesin constant at the age of yield
estimation till crop maturity at 14 to 16 months fatoons, and 18 to 20 months for plant crop,
respectively. Further, it is assumed that 15% & dample is sufficient to represent crop
conditions in the entire mill zone. This could obly true if the crop calendar is defined and not
in a spatially heterogeneous landscape such dseixdse in Kenya. Similarly, the method
assumes that environmental variables such as Haiig&ibution and amount will not change in
the subsequent year. More so, the human eye igetinm its ability to discriminate colors of an
object quantitatively, compared to multispectradteyns [5]. Additionally, physical ground data
collection has been proven to be time consuminguaméliable in its temporal scale [6, 7]. It is
the subjectivity of the current traditional methém monitoring sugarcane production that
creates most of the gap for a near real time methatdwill integrate timely environmental
variables in estimating sugarcane yield througbnaate sensing approach [4].

Remote sensing is the near real time method. Thendage of remote sensing over ground
systems, such as that used by the millers, isttiegt cover wide areas explicitly, providing
timely spatial and temporal data. Such temporaa dets been commended for monitoring
vegetation development in response to changeseireivironment and in response to human
management practices [7, 8, 9, 10]. These conditiery over large areas due to diverse
topography, soil type, rainfall distribution and magement practices, to which sugarcane

phenology and productivity is dependent [11]. Mesgetation indices have proven successful

150



in estimating crop yield and biomass [4]. The Ndireal Difference Vegetation Index (NDVI)
from remote sensing imagery for example, has beguarsively used to determine crop
phenology, biomass and productivity in spatial rdisition [12, 13]. The quality of methods
developed depends on the scale of study and oerdpemanagement practices, which influence
the temporal and spatial resolutions of the reledata. The cost of satellite imagery, however, is
high when fine resolution is required. Crop moritgrstudies have therefore resolved this impasse
by successfully using free low resolution imagesmfrthe Moderate Resolution Imaging
Spectroradiometer (MODIS), SPOT-VEGETATION, or NOAWHRR sensor data for crop
studies [14].

Recent studies have used low resolution imagemstionate sugarcane yield production in
different countries. In Brazil for example [15]kfn SPOT-VEGETATION data was used,
taking advantage of its daily temporal resolutiomd @oupling it with meteorological data to
monitor sugarcane development. Cropping seasore suecessfully identified using the NDVI
data and further facilitated classification of ttlata for analysis. In the three yield classes
assessed (24-73 t-ha42-110 t-hd, and 74-85 t-hd), the yield predicted was consistent with
the historical yield with accuracies of 8.3%, 66.@%d 86.5%, respectively. The low accuracy
of the first class would be attributed to coarsenasthe 1 km image that limits discrimination
of individual phenology for plots that are smallean the pixel size, a case similar to the small
scale sugarcane farming community of Kenya. Acaasafor the second and third class were in
the municipality areas, characterized with largengsuch as the nucleus fields of Kenyan sugar
mills that are under pure sugarcane stand. A ginstady, [11] noted that neither average
rainfall nor average MODIS NDVI was related to #nerage sugarcane yield of the farmers’

fields situated within the 5 km radius of the nimeather stations. On a larger scale, MODIS
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NDVI had a positive correlation (R =0.57) with ewhen averaged across all nine
management zones, but only for the rainy-seasomtipta In a different study [16], NOAA-
AVHRR data was utilized to develop and validateadsi for forecasting crop yield in Pakistan.
District data was then used to validate the moddulting in a root mean square error of
13.5 t-ha’ for sugarcane vyield. In their recommendationspaictaily sunshine hours, air
temperature, and a crop map were argued to bepenkgable for refinement of the model.

A recent study on forecasting sugarcane crop seasdrazil using simple correlations
between time series NDVI from AVHRR and an agroaeliic index on sugarcane Yyield,
realized significant correlations (R = 0.69 to (.@&er applying a cross correlation method on
the datasets used [17]. In a different study oreedil8] MODIS NDVI was used in Zimbabwe
to realize strong relationships with the nationalize production estimates after the data was
adjusted to match onset of the rainy season. Treagth of correlations in these two studies is
attributed to normalization of the time lag in ttlenate and NDVI data through the methods
used. It is inferred that normalization of satellitata through an appropriate method improves
the strength of correlations and is appropriatiifare studies. It is also important to note that a
combination of satellite and climatic datasets saghhose used in these studies utilizes newer
methods in forecasting sugarcane productivity [B/kimilar study in Louisiana used thermal
variables (Growing Degree Days accumulated fromtpig to sensing) to adjust in-field NDVI
measurements, and to develop a sugarcane yieldakineg method [4]. They obtained a
positive exponential correlation, wittf Rnproving from 0.20, when using unadjusted ND, t
R?=0.46, when using adjusted NDVI. These authomued that a weak correlation from
application of the model was attributed to the isppatariability of sugarcane fields due to

different crop ages and diverse environmental dond in different locations.
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In the agricultural landscape of Kenya, sugarcamg @xhibits extreme age differences
alongside diversified subsistence cropping in d#fé environmental conditions and is thus
highly heterogeneous [19]. MODIS 250 m data hasnbased successfully to determine
temporal dynamics of crops at local scales du¢stgood geometric and radiometric properties
that make the data interoperable with other GlSagks [20]. However, at MODIS 250 m
resolution and in a small agriculture region sushira Kenya, the measured radiation is a
mixture of different crops and natural vegetatid8][ It is therefore important to apply a
method that will normalize data by removing timg Ilsince this will decrease the effect of
mixed crop-natural vegetation pixels in the sateliiata used for yield forecasting. The effect of
mixed pixels while developing a maize yield modsing the land cover weighted NDVI rather
than the traditional NDVI reduced the unknown vacia by 26% [21]. It was argued that yield
estimation using NDVI may vary during respectiventts of the crop growth because NDVI is
reduced at the end of the rainy season, emphagistngeed for careful consideration on time
integration [11].

The objective of this study was to test how timtegnated Normalized Difference Vegetation
Index data from MODIS 250 m imagery can be usedaforual sugarcane yield assessment at
the sugarcane mill management scales (zones) ineWielsenya. This objective is challenging,
since sugarcane in this region is grown in fragmenfields scattered in highly variable
environments with various land uses and land cosai types, and altitudes. For crop yield
forecasting, the ideal approach would be to usep-specific masks. However, with
medium/coarse resolution (about 5-100 ha per pir&pery, identifying mono-cropped pixels
is not always feasible. This is particularly truelow-producing regions and in regions with

sparse crop distribution [14], such as Kenya. Tioeeethe method proposed here is based on
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the concept that all vegetation in a region intezgdhe season’s cumulative growing conditions
[22]. We first analysed the spatio-temporal vatigbof the yield-NDVI relationship, using the
data set acquired in Western Kenya on six sugarzanes covering nine years (2002-2010).
We used linear models to test the effect of the tintegration period of NDVI in relation to the
annual yield estimation, and tested the effect whual rainfall on sugarcane yield. We
hypothesize that zones’ yield is influenced by ging practices and environmental conditions

at the zonal scale.

2. Data and Methods

2.1. Study Area

The study area (Figure 1) is located within thetemspart of Kenya, comprising six sugar
management zones that include: (i) Chemelil, Kilaosl Muhoroni within the sub humid
agro-ecological zone; and (i) Mumias, Nzoia andbwithin the humid agro ecological zone
of Kenya. These zones are located between longit3del8°E, and 35.87°E, and latitudes
1.25°N and 1.50°S, covering an area of 120,0028% Mumias is the highest producer of
sugar placed at 39% in 2011 [23]. The landscaptniefarea is characterized by a mosaic of
hills and valleys, with altitudes ranging from 100@ (Kibos) to 1,600 m (Mumias and Nzoia),
and 1,800 m (Chemelil), and slope rising between i@8%he plains of Kibos zone, and 38%, in

the hills of Chemelil zone.
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Figure 38. Western Kenya sugar management zones (Sourcer Riltg.
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The topography influences the agro-ecological zaresiving an average of 1,400 mm and
1,800 mm of rainfall in the sub humid and humidesrespectively [24]. Rainfall in this area is
bimodal [25] with a long rain season between ManHd July, with planting in March for food
crops and April for sugarcane; and a short rais@@dn September to December with planting
in September for all crops [26]. This variationrainfall distribution influences an intensified
cropping system with crop diversification and rmatof food crops and sugarcane age. Soils of
the study area are dominantly black cotton cambisothe low lands and sandy loamy acrisols

in the highlands [27].
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The location of the study area in different agrioaakic zones, diversified topography, soils
types and cropping practices provides an ideal ssterio explore the relationship between

sugarcane productivity, environmental variablesl mianagement practices in Western Kenya.

2.2. Data
2.2.1. Satellite Data and Pre-Processing

A complete 11-year time series (2002-2012) of th€aBe Reflectance 8-Day L3 Global
250m product (MOD09Q1) was downloaded through thiéne Data Pool at the NASA Land
Processes Distributed Active Archive Center (LP OAA28]. MOD09Q1 product provides
bands 1 (red reflectance; 620-670 nm) and 2 (nefaared reflectance; 841-876 nm) at
250-m resolution. Each MODO09Q1 pixel contains thest possible observation’ during an 8-
day period as selected on the basis of high obsernveoverage, low view angle, the absence of
clouds or cloud shadow, and aerosol loading. Theuracy of the version-5 MODIS/Terra
Surface Reflectance products has been assesse@ avidely distributed set of locations and
time periods via several ground-truth and validagdforts, and thus ready for use in scientific
publications. The red (R) and (NIR) reflectanceadagre used to compute the NDVI [29] for all
the 460 images.

In addition to the MODIS time series, a multispac{Green, Red, and Near Infrared) 2.5 m
SPOT image was acquired over Mumias in Decembet,2Zlis data was used to appraise land
cover and use in different sectors of Mumias sagae in a 250 m grid (Figure 2), showing the
large heterogeneity of the landscape at MODIS seadd the impossibility to use a sugarcane

crop mask on a satellite image at MODIS scale énaitea.
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2.2.2. Agronomic and Climatic Data

The agronomic (yield and cropped area) and clingdia were obtained from the respective
sugar mills. At the zonal scale, yearly croppechdte), estimated yield (tc-Hp and monthly
rainfall data were obtained for the period 2002@40. We also obtained yield data for the year
2012 which was used for quantitative validatiorthed model. Crop area data are estimated by
physical measurement of area that has been hasvesiduring land preparation. On the other
hand, yearly yield is obtained using the Visual $ttgl Assessment method (as presented in the
Introduction section).

Rainfall data were recorded using 113 rain gauggsituted unequally among all the sugar
zones. The rainfall data was cross tabulated topatenthe annual mean for each zone for

comparison with the annual yield.
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Figure 2. (a) MODIS 250 m color composition of Mumias zone (se within the
zone are delineated by a yellow line), abhjigubsets of a December 2011 SPOT 2.5
m image on three sectors; the overlaying yellowdgrcorrespond to the 250 m

spatial resolution of MODIS pixels.
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2.3. Data Analysis

2.3.1. Time-Integration of NDVI Values

(b) SPOT 2.5 m color composition
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A thematic layer of the limit of the sugarcane girmgvmill zones was used to extract 8-day

NDVI values for each zone. These NDVI values wedrent spatially aggregated to allow

comparison with the mean annual yield, at the ssraée. Generally, time integration of NDVI

is done throughout the calendar year [2, 11, 18]th& field scale, [10, 20] is considered a

seasonal integration approach which utilized eithersowing or the harvesting date, while at
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the regional scale, [4] used growing degree daysompute in season NDVI for estimating
yield and obtained good results. At regional scalortugal, [30] correlated yield of the current
year with a 10-day NDVI data to develop a yieldreation model which explained 77%—88%
of wine yield. At state scale in Brazil, [31] us#ttrmal time other than the calendar year and
estimated sugarcane yield with a RMSE of 1.5 tdraund 2% of accuracy); however, they
used a crop mask and selected sugarcane pixey @lmitve 95% for the establishment of the
regressions.

In this study therefore, we tested a new way oktintegration in order to account for the
local sugarcane cropping practices at zonal s¢aleffect, since the yield is estimated on a
calendar year base (harvest lasts from Januaryeierber), a ratoon crop growing from
November 2009 to its harvest in January 2011—aageeof 15 months—accounts for the 2011
annual yield data. Therefore, this complicatesyile& prediction scenario where, in this case,
the 2011 annual yield includes the yield of a ctbat was almost nonexistent on the 2011
satellite time series (except on the January image)argued thapredicting yield in such small
rain fed sugarcane fields is complicated since NDBvfiin all land uses declines at the end of the
rainfall period [11] and requires a keen considerabf the integration period. In a similar case,
a weighted land cover NDVI was used to accountHerinfluence of other land uses on maize
yield [21]. We therefore applied a weighting matowxer a period of time corresponding to the
growing calendar, and not to the calendar yeardeeroto take into account the active vegetative
stages of the crop and minimize any shift in NDVMFidg sugarcane development [22]. To do
this we chose two different periods of integrati(), an 11-month period which corresponds to
the approximate length of the growing cycle befaraturation, and (2) a 15-month period

which corresponds to the approximate length of thleole growing cycle. For both
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configurations, we calculated a weight for each tharorresponding to the probability of a
sugarcane field to be harvested during the calepdar of yield estimations, and thus to be

accounted for in the annual yield (Figure 3).

Figure 3. Three sets of weights used to calculate time ratemgn of monthly NDVI
values for annual yield estimation (yagt The green line (between months 14 to
26) corresponds to weights generally used to catleuthe annual NDVI (the
calendar year corresponding to the yield measurgmé&he blue and red lines
correspond to weights that take into account trgasaane cropping calendar (15
months for the whole cycle, and 11 months for themng period) in the NDVI
time integration.
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Annual NDVI (NDVI) and weighted NDVI (wNDVI_15 and/NDVI_11) for each year was
calculated according to Equation (1), witlequals to 15 and 11, respectively. The value 15
corresponds to the length of the usual croppindecg€ the sugarcane (in months), while the
value 11 corresponds to the length of the vegetgiart (in months) which is mainly related to

cane yield [10].
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m=i

WNDVI_i = > NDVI, w, 1)
m=1
where, NDV}, is the value of the NDVI for mont, wy, is a coefficient equal to the NDVI

normalized weight (Figure 3), amds the length of the time integration (in monthE)e sum of

thewy, coefficients is equal to 1.

2.3.2. Spatio-Temporal Analysis

The relationship between NDVI, wNDVI and the annesiimated yield was studied with a
linear regression [20, 32] and exponential regoessi4] established through time and space
using a one-tailed probability test. We then asstéise role of the environmental variables in
the relation between yield and NDVI, by correlatithg slope of the “yield-NDVI (WNDVI)”

relationships with the rainfall, and with the suggare fraction in each respective zone.

3. Results and Discussion

3.1. Yield and Climatic Data Variability

Table 1 demonstrates variable annual rainfall ihgtion within the six zones ranging
between 1,421 mm and 1,869 mm. This rainfall grotlgs sugar zones into two climatic
regions: the sub humid with less than 1,500 mm ¢KjkChemelil and Muhoroni) and humid
with about 1,800 mm or more (Sony, Mumias and Nzagro-ecological zones (AEZ)
respectively, both lying within the tropical clineadf the country.

Table 1. Summary of the agronomic and climate dataised in the study: mean and standard deviation (in
parenthesis) calculated over the 9-year period (2@6-2010).

KIBOS MUMIAS CHEMELIL MUHORONI SONY NZOIA

Rainfall (mm-yrY) 1421 635 (186) 1,426 (263) 1,486 (214) 1,869 (221) 1.763
g 02 | | | (252)
Yield (t-hal) 71.1(9.6) 75.6(11.1)  62.6 (9.6) 63.9(7.9)  8a13) 75.0(5.2)

Sugarcane fraction (%) 32.2(4.5) 48.7(2.5) 38.8)( 50.5 (7.3) 33.3(5.3) 22.2(2.7)
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Sugarcane grown in regions with less than 1,500 mamnfall is recommended for
supplemental irrigation [1]. The reason for higlyeald in Kibos (71 t-hd), compared to the
government owned Chemelil and Muhoroni sugar nmllhe same AEZ whose yield is around
63 t-ha' can be explained by better crop husbandry. Glgpajield in the humid AEZ
(Mumias, Sony, and Nzoia) is higher (between 75 @&dd-ha') than in the sub-humid AEZ.
The yield in Sony (80 t-A3 is boosted by large scale farmers within theiléetiighlands of

Sony sugar zone.

3.2. Relationship between Yield and NDVI

When the whole data set (6 zones and 9 years)ed, tise analysis shows that the annual
NDVI is not strongly related to the sugarcane yigld= 0.1; (Figure 4a). This finding is close to
those who found no relationship between average N farmers’ yield [11] and; whose
results showed low significance when correlatirgjdrical yield and NDVI at annual level (P =
0.1) [2]. However, when adjusted NDVI (wNDVI) ised the relationship is highly significant
for wNDVI_11 (P = 0.001) (Figure 4c) and signifitdor wNDVI_15 (P = 0.01) (Figure 4b)
with the R increasing from 0.01 to 0.12 and 0.13 respectiiipugh both linear and
exponential relationships. This result is in agreetmwith a study demonstrating that yield
estimations based on metrics obtained a littler afte peak of APAR can be done without
seriously compromising performance [31]. Howevbke strength of these correlations is weak,

justifying further analysis by this study on otli@ctors that affect yield.

162



Figure 4. Relationship betweena) yield and annual NDVI, k) yield and
wNDVI_15, and ¢€) yield and wNDVI_11.
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When the whole dataset is aggregated over the wiesied (2002-2010), at the zone level
(spatial analysis), the correlation between yield @NDV! is significant (Figure 5a) withR=
0.53, P < 0.001; while when the whole dataset (gegated over the six zones, at the year level
(temporal analysis); there is no significant catiein between yield and wNDVI (Figure 5b).
The good result obtained through the spatial aralgsdue to different environmental variables
exuded through rainfall distribution. The absentesignificant results through the temporal

analysis could be explained by (1) the difficuloyrhake coherent yield measurements over a
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calendar year and wNDVI (considering the lengthimie sugarcane takes to mature), and (2)
the sugarcane cover fraction changes during th&-2Z10 period (see standard deviation

values of the fraction of sugarcane cropped areadan zone, Table 1).

Figure 5. Variability with wNDVI_11 averageda) at zone level on the 2002-2010
periods, andl() at annual level on the six zones.
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3.3. Relationship between Yield and Rainfall
In order to better understand the spatial and teahpariability of yield, we studied the

relationship between yield and rainfall. When usatighe data (6 zones * 9 years; Figure 6a),
the relation between annual yield and rainfall wsignificant, but weak (R=0.08;

p = 0.03). Such a weak relationship has been ataibto the time lag between yield and rainfall
because vegetation takes a considerable periogsfmnd to soil moisture [25]. This effect is
amplified in Western Kenya, where the annual yisldependent on the rainfall of the previous
year due to the length of the sugarcane cycle.gdmoval of the time lag through spatial and
temporal averaging over the nine year data (6 28ngsars; Figure 6b,c), this study showed a
strong relationship as noted by other studies $,vdth R* = 0.8 and p < 0.001 at the spatial
level (Figure 6b). The relationship between yietd aainfall (Figure 6b) is stronger than the

relationship between yield and wNDVI (Figure 5a)tla¢ zone scale. This is because unlike
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rainfall which is an environmental variable, wNDVé&lue integrates not only sugarcane area,
but also other types of land covers that are ifeddht proportions according to the zone.

The temporal analysis of yield and rainfall shows gorrelation between both variables
(Figure 6¢), because (1) rainfall is not the onigldy driving factor, and (2) because annual
rainfall should be integrated on a longer period aiith different weights (as wNDVI) in order
to take into account the particular cropping caéeraf the sugarcane crop. These results are in
agreement with a study that pointed out that rdliafaounts and pattern may not be a reliable
predictor of yield [11].

Figure 6. Relationship between yield and rainfall usira): ll the data,lf) the data

aggregated at the zone scale (spatial analysid)(cuthe data aggregated at annual
scale (temporal analysis).
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3.4. Relationship between Yield-wNDVI Slope andfaki

In order to better understand the main drivingdesiof the yield-wNDVI relationship, we
correlated the slope of the relation between yagld wNDVI aggregated at the zone scale with
the rainfall (Figure 7a), and with the fraction safgarcane in each zone (Figure 7b). Results
show a strong correlation with high significanceat 0.001 in both cases.

The sensitivity of the yield-wNDVI variations to &a millimeter rainfall received in each
management zone also called the Precipitation Matdresponse, or PMR [33], separates two
groups of three zones geographically located infsuhid AEZ from those in the humid AEZ
(Figure 7a). The ability to separate the two climatgimes in this study therefore strengthens
the ability to use wNDVI in forecasting crop yielResults of this relationship were highly
significant with B = 0.75; P = 0.001. The positive slope of this tietship (Figure 7a)
indicates that the sensitivity of the yield to falhis higher than the sensitivity of the wNDVI to
rainfall.

The negative slope resulting from the relationshigtween yield-wNDVI slope and
sugarcane fraction (Figure 7b) indicates that wND®&/Ihot only affected by the amount of
rainfall received in the zone, but is also influeddrom other surrounding vegetation cover [2]

considering that sugarcane has larger biomassiigasurrounding environment.

166



Figure 7. Relationship between the “yield-wNDVI” slope and) (rainfall, and
(b) sugarcane fraction, aggregated at the zone scale.
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3.5 A Quantitative Evaluation of the Model

WNDVI_11 data for the year 2011 and 2012 was usesktimate the 2012 sugarcane yield
(Table 2) using the model established at the zoake gFigure 5a), in order to utilize data that is

independent from the one used in development sfrttudel.

Table 2. Model validation using 2012 yield.

Zone  WNDVI_11 Model Yield(t-ha™) Measured Yield (tha™)  Squared Error (t-ha™)

Mumias 566.5 54.2 48 38.44
Nzoia 602.8 68.4 64.7 13.69
Chemelil 586.9 62.2 59 10.24
Muhoroni 604.4 69.1 63.6 30.25
Kibos 596.1 65.8 62.7 9.61
Sony 610.5 71.5 69 6.25
RMSE 4.25

We obtained a Root Mean Squared Error (RMSE) o6 #.83" when all the zones are
considered. The worst yield estimation was realizeMumias zone (+6.2 t-A8, where the

land holdings are particularly small (up to 0.1,hand where the landscape is very
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heterogeneous (Figure 2). This result is similath low accuracy obtained for fields smaller
than the pixel size and high accuracies for larglel$ [15]. When excluding Mumias zone, the
RMSE decreases to 3.41 t-hawhich is in agreement in both cases, with the specification

of RMSE 5 t-ha.

4. General Discussion and Conclusions

This research has investigated the influence oppming practices and environmental
conditions on yield at zone scale through two apghes. Firstly, historical yield was related to
annual NDVI with the assumption that yearly sugaecgield is significantly correlated to
annual NDVI. This hypothesis was rejected sincedliigaificance of this correlation was only
achieved after adjusting the NDVI through time gntgion of the sugarcane growing period to
remove the time lag in crop growth. The strengtliheg relationship was then enhanced when
the data were aggregated over the whole period2(ZZ10) at the zone level. Secondly,
historical yield was related to rainfall and theeagth of this relationship was low, although the
correlation was of high significance. The relatioipswas equally strengthened through spatial
aggregation and through rain use efficiency. Tlegite between yield and rainfall exists owing
to the fact that sugarcane yield is significantiated to rainfall on removal of time lag at zone
scale since crops take a considerable period pmnekto rainfall.

This study has shown that remote sensing technolmmether with environmental
information has potential to be used to estimatep cyield and evaluate the impact of
environmental conditions to crop production as @ggobto physical methods. In effect, it has
been reported that accuracy of physical methodh ascvisual physical approach (VPA) on
yield estimation is minimized due to gross errossagiated with fatigue, variability in

assessment of natural phenomena using the nakednhege, and lack of consideration of
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diverse environmental variables (such as raintalting the growth period of the cane crop [6].
The use of remote sensing data can highlight vangtin environmental variables within
respective zones, and this is uniquely evidencedhbyseparation of the two agro-ecological
zones through spatial aggregation. Additionallyriateons within and between the zones are
influenced by environmental variables such as dwdlracteristics and rainfall distribution over
different years. Our findings are in agreement wittudy noting that rainfall was not the single
determinant of crop yield in different environmentait rather, other factors such as soil
characteristics, and other agricultural land usedrie be included [8].

In summary, our results are in agreement with nebshe previous studies on this subject.
Through this study, we have contributed knowledgerémote sensing fraternity (1) by
developing an original method for NDVI time intefjom that takes into account the local
cropping practices (length of the growing seasanil (2) by analyzing the spatial and temporal
dimensions of the yield-NDVI relationship and resge of its slope to rainfall. Sugarcane yield
forecasting has been exemplified through spatiaresgption of weighted NDVI. The
information presented in this study is useful foyper, foresighted and informed planning in the
Kenya’s Sugar Industry at the zone management.sthig is because the information explains
the influence of environmental conditions on sugaecproduction, thus providing knowledge
for monitoring sugarcane productivity at the zooale.

Further research is recommended by this studyefiner the zone scale to farm level. The
issue of scale is suggested to minimize the infleeof other land cover on NDVI extracted
from sugarcane fields. Future Earth Observing Bateslystems, such as Sentinel-2 (ESA), with
decametric spatial resolution, and a high visitingguency, will give access to farm level

information.
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