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Abstract. We rigorously prove a form of disorder-resistance for a class of one-dimensional
cellular automaton rules, including some that arise as boundary dynamics of two-dimensional
solidification rules. Specifically, when started from a random initial seed on an interval of length
L, with probability tending to one as L → ∞, the evolution is a replicator. That is, a region of
space-time of density one is filled with a spatially and temporally periodic pattern, punctuated
by a finite set of other finite patterns repeated at a fractal set of locations. On the other hand,
the same rules exhibit provably more complex evolution from some seeds, while from other seeds
their behavior is apparently chaotic. A principal tool is a new variant of percolation theory, in
the context of additive cellular automata from random initial states.
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1 Introduction

Cellular automata (CA) started from seeds, i.e., finite perturbations of a quiescent state, have
been the subject of much empirical analysis, starting with [Wol1]. The observed behavior falls
roughly into four categories: (a) the perturbation remains localized in the sense that it never
affects sites outside a bounded interval; (b) a periodic structure develops and spreads; (c) a
replicating (also called nested or fractal) structure develops, with a recursive (but sometimes
complicated) description; (d) unpredictable chaotic (or complex ) growth generates a space-time
configuration with apparent characteristics of random fields. Many CA are capable of behavior
in multiple categories depending on the choice of seed, and this is true even for some of the very
simplest one-dimensional CA. An example is the Exactly 1 rule, in which a cell is alive whenever
exactly one of itself and its two neighbors were alive at the previous generation. Exactly 1 is
capable of periodic, replicating, and chaotic behavior for different seeds; see [GG3].

If a particular CA is capable of chaotic behavior from some initial seed, it appears natural
to conclude, by analogy with the second law of thermodynamics, that such behavior should be
generic for that CA, in the sense that almost all sufficiently long seeds yield chaotic evolution.
Shadowing results from dynamical systems [Pil], with their general message of stability of chaotic
trajectories, would also tend to support such a conclusion. Indeed, strong empirical evidence
confirms that chaotic behavior is prevalent for many CA including Exactly 1 ; see [GG3].

In this article we exhibit a class of one-dimensional CA rules for which we rigorously prove
that the opposite conclusion holds. Typical (random) long seeds self-organize into replicating
structures, while exceptional seeds yield more complex behavior, including apparently chaotic
evolution.

We focus on one-dimensional range-2 CA rules with 3 states (although our techniques in
principle apply to more general one-dimensional rules). Thus, the configuration of the CA
at time t ∈ {0, 1, 2, . . .} is an element ξt = (ξt(x))x∈Z of {0, 1, 2}Z , and for a given initial
configuration ξ0, the evolution is given by

ξt+1(x) = f
(
ξt(x− 2), ξt(x− 1), ξt(x), ξt(x+ 1), ξt(x+ 2)

)

for all x, t and a fixed function f (the CA rule). (In many cases the dependence on ξt will actually
be restricted to the range-1 neighborhood x−1, x, x+1). We sometimes write ξ(x, t) = ξt(x) for
the state of ξ at the space-time point (x, t) ∈ Z× [0,∞). In keeping with standard convention,
diagrams of space-time evolution are drawn with the space coordinate x increasing from left to
right, and the time coordinate t increasing from top to bottom.

A key supporting role will be played by the 1 Or 3 CA, a simple 2-state rule denoted by λt,
and defined as follows. The states are 0 and 1, and the evolution is

λt+1(x) = λt(x− 1) + λt(x) + λt(x+ 1) mod 2.

As is well known, the additive structure of this rule enables many of its characteristics to be
fully understood. (See Figure 1.1 below for an illustration.)
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Figure 1.1: Left: the configuration λ• of 1 Or 3 , started from a single occupied cell, up to time
t = 32. Right: schematic depiction of a replicator. The striped regions are filled with a doubly
periodic ether. The thickness of the white “buffer zones” remains constant for all time.

We consider 3-state CA rules with the following special property. For any configuration ξ, if
we define λt(x) = 1[ξt(x) = 1] for all x, t, then λ evolves precisely according to the 1 Or 3 CA.
We also assume that state 0 is quiescent – that is, if ξ0 ≡ 0 then ξ1 ≡ 0. We call any CA rule
satisfying these two conditions a web CA. The idea is that the 1s form an additive “web” which
is not influenced by the distinction between 0s and 2s, while the web may affect the 2s. As we
will see later, web CA also arise in analysis of two-dimensional solidification CA. We will usually
be interested in evolution from a seed, i.e. an initial configuration ξ0 with finite support.

One of the simplest web CA, which we call Web-Xor, is defined by setting ξt(x) = 2 if and
only if λt(x) = 0 and there is a exactly one 2 among ξt−1(x − 1), ξt−1(x + 1). (Together with
the web CA condition, this is sufficient to specify the rule). Thus, 2s perform a 2-neighbor
exclusive-or rule on the points that are not occupied by 1s. Figure 1.2 illustrates the evolution
of Web-Xor from four different seeds. (States are always colored as: 0 white; 1 black or grey;
2 another color depending on the rule.) Our results imply that typical seeds result in behavior
similar to the first picture. More specifically, we will prove that for certain classes of web CA,
evolution from long random seeds yields with high probability a space-time configuration that is
periodic except within some finite distance of an additive web. To state this conclusion precisely
we need some more notation.

An ether is an element η of {0, 2}Z
2

that is periodic in both coordinates. Two ethers
are equivalent if one can be obtained from the other via some translation of Z2. In a CA
configuration ξ we say that a set K ⊆ Z × [0,∞) is filled with η if ξ agrees with some ether
equivalent to η on K. Let λ• be the 1 Or 3 CA started from the seed consisting of a single 1 at
the origin, and let Λ = {(x, t) : λ•(x, t) = 1} be its support. See Figure 1.1. Let Λ(r) ⊂ Z

2 be
the set of space-time points at ℓ1-distance at most r from Λ.

For a given CA, we say that a seed ξ0 (or equivalently the resulting configuration ξ) is a
replicator of thickness r and ether η if each bounded component of Z2 \Λ(r) is filled with η.
See Figure 1.1. It is a straightforward fact that Λ(r) has density 0 as a subset of Z2 for any r.
Therefore, in a replicator, the density of 2s within the cone {(x, t) : |x| ≤ t} equals the density of
the ether. Furthermore, it may be shown that for any replicator (of any CA), the configuration
ξ can be fully described in terms of a finite set of local patterns that are repeated at infinitely
many locations prescribed by Λ. (This is the reason for the name replicator.) For more details
we refer the reader to [GGP], where the concept was introduced.
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Figure 1.2: Four configurations of Web-Xor . The first (top) example, a replicator with zero
ether, starts from a random string of 64 1s and 2s. The second and third examples, with
respective seeds 12 and 11111012, are quasireplicators. The bottom example, with seed 1100112,
is apparently chaotic.
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Our results will apply to web CA rules satisfying two conditions which we call diagonal-
compliance and wide-compliance. The conditions state that flow of information concerning the
distinction between 0s and 2s is blocked by certain local patterns of 1s. The formal statements
of the conditions are straightforward but somewhat technical, and we therefore postpone them
to the next section. For now we note that Web-Xor is diagonal-compliant.

A uniformly random binary seed on [0, L] is an initial configuration ξ0 in which ξ0(x)
takes values 0, 1 with equal probabilities independently for all x ∈ [0, L], and 0 outside [0, L].

Theorem 1.1 (Replication from random seeds). Consider a web CA that is either diagonal-
compliant or wide-compliant, started from a uniformly random binary seed on [0, L]. There
exist a random variable RL taking values in [0,∞], and a random ether ηL (both deterministic
functions of the seed), with the following properties. We have P(RL = ∞) → 0 as L → ∞, and
indeed the sequence (RL)L≥0 is tight. On the event RL < ∞, the configuration ξ is a replicator
of thickness RL+L and ether ηL. Furthermore, if any finite set of 0s in ξ0 are changed into 2s,
the same statement holds with the same RL and ηL.

Web CA rules may be further classified in the following way, which has implications for their
production of ethers. A CA has no spontaneous birth (of 2s) if whenever ξ0 contains no
2s, ξ1 also contains no 2s. Web-Xor has no spontaneous birth. Figure 1.3 shows four possible
evolutions of a CA rule called Piggyback (to be defined in the next section) that is wide-compliant
and has spontaneous birth.

Theorem 1.2 (Trivial and non-trivial ethers). Assuming the conditions of Theorem 1.1, RL

can be chosen to have the following additional properties.

(i) If the CA rule has no spontaneous birth, then ηL ≡ 0 whenever RL < ∞.

(ii) Suppose that the CA rule has spontaneous birth. If for some deterministic ether η we have
RL < ∞ and ηL = η for some binary seed, then for uniformly random binary seeds we
have

lim inf
L→∞

P(RL < ∞ and ηL = η) > 0.

Given any particular seed, there is a simple procedure to compute the random variable RL

appearing in Theorems 1.1 and 1.2, and in particular to determine whether it is finite. (See
Sections 8 and 9 for details). For many CA of interest, including Piggyback, there are multiple
non-equivalent ethers η for which the condition of Theorem 1.2(ii) indeed holds, and which hence
have asymptotically non-trivial probabilities. The first two pictures in Figure 1.3 show two
examples. Our methods allow the computation of explicit rigorous lower bounds on asymptotic
probabilities of particular ethers. For example, in Piggyback, for the ether that results from the
periodic initial state (00022222)∞ , the lim inf in the theorem is at least 0.1297, while (0)∞, (2)∞

and (00002022)∞ have lower bounds 0.5, 0.0398 and 0.0151 respectively. (In fact, more than
100 ethers have positive lim inf, and we believe that there are infinitely many.)

As remarked earlier, many CA rules of interest provably exhibit more complex behavior for
certain exceptional seeds. One important class of behavior is formalized by the following concept
introduced in [GGP]. We call a seed ξ0 (or a configuration ξ) a quasireplicator with ether η
if the following holds. For some exceptional set of space-time points Q ⊇ Λ, each bounded
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Figure 1.3: Four examples of Piggyback evolution: two replicators (with enlarged regions showing
different ethers) from random seeds of length 30; a quasireplicator with seed 11111; and an
apparently chaotic example with seed 100011011.
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component of Z2 \Q is filled with η, while for some a > 1, the set a−nQ converges as n → ∞ in
Hausdorff metric to a set of Hausdorff dimension strictly less than 2.

Theorem 1.3 (Quasireplicators). For some diagonal-compliant and wide-compliant web CA
rules, including Web-Xor and Piggyback, there exist seeds that are quasireplicators but not repli-
cators.

Examples of (provable) quasireplicators include the second and third seeds in Figure 1.2,
and the third seed in Figure 1.3. Certain other seeds appear to be neither replicators nor
quasireplicators, but exhibit apparently chaotic behavior, although proving this seems very
challenging. The fourth examples in each figure are in this category. In some very special cases
we can prove chaotic behavior in a certain conditional sense, even for an infinite family of seeds
whose number grows exponentially with their length. We discuss these issues further in the next
section.

Theorem 1.1 describes the space-time configuration away from Λ, and moreover states that
this description is insensitive to 2s in the initial configuration. However, the result provides no
information about the configuration close to Λ. The next result addresses this. The forward
cone of a space-time point (x, t) is the set {(y, s) : |y − x| ≤ s − t}, and the forward cone of a
set is the union of the forward cones of its points.

Theorem 1.4 (Stability). Consider a diagonal-compliant or wide-compliant web CA, started
from a uniformly random binary seed on [0, L]. With probability converging to 1 as L → ∞, the
configuration of ξ in the forward cone of [0, L]× {⌊C logL⌋} is unchanged if any set of 0s in ξ0
are changed to 2s. Here C is an absolute constant. If the CA has no spontaneous birth then
with probability converging to 1 the same cone contains no 2s.

We next discuss some ideas behind our proofs. Since in a web CA the web of 1s evolves
according to 1 Or 3, it easily follows that all 1s lie in Λ(L). In the situation of Theorem 1.1 we will
prove that immediately above each bounded component of Z2\Λ(L) there is a strip which blocks
information flow. Furthermore, each such strip contains a spatially periodic configuration of 1s,
with the repeating unit being identical for all strips up to translation. This is a probabilistic
statement, not a deterministic one, and the height of the strip is random. It will be proved
using techniques of percolation theory. In contrast with classical percolation, the space-time
configuration λ of 1 Or 3 is not i.i.d., but has long-range dependence. We will make use of the
key percolation result below, which we believe is interesting in its own right.

A path is a finite or infinite sequence π of space-time points (x0, t0), (x1, t1), . . . , (xn, tn) (, . . .)
with ti+1 = ti + 1 and |xi+1 − xi| ≤ 1 for all i. A path is diagonal if it satisfies |xi+1 − xi| = 1
for all i. Suppose λ0 is given, and let λ be the resulting configuration of 1 Or 3. We say that
a path π is empty if λ(x, t) = 0 for every (x, t) on π. A path is wide if it is empty and it
makes no diagonal step between two 1s, i.e. it has no two consecutive points (x, t), (y, t + 1)
with |x − y| = 1 but λ(y, t) = λ(x, t + 1) = 1. (As suggested by the terminology, diagonal-
compliance and wide-compliance of web CA refer to information flow being restricted to paths
of the appropriate type). We now assume that the initial configuration λ0 is uniformly random
on Z, that is, λ0(x) takes values 0, 1 with equal probabilities independently for all x ∈ Z.
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Theorem 1.5 (Subcriticality). Consider the 1 Or 3 CA from a uniformly random initial con-
figuration on Z. We have

(1.1) P
(
∃ an empty diagonal path from Z× {0} to (0, t)

)
< e−ct, t > 0,

for some absolute constant c > 0. The same conclusion holds for the existence of a wide path.

In contrast, we prove that empty paths do percolate.

Theorem 1.6 (Supercriticality). For the 1 Or 3 CA from a uniformly random initial configu-
ration on Z,

P
(
∃ an infinite empty path from (0, 0)

)
> 0.

We now briefly discuss background to our results. As remarked earlier, CA that exhibit
chaotic behavior for typical seeds but regular behavior for some seeds are apparently very com-
mon. Empirical evidence strongly suggests that the one-dimensional rules Exactly 1 [GG3],
Perturbed Exactly 1 [GGP], and EEED [GG4] are all in this category. It is natural to postulate
a mechanism for this phenomenon, whereby chaos nucleates from certain local patterns, and,
once started, invades all non-chaotic regions. It is tempting to conclude that this robustness of
chaos might be universal law, akin to the second law of thermodynamics.

To our knowledge the first compelling evidence to the contrary was presented in [GG2], where
a CA later called Extended 1 Or 3 was introduced. This rule arises naturally as the “2-layer
extremal boundary dynamics” of a classical two-dimensional CA rule, Box 13. Piggyback is
also the 2-layer extremal boundary dynamics of a two-dimensional rule. See Section 2 for more
information. Extremal dynamics have been utilized very effectively in the analysis of Packard
snowflake CA in [GG1, GG2].

Extended 1 Or 3 was proved in [GGP] to admit both replicators and quasireplicators, and
observed to generate apparent chaos from some seeds. Empirical evidence was presented that
long random seeds are replicators with high probability, and thus that it is the ordered phase
that is resistant to disorder. In this article we provide the first rigorous demonstration of this
phenomenon. The classes of CA that we consider are strongly inspired by Extended 1 Or 3.
We have not succeeded in proving that the conclusion of Theorem 1.1 holds in the case of
Extended 1 Or 3, although this would follow if a certain natural conjecture (Conjecture 5.2)
were established.

We note that the disorder-resistance phenomenon under consideration is somewhat reminis-
cent of insensitivity of CA rules to random noise in the update rule, as in [Gac1, Gra].

Much CA research has focussed on evolution from carefully chosen initial configurations —
a notable rigorous example is [Coo]. In contrast, rigorous results for CA from a random initial
configurations are scarce, despite their potential importance in understanding self-organization.
Most such research has been focused on nucleation, that is, random formation of centers that
orchestrate a takeover of the available space. Notable examples include bootstrap percolation
[Hol, BBDM] and excitable media models [FGG]. We also mention two previous works on
additive dynamics started from a product measure, [Lin] and [EN]; the latter finds an embedded
random walk by an argument somewhat related to the methods in Section 5.
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In many cases, percolation with long range dependence is extremely challenging to analyze
rigorously (see [Win, BBS, Gac2, BS], and references therein). Nevertheless, in our setting it
turns out that the additivity of 1 Or 3 allows certain judiciously chosen percolation arguments
to be carried through with relative ease. Translating results from an infinite random initial
configuration to finite seeds also appears daunting, since the number of random bits is now finite.
However, additivity introduces extensive periodicity and repetition into the configuration. With
care, these properties can be used to advantage. This extreme form of long-range dependence
provides the link between lack of percolation and evolution from random seeds, and is also the
reason for formation of ethers.

While our results provide a reasonably comprehensive picture of subcritical percolation be-
havior for certain path types (diagonal and wide), it should be emphasized that the behavior
for paths of supercitical type (empty paths) in the evolution from finite random seeds is not well
understood. We discuss open questions and prove some preliminary results in this direction in
Section 6.

The article is organized as follows. In Section 2 we establish terminology, including the
formal definitions of diagonal-compliance and wide-compliance, we introduce and discuss some
further examples of CA having these properties, and we discuss how Theorem 1.3 is proved.
Sections 3–7 are concerned entirely with properties of the additive rule 1 Or 3, from which
properties of web CA are deduced later. In Section 3 we review properties (most of them well
known) of 1 Or 3 started from a single occupied site, and in Section 4 we use additivity to
deduce basic properties of the evolution from random configurations. In Sections 5 and 6 we
prove the percolation results, Theorems 1.5 and 1.6 respectively, and discuss other facts and
open problems concerning percolation. In Section 7 we deduce key results about evolution of
1 Or 3 from random seeds. Finally we return to web CA. In Section 8 we deduce Theorems 1.1
and 1.4, and in Section 9 we prove Theorem 1.2 and show how to compute lower bounds on
ether probabilities.

2 Definitions, examples, and preliminary results

2.1 Basic conventions

Throughout the paper, λ denotes the 1 Or 3 CA, while ξ denotes a web CA. All our intervals
will be subsets of Z or of Z × {t} for some t ≥ 0. We adopt the convention that [a, b] = ∅ and
[a, b]× {t} = ∅ whenever b < a.

Throughout, a site or a cell will refer to an element of Z; a point will be an element of
space-time Z × [0,∞) ⊂ Z

2. The state of a CA ξ at cell x and time t is denoted ξt(x) or
ξ(x, t), depending on whether our focus is on time evolution or the space-time configuration.
When specifying a seed, we always assume that all states left unspecified are 0. In diagrams of
space-time evolution, state 0 is colored white, state 1 is black or grey, and state 2 is a different
non-greyscale color for each CA rule.

We say that a collection of {0, 1}-valued random variables is uniformly random if they are
independent and take values 0 and 1 each with probability 1/2.
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2.2 Compliance

In this section we formally introduce various families of web CA. As mentioned already, these
will have 3 states and range 2. Thus the state of a site is ξt(x) ∈ {0, 1, 2} for x ∈ Z and
t ∈ [0,∞), and the evolution is given by

ξt+1(x) = f
(
ξt(x− 2), ξt(x− 1), ξt(x), ξt(x+ 1), ξt(x+ 2)

)

for some function f .

We reiterate our standing assumption that the 1s of ξ behave as the 1 Or 3 CA. More
precisely, writing

δ(a) := 1[a = 1] = amod2, a = 0, 1, 2,

we assume that

(2.1) δ(f(a, b, c, d, e)) = δ(b) + δ(c) + δ(d)mod 2

for all a, b, c, d, e. Thus, if we define

(2.2) λt(x) := δ(ξt(x)),

then (2.1) implies that λ satisfies the 1 Or 3 CA rule. We sometimes call λ the first level of
the process. We call a CA rule that satisfies (2.1) and f(0, 0, 0, 0, 0) = 0 a web rule.

We now consider various further conditions that may be imposed on f . The idea will be
that the flow of information concerning the distinction between states 0 and 2 is blocked by
1s (in various locations). Throughout the following, we take a, b, c, d, e and a′, b′, c′, d′, e′ to be
arbitrary satisfying δ(a) = δ(a′), δ(b) = δ(b′), etc.

We say that the rule f is empty-compliant if

f(a, b, c, d, e) = f(a′, b, c, d, e′);

that is, a cell’s next state ξt+1(x) depends on non-adjacent cells ξt(x±2) only through their first
level. (Recall that by (2.1), the first level of the next state cannot depend on the non-adjacent
cells at all). Similarly, we say that the rule is diagonal-compliant if

f(a, b, c, d, e) = f(a′, b, c′, d, e′).

It will be convenient to express the next conditions in terms of the new first-level states of
the neighboring cells. Thus we denote

ℓ := δ(a) + δ(b) + δ(c)mod 2;

r := δ(c) + δ(d) + δ(e)mod 2,

so that if (a, b, c, d, e) = (ξt(x− 2), . . . , ξt(x+2)) then (ℓ, r) = (λt+1(x− 1), λt+1(x+1)). We say
that f is wide-compliant if it is empty-compliant and

c = r = 1 implies f(a, b, c, d, e) = f(a′, b, c, d′, e′),

and c = ℓ = 1 implies f(a, b, c, d, e) = f(a′, b′, c, d, e′).
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In a configuration λ of 1 Or 3, a path is said to be θ-free if it is empty and it contains no
point (x, t) whose 5-point neighborhood {(x ± 1, t), (x ± 1, t − 1), (x, t − 1)} contains θ or more
1s. Finally, we say a CA rule f is θ-free-compliant if it is empty-compliant and

δ(b) + δ(c) + δ(d) + δ(ℓ) + δ(r) ≥ θ

implies f(a, b, c, d, e) = f(a′, b′, c′, d′, e′).

Recall the definition of no spontaneous birth from the introduction; this is equivalent to the
condition that f(a, b, c, d, e) 6= 2 whenever a, b, c, d, e ∈ {0, 1}.

As suggested by the terminology, the behavior of cellular automata satisfying the above
conditions is constrained by paths of the appropriate types.

Lemma 2.1 (Compliance). Consider a web CA that is empty-compliant (respectively: diagonal-
compliant, wide-compliant, or θ-free-compliant). Consider two initial configurations ξ0, ξ

′
0 whose

first levels agree (i.e. δ(ξ0(x)) = δ(ξ′0(x)) for all x), and define the first-level dynamics λ via
(2.2). Fix a point (y, t). If λ has no empty path (respectively: empty diagonal, wide, or θ-free
path) from any (x, 0) at which ξ0(x) 6= ξ′0(x) to (y, t), then ξt(y) = ξ′t(y). Moreover, if the CA
has no spontaneous birth, then ξt(y) 6= 2.

Proof. Suppose, to the contrary, that ξt(y) 6= ξt(y
′). We need to show that there exists a path

of the appropriate type from Z× {0} to (y, t). By induction, it suffices to exhibit the final step
on this path. This is a straightforward verification.

To prove the final claim in the no spontaneous birth case, consider the initial state ξ′0 in
which every 2 of ξ0 is changed to 0. Then ξt(y) = ξ′t(y) = 0.

Lemma 2.2 (3-free paths). In any configuration λ of 1 Or 3, any 3-free path is wide. Any
3-free-compliant web CA rule is wide-compliant.

Proof. Assume that a 3-free path makes a leftward diagonal move on two space-time points in
state 0. Denote the states a, b, c at nearby points thus:

a b 0

0 c

We need to show that b and c cannot be both 1. However, if b = 1, then also a = 1, but then
c = 0 as the path is 3-free. This establishes the first claim. A similar argument gives the second
claim.

We now state a simple but important lemma that says that, although the web rules have
range 2, empty-compliance ensures that the “light speed” is essentially 1.

Lemma 2.3 (Light speed). Assume an empty-compliant web CA. The state ξ(x, t) depends on
the initial configuration ξ0 only through the states

λ0(x− t− 1), ξ0(x− t), . . . , ξ0(x+ t), λ0(x+ t+ 1),

where λ is defined by (2.2).
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Proof. The given states determine the following states at time 1:

λ1(x− t), ξ1(x− t+ 1), . . . , ξ1(x+ t− 1), λ1(x+ t).

Then we use induction.

2.3 Examples of rules

We will introduce several examples of web CA, chosen to represent various behaviors. Finding
such rules is not particularly difficult, and we know of many others with similar characteristics.
Let the function N1 (resp. N2) count the number of 1s (resp. 2s) among its arguments, and
N12 = N1 +N2.

Our first example is Web-Xor , whose update rule is given by

f(a, b, c, d, e) =





1 (b+ c+ d)mod 2 = 1

2 (b+ c+ d)mod 2 = 0 and N2(b, d) = 1

0 otherwise.

It is easy to check that Web-Xor is diagonal-compliant and has no spontaneous birth. Examples
of its evolution are given in Figure 1.2. The top example represents typical behavior: replication
with zero ether from a long random seed. The middle two examples are quasireplicators, one very
simple and one similar to the one in Theorem 8 of [GGP]. For many seeds including these two,
quasireplication can be rigorously proved via inductive schemes that completely characterize the
configuration at certain specified times. In more complicated cases, such schemes can be very
laborious to construct, while in other cases it may be difficult even to determine whether the
seed is a quasireplicator. We will not give proofs of quasireplication; instead we refer the reader
to [GGP] for two typical examples of inductive schemes that feature in such arguments. We
believe that the final example in Figure 1.2 is chaotic.

Even this simplest of rules displays a remarkable variety of behavior from “exceptional”
seeds. Other interesting seeds that we have found include: 110010012 (a replicator with non-
trivial pattern of 2s in the web), 110011112 (a quasireplicator with scale factor a = 4), 111001112
(perhaps chaotic or a very complicated quasireplicator), 10110112 (apparent chaos restricted to
one side).

Modified Web-Xor also has no spontaneous birth, but the 2s obey a symmetric two-point Or
rule in the presence of 1s:

f(a, b, c, d, e) =





1 (b+ c+ d)mod 2 = 1

2 (b+ c+ d)mod 2 = 0, and

either N2(b, d) = 1 or [N2(b, d) > 1 and N1(ℓ, b, c, d, r) ≥ 1]

0 otherwise.

As seen in Figure 2.1, this rule is capable of “mixed replication” with two different ethers (top).
Note that Theorem 1.1 implies that with high probability this does not happen for long random
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Figure 2.1: Modified Web-Xor with seeds 11111112 and 210001.

seeds. The bottom example is apparently a quasireplicator, although we have no proof, and
it seems that the inductive methods of [GGP] do not apply. Here and in the last example of
Figure 1.2, it is plausible that the evolution is driven by the advance of a front that lags behind
the edge of the light cone by a power law. We will discuss this phenomenon in Section 6.

In Web-adapted Rule 30 , 2s evolve according to Rule 30 [Wol2], except that 2s perform
the three-point Or rule in the presence of 1s when a neighborhood occupation number is small
enough:

f(a, b, c, d, e) =





1 (b+ c+ d)mod 2 = 1

2 (b+ c+ d)mod 2 = 0 and N12(ℓ, b, c, d, r) ≤ 2, and

either w30[δ2(b), δ2(c), δ2(d)] = 1

or [N2(b, c, d) ≥ 1 and N1(ℓ, b, c, d, r) ≥ 1]

0 otherwise.

Here, w30 is the update rule for Rule 30 , given by w30(a1, a2, a3) = (a1 + a2 + a3 + a2a3)mod 2,
and δ2(a) := 1[a = 2]. Web-adapted Rule 30 is 3-free-compliant (and therefore wide-compliant)
and has no spontaneous birth. See Figure 2.2 for an example. One can prove that this instance
is not a replicator, but is it chaotic? There are no known methods to prove chaotic evolution, or
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Figure 2.2: Chaotic behavior of Web-adapted Rule 30 with seed 100010201.

even universally agreed definitions of the concept; however, suppose one accepts the reasonable
premise that Rule 30 generates a chaotic configuration ρ started from a single 1 [Wol2]. Then
the example in Figure 2.2 is equally chaotic, in the sense that its evolution provably features
larger and larger regions of ρ, at specific locations that are easily characterized. We will also
show in Section 5 that an exponentially growing family of seeds exhibit conditional chaos in the
same sense.

The above rule may be modified in various ways so as to include spontaneous birth, resulting
in further rules where Theorem 1.1 applies, yet in which many provable replicators have ethers
with very long temporal period, perhaps too long to be seen experimentally. In the interests of
brevity we omit the details. We briefly discuss bounds on the period in Section 8.

A number of web rules arise naturally in analysis of two-dimensional CA, as we now explain.
Consider a binary CA ζt ∈ {0, 1}Z

2

, in which the new state of cell z is given by a rule defined
on the Moore neighborhood N (z) := {z′ ∈ Z

2 : ||z′ − z||∞ ≤ 1}. We assume that state 0 is
quiescent, and that the CA solidifies, that is, ζt(z) = 1 implies ζt+1(z) = 1; the CA rule then
only needs to specify when a z ∈ Z

2 becomes occupied, i.e., changes its state from 0 at time t to
1 at time t+1. To each such CA we associate extremal boundary dynamics (EBB): assume
that ζ0 vanishes on Z × [1,∞) and let λt be given by ζt on Z × {t}. Observe that λt is a one-
dimensional CA whose space-time configuration is a lower bound on the final configuration
ζ∞ = ∪t≥0ζt. Now assume that we extend the boundary layer to width 2, which leads to the CA
ξt ∈ {0, 1, 2}Z with the following rule: ξt(x) = 1 if ζt(x, t) = 1 (so that λt = ξtmod 2), ξt(x) = 2
if ζt(x, t) = 0 but ζt+1(x, t) = 1, and ξt(x) = 0 otherwise. Again, ξt is a one dimensional CA. As
ζt(x, t− 1) = 1 exactly when either ξt−1(x) = 1 or ξt(x) = 2, ξt indeed determines two extremal
layers of ζt and is thus called two-level EBD. The evolution of ξt also provides a lower bound
on ζ∞ and is often useful when the bound provided by λt “leaks” [GG2]. To conform with the
rest of the paper, we assume throughout that the EBD is the 1 Or 3 CA.

The natural setting for study of the issues addressed in this paper are general web CA, a
much larger class than the two-level EBD rules. The latter, however, provide many interesting
examples. In fact, the different ethers, quasireplicators and (apparent) chaotic behavior were
first observed in the two-level EBD generated by the Box 13 solidification CA [GG2], in which
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z becomes occupied at time t+ 1 when the the number of occupied cells in N (z) at time t is 1
or 3. The corresponding two-level EBD is called the Extended 1 Or 3 CA, and is given by

f(a, b, c, d, e) =





1 (b+ c+ d)mod 2 = 1

2 (b+ c+ d)mod 2 = 0 and N12(ℓ, r, b, c, d) ∈ {1, 3}

0 otherwise,

as is easy to check; therefore, this rule is equivalent to the one with the same name introduced
in [GGP]. This rule is 4-free-compliant, and is not covered by our main theorems. However, we
establish some rigorous results in Section 9.

For simplicity, assume that the two-dimensional CA ζ is isotropic, that is, that its rule
respects all isometries of the lattice Z

2. Then there is a convenient sufficient condition that
assures wide-compliance for its two-level EBD: when the neighborhood configuration is

a 1 c
b 0 1
0 0 0

the next state at the center cell is independent of c (i.e., depends only on a and b). This holds,
for example, for the following solidification rule, which we call Perturbed Box 13 . Given ζt, let
occ1(z) (resp. occ∞(z)) count the number of occupied cells among the four nearest neighbors
of z (resp. in N (z)); then z becomes occupied if either

• occ1(z) = 2, or

• occ1(z) ≤ 1 and occ∞(z) ∈ {1, 3}.

See Figure 2.3 for an example.

The resulting two-level EBD has the update rule

f(a, b, c, d, e) =





1 (b+ c+ d)mod 2 = 1

2 (b+ c+ d)mod 2 = 0, and

either N12(ℓ, c, r) = 2

or [N12(ℓ, c, r) ≤ 1 and N12(ℓ, b, c, d, r) ∈ {1, 3}]

0 otherwise.

We call this web CA Piggyback . It is easy to see that it is wide-compliant, and has spontaneous
birth. The top two examples in Figure 1.3 start from long random seeds and are replicators with
different ethers. (We will have more to say about ethers for Piggyback in Section 9.) The third
example is provably non-replicating, as it is a quasireplicator. The bottom example appears to
be chaotic. Like the bottom picture in Figure 1.2, the evolution displays a tantalizing mixture
of order and disorder.

Our results on Piggyback have rigorous implications for the two-dimensional Perturbed Box
13 rule (and similarly in other cases where 2-level EBD satisfies the conditions of Theorem 1.1).
Here we summarize some initial observations, noting that further investigation is warranted. As
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Figure 2.3: Perturbed Box 13 started from a seed in the square [0, 16]2. Initially occupied cells
are black, and subsequently occupied cells are red or blue if they have state 1 or 2 respectively
in the 2-level EBD, and otherwise grey. Unoccupied cells are white.

suggested by Figure 2.3, the evolution of Perturbed Box 13 from a seed in [0, L]2 is governed
by four space-time configurations of Piggyback in four quadrants with boundaries at 45◦ to the
axes. Depending on the behavior of each, we may make deductions about the final configuration
ζ∞. In the case of a replicator with the “solid” ether (2)∞, as in the bottom quadrant in this
example, clearly no further filling of the ether is possible after the second level of the EBD. By
Theorem 1.2, it follows that that Perturbed Box 13 started from a uniformly random seed in
[0, L]2 results in a final configuration ζ∞ of density 1 in Z

2 with probability bounded away from
0 as L → ∞. Certain other ethers of Piggyback can also be shown to fill in in a predictable
manner, resulting in a corresponding ether for Perturbed Box 13 , as in the top quadrant. A
similar analysis can likely be carried through for certain simple quasireplicators such as the one
in the right quadrant. When Piggyback is a replicator with zero ether, as in the left quadrant,
it appears plausible that the subsequent filling-in by Perturbed Box 13 results in a chaotic final
configuration. See [GG1, GG2] for detailed analysis of the filling-in process for some other EBD.

We conclude by mentioning a natural rule that seems intractable by our current methods.
Web 1 Or 3 is the web CA in which 2s perform 1 Or 3 on the points not occupied by 1s:

f(a, b, c, d, e) =





1 (b+ c+ d)mod 2 = 1

2 (b+ c+ d)mod 2 = 0 and N2(b, c, d)mod 2 = 1

0 otherwise.
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Figure 2.4: Chaotic behavior of Web 1 Or 3 from a random seed of 32 sites.

Figure 2.4 gives an example of an evolution from a random seed of 1s and 2s, with an apparent
message of near-criticality and chaos.

2.4 Generalizations

The simplest additive rule, Xor CA µt, is defined on the state space {0, 1}Z by

µt(x) = µt−1(x) + µt+1(x)mod 2.

One might consider µ, and not λ, to be the most natural candidate for the web dynamics.
However, while µ does have some points of interest (see, for example Proposition 6.5), many of
the main issues we consider become trivial in this setting. For example, µ either only occupies
points satisfying a parity constraint or generates an impenetrable web even for empty paths
[BDR, GG1].

In the other direction one might ask whether similar results hold if λ is replaced by an
arbitrary additive rule. It is indeed likely that a more general theory could be developed in this
setting. One complication is that predecessors of the all-0 state will no longer necessarily be
unique (as they are for 1 Or 3 — see Lemma 3.4) and as a result “mixed replicators” similar to
the top example of Figure 2.1 may be the norm.

On the other hand, all our results generalize with appropriate minor changes in the definitions
to CA with a quiescent state 0, first-level state 1 and other states 2, . . . , s.

3 Additive dynamics from a single occupied site

Recall that λ• denotes 1 Or 3 started from a single 1. In this section we collect properties that
we will need. All these results are elementary and many are well known. First is a rescaling
property, illustrated in Figure 3.1.
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Figure 3.1: An illustration of Lemma 3.1, with m = 2. Highlighted points comprise a “separated
out” copy of λ•.

Lemma 3.1 (Rescaling). For any nonnegative integers a and m,

λ•
a2m =

{
λ•
a(y) if x = 2my for y ∈ Z

0 otherwise.

Proof. The case m = 1 follows from additivity on observing that λ•
2 is 10101. For m > 1 we

apply the m = 1 case iteratively.

Lemma 3.2 (Periodicity properties).

(i) For t ≥ 0, λ•
t (0) = λ•

t (±t) = 1 while λ•
t (±(t− 1)) = tmod2.

(ii) For all n ≥ 0, λ•
2n(x) = 1 exactly at x = 0,±2n.

(iii) For all n ≥ 0, λ•
2n+2n−1(x) = 1 exactly at x = 0,±2n,±(2n + 2n−1).

(iv) For any k ≥ 1, the sequence of edge configurations of λ• on [t− k + 1, t]× {t} is periodic
(from t = 0 on) with period equal to 2p where 2p−1 < k ≤ 2p.

Proof. Parts (ii) and (iii) follow from Lemma 3.1, and (iv) follows from (ii), with (i) as a special
case.

For some purposes, the following recursive description of λ• is useful, a variant of the one
given [Wil]. See Figure 3.3 for an illustration. Given a space-time configuration A on Sn =
[0, 2n]× [0, 2n−1], we say that A is placed at a space-time point s if the configuration in s+Sn

is the corresponding translate of A. Let Bn be the space-time configuration of λ• on Sn. Reflect
Bn around its vertical bisector and denote the resulting configuration on Sn by Bn.

Lemma 3.3 (Recursion). We have B0 = 10 and B1 =
100
1 1 0

. Moreover, for n ≥ 2, Bn is

obtained by placing Bn−1 at (0, 0) and at (2n−1, 2n−1); Bn−2 at (0, 2n−1) and at (0, 2n−1+2n−2);
and Bn−2 at (2n−2, 2n−1) and at (2n−2, 2n−1 + 2n−2). All placements result in consistent state
assignments at overlaps.
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Figure 3.2: Evolution of λ• with highlighted boundary strip of width 8 and temporal period 8.

Figure 3.3: Recursive description of λ•: B4 is composed of two copies of B3 (red), 2 copies of
B2 (green) and two copies of B2 (blue).

Proof. This follows easily from (i), (ii) and (iii) of Lemma 3.2.

Our results for seeds depend on the fact that λ• has certain a unique periodic configuration
above every region of 0s. This property does not hold for general additive rules.

Lemma 3.4 (Predecessors of 0). For an arbitrary initial state λ0, suppose that λt ≡ 0 on [a, b],
but λt−1 6≡ 0 on [a−1, b+1]. Then λt−1 is a subword of the periodic word (110)∞ on [a−1, b+1].

Proof. Consider the 4 possible values for the pair λt−1(a − 1) and λt−1(a). Once these states
are fixed, the rest of λt−1 on [a− 1, b+ 1] can be determined sequentially.

Fix an initial state for λ. A void is a finite inverted triangle of the form ∪i≥0([a+ i, b− i]×
{t+ i}), on which the configuration is identically 0, and that is maximal with these properties
with respect to inclusion. Its width is b− a+ 1, and its start time is t.
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Figure 3.4: Illustration of Proposition 3.6 with m = 2. The highlighted intervals at distance 22

above two selected voids have the claimed periodic configuration.

Lemma 3.5 (Voids). In λ•, each void has width 2k−1 and start time divisible by 2k−1 for some
integer k ≥ 1. Furthermore, for every fixed k, the union of all voids of width at least 2k − 1 has
density 1 within the forward cone of (0, 0).

Proof. This is a straightforward application of Lemma 3.3.

Finally, we deduce the following fact, which will be crucial for our results on percolation and
ethers. See Figure 3.4 for an illustration.

Proposition 3.6 (Periodic interval above a void). In λ•, assume that [a, b]×{t} is the top row
of a void of width 2k−1. For m < k, the state of interval [a−2m, b+2m]×{t−2m} is a segment
of the following infinite periodic string of period 3 · 2m:

(3.1) (1� 1� 0�)∞.

Here,� represents a string of 2m − 1 consecutive 0s, and the segment begins and ends with a
full�.

Proof. As t is divisible by 2k−1, and therefore by 2m, λ•
t on [a, b]× {t} is of the form

� 0� . . . 0�,

by Lemma 3.1. Then, by the same lemma, and Lemma 3.4 applied to λt/2m , the configuration
on [a − 2m, b + 2m]× {t − 2m} is either of the claimed type started and ended with�, or all
0s. The latter possibility contradicts maximality of the original void.
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4 Duality and randomness

When the initial configuration of 1 Or 3 is uniformly random (on some set), the resulting space-
time configuration is of course not uniformly random but has a high degree of dependence.
Nevertheless, in this section we show how to identify space-time sets on which the randomness
is uniform. The additive structure of the CA rule ensures that the space-time configuration is a
linear function (modulo 2) of the initial states, and the idea is to find cases where the associated
matrix is upper triangular.

Recall that λ•
t is the 1 Or 3 rule started with only the origin occupied. Let λA

t denote the
rule started with the set of initially occupied sites exactly equal to A ⊆ Z. We will extensively
use the following version of cancellative duality.

Lemma 4.1 (Duality). We have λA
t (x) =

∑
y∈A λ•

t (x− y)mod 2.

Proof. This follows easily by additivity and induction on t.

Observe that by symmetry and translation-invariance, λ•
t (x− y) = λ•

t (y − x) = λ
{x}
t (y).

Suppose we have an ordered set S = {(xi, ti) : i = 1, 2, . . . , n}, of space-time points. A
function F : S → Z is a dual assignment for S if for all i, j ∈ {1, . . . , n},

λ•
(
xj − F (xi, ti), tj

)
=

{
1 if j = i,

0 if j < i.

(There is no restriction when j > i). We think of F (·, ·) as sites in the initial configuration. The
idea is that in order to determine λA(xi, ti), we need new information about A at each successive
i.

Proposition 4.2 (Randomness via dual assignment). Suppose that the initial configuration λ0

of 1 Or 3 is uniformly random on some fixed set K ⊆ Z and deterministic on KC . Let S be a
fixed set of space-time points. If S has a dual assignment whose image is contained in K, then
λ is uniformly random on S.

Proof. Writing

Ki = {y ∈ K : λti(xi − y) = 1},

K ′
i = {y ∈ KC : λti(xi − y) = 1}.

and
ci =

∑

y∈K ′

i

λ0(y)mod 2,

we have by Lemma 4.1,

λ(xi, ti) =
∑

y∈Ki

λ0(y) + ci mod2.

But Ki contains an element, F (xi, ti), that is not in
⋃

j<iKj , therefore λ(xi, ti) is uniformly
random conditional on (λ(xj , tj) : j < i).
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A particularly useful special case is that a 1 adjacent to a string of 0s in λ• heralds uniformly
random intervals in the evolution from a random seed.

Corollary 4.3 (Random intervals). Fix integers a and L, k > 0. Let the initial configuration
λ0 be a uniformly random binary seed on [0, L], and suppose that λ•

t on [a, a+k] is 1 followed by
k 0s. Then for any x ∈ [−a, L− a− k], the configuration λt is uniformly random on [x, x+ k].

Proof. To find a dual assignment of [x, x + k] × {t}, order the set from left to right, and let
F (y, t) = y + a. Clearly, the image of this assignment is contained in [0, L]. Now apply Propo-
sition 4.2.

5 Subcritical percolation

In this section we prove Theorem 1.5, which states that when 1 Or 3 is started from a uniformly
random initial configuration on Z, the probability of an empty diagonal or wide path from the
initial interval Z× {0} to the point (0, t) decays exponentially in t. See Figures 5.1 and 5.3 for
the diagonal and wide cases respectively. Note the contrast with Figure 6.1 in the next section
for empty paths.

Our approach is to use dual assignments to control the probabilities of paths, but the details
of the argument are very different for the two types of path. A diagonal path has 2 choices at
each step, and any given point has state 0 with probability 1/2, suggesting a critical bound. To
improve this to a subcritical bound we consider a leftmost path, and use special properties of
λ. On the other hand, we control wide paths via a random process of space-time intervals that
terminates when an interval has even length.

Later in the section we also discuss θ-free paths, and show that notwithstanding Theorem 1.5,
there is an exponential family of initial configurations for which percolation by wide paths does
occur.

5.1 Empty diagonal paths

Proof of Theorem 1.5, case of empty diagonal paths. We may assume without loss of generality
that t is even, since the configuration at time 1 is also uniformly random, and the probability
in question is strictly less than 1 for t = 1.

Fix a diagonal path π from (x, 0) to (0, t). We will find an upper bound for the probability
that π is the leftmost empty diagonal path from Z×{0} to (0, t). To this end, partition the steps
of π into segments of length 2. During each such segment, the path has one of the following
forms: left-left, right-right, left-right, or right-left. When π makes a right-left move, that is
(x, s) → (x+ 1, s + 1) → (x, s + 2), the leftmost property requires a 1 at (x − 1, s + 1); we call
these points (which are not on the path) the corner points of the path, and let N(π) be their
number, i.e., the number of right-left segments that start at even times.
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Figure 5.1: All empty diagonal paths from an interval at time 0 are highlighted in blue. The
initial configuration is uniformly random.

Figure 5.2: A leftmost diagonal path together with a dual assignment for the points of the path
(white discs) and the corner points (black discs). The dashed lines connect each point to its
assigned position in the initial configuration.

We will give a dual assignment F of the path together with the set of its corner points (see
Figure 5.2 for an illustration). Order points on the path with increasing time, and place a corner
point (x, s) in the ordering immediately after the point on the path at the time s+1. For every
corner point (x, s), let F (x, s) = x − s + 1. For every point (x, s) on the path, let F (x, s) be
either x − s or x + s, according to whether the path arrives to (x, s) from the right (i.e., from
(x+ 1, s − 1)) or from the left (i.e., from (x− 1, s− 1)), respectively. We let F (x, 0) = x.

To check that F is a dual assignment, we will use Lemma 3.2(i). Fix a point (x, s) on
the path. All positions assigned by F to points earlier in the order lie in [x − s + 2, x + s] or
[x − s, x + s − 2] according to whether the path arrives to (x, s) from the right of left, so the
required condition is satisfied for this point. Now suppose (x− 1, s+1) is a corner point arising
from the moves (x, s) → (x+1, s+1) → (x, s+2) in the path. This corner point is assigned to
F (x−1, s+1) = x−s−1. We have F (x, s+2) = x−s−2, and all points earlier than (x, s+2) were
assigned integers at least x−s. Since s+1 is odd, λ•(x−1− (x−s−1), s+1) = λ•(s, s+1) = 1.
Finally, since s+ 2 is even, λ•(x− (x− s− 1), s + 2) = λ•(s + 1, s+ 2) = 0, as required.
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Figure 5.3: All wide paths from an interval at time 0 are highlighted in blue. The initial
configuration is uniformly random.

Now, using Proposition 4.2,

P(an empty diagonal path from Z× {0} to (0, t) exists)

≤
∑

π

P(π is the leftmost empty diagonal path from Z× {0} to (0, t))

≤
∑

π

(12)
t+1+N(π),

where both sums are over all diagonal paths from Z×{0} to (0, t). Let Pt be the last sum above.
Then, by considering the last two steps of the path,

Pt+2 =
(
(12 )

2 + (12)
2 + (12 )

2 + (12)
3
)
Pt,

so, recalling that t is even, Pt = (1/2) · (7/8)t/2.

As an aside, we mention that the assertion of Theorem 1.5 for diagonal paths also holds
when λ is replaced by the Xor CA µ, with a much simpler proof, since the set of all space-time
points that the origin is connected to by diagonal paths is a rectangle.

5.2 Wide paths

Proof of Theorem 1.5, case of wide paths. We will prove that

(5.1) P
(
∃ a wide path from (0, 0) to Z× {t}

∣∣ λ0(0) = 0
)
< e−ct

for some c > 0. This clearly suffices by translation-invariance, since there are only 2t+1 points
at time 0 from which a path can reach (0, t). Therefore, we will henceforth assume that λ0(0) = 0
and that λ0 is uniformly random elsewhere.

We recursively define intervals It = [Lt, Rt] for t = −1, 0, . . . , T , where T ≤ ∞, as follows.
Start with L−1 = R−1 = 0; then let I0 be the maximal subinterval of Z containing 0 on which
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1 10 0 0 0 0

1 10 0 0

1 10

1 10 0 0 0 0 0 0

1 10 0 0 0 0

1 10 0 0

1 10

1 10 0 0 0

1 10 0

1 1

0 0 0 1 1 0 0 10 1 0 0 0 0 0 0 1 0 1

Figure 5.4: The process of intervals of zeros used to prove non-percolation by wide paths. Here
the interval lengths (|I0|, |I1|, . . . , |IT |) are (5, 3, 1, 7, 5, 3, 1, 4, 2, 0). The witness points are
highlighted. The corresponding binary sequence (X1, . . . ,X2T+1) is shown below; it is obtained
by reading the states of the witness points in conventional text order on the page, except with
the left (red) intervals reversed. The dual assignment of witness points to initial positions is
shown via dashed lines (witness points in the top row are assigned to themselves).

λ0 ≡ 0. If It = ∅, then we set T = t and there is no It+1. Otherwise, if |It| ≥ 2, then It+1 is
the interval [Lt + 1, Rt − 1] (which is ∅ when |It| = 2). If |It| = 1, then It+1 is the maximal
subinterval of Z containing Rt = Lt on which λt+1 ≡ 0. Observe that for each t < T we have
λt ≡ 0 on It, while λt(Lt−1) = λt(Rt+1) = 1. This follows from the CA rule for λt by induction
on t; the key observation is that if |It| = 1 then λt+1(Lt) = 0 (see Figure 5.4). Furthermore, any
wide path started at (0, 0) is within ∪t<T (It × {t}).

We now define an ordered sequence of 2T+1 space-time points, which we call witness points,
associated with the above sequence of intervals. If |It| = 1, we call t + 1 a refresh time; we
also declare 0 a refresh time. Let 0 = τ0 < τ1 < . . . be the refresh times. We build the sequence
of witness points by appending certain points at each refresh time τi, in order. Specifically, for
every i, we append all points in Iτi ×{τi}, with the exception of zi = (Lτi−1, τi), in the following
order: points to the left of zi in the right-to-left order, followed by points to the right of zi in
the left-to-right order. Let Xi = λ(si), where s1, . . . , s2T+1 are the witness points in the order
described. Write X for the random finite or infinite sequence given by X = (X1, . . . ,X2T+1) if
T < ∞ and X = (X1,X2, . . .) if T = ∞. Our goal is to show that X is equal in distribution to
a sequence of independent fair coin flips stopped at a certain a.s. finite stopping time.

Let Y1, Y2, . . . be independent random variables taking values 0 and 1 with equal probability.
Partition this sequence into blocks of the form 0a10b1, where a, b ≥ 0, and let S ≥ 1 be the
location of the endpoint of the first such block of odd length. Then S is a.s. finite and

(5.2) P(S ≥ t) < e−ct,
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Figure 5.5: The sequence of principal voids V1, V2, . . . , V8, numbered from top to bottom; V1

and V2 each consist of a single point.

since S is at most the waiting time for the pattern 11011. Write Y ′ := (Y1, . . . , YS). We claim

(5.3) X
d
= Y ′.

Once (5.3) is proved, the exponential bound (5.2) implies (5.1), since 2T + 1
d
= S.

We now proceed to prove (5.3). Since P(S < ∞) = 1, the random variable Y ′ has countable
support, thus it suffices to show that P(X = y) = P(Y ′ = y) for any y with P(Y ′ = y) > 0.
Choose such a y. The event {X = y} determines T and I0, . . . , IT , and therefore the locations
of the witness points. It follows that the event {X = y} is precisely the event that λ takes the
specified values y on these (deterministic) witness points. Now we use a dual assignment to
show via Proposition 4.2

P(X = y) =
(1
2

)length of y
,

as required. Considering the witness points in their order, we assign to each (x, t) either x+ t
or x − t, depending on whether it is to the right or left of zi in its interval. (See Figure 5.4.)
This is a dual assignment simply because λ•

t (±t) = 1 and λ•
t (x) = 0 for x ∈ [−t, t]C .

5.3 θ-free paths

Since 3-free paths are wide (Lemma 2.2), the exponential bound (1.1) holds for 3-free paths,
and there are no infinite 3-free paths when λ0 is uniformly random on Z. Do such paths exist
started from special initial conditions? Indeed they do, as shown by our next result.

Define the sequence of principal voids V1, V2, . . . of λ
• according to Figure 5.5, and for

L > 0 let Wi = Vi ∩ (Vi + (L, 0)) (the notation means that Vi is translated by the vector (L, 0)).

Proposition 5.1 (Exceptional percolation). Assume λ0 is a seed on [0, L] which vanishes out-
side 4Z, where L is a multiple of 4. Define the sets Wi as above. Let i be such that 2i > 16L2.
From every point in Wi there is a 3-free path to some point in Wi+1. In particular, from any
such point there is an infinite 3-free path.
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Proof. For a maximal interval It ⊂ Z on which λt vanishes, define its successor It+1 to be the
maximal interval on which λt+1 vanishes and It ∩ It+1 6= ∅; if such an interval does not exit, let
It+1 = ∅.

Observe that λt vanishes outside 2Z at all even times t. Using this, it is easy to verify by
case-checking that every maximal interval of 0s has odd length at every time. It follows that any
nonempty maximal interval of 0s has a nonempty successor. Similarly, since λt vanishes outside
4Z when t a multiple of 4, it is easily verified that for any t, from every point in It × {t} there
is a 3-free path to some point in It+1 × {t+ 1}.

Let the apex wi be the (unique) bottommost point of Wi. Clearly, from every point in Wi

there is a 3-free path to wi. Moreover, by the above, there is a 3-free path from wi to Z×{tWi+1
},

where tWi+1
is the time of the top interval of Wi+1. The condition 2i > 16L2 ensures that this

top interval contains the intersection of the forward cone of wi with Z× {tWi+1
}.

The above result implies furthermore that there are, for some c > 1, at least cL seeds on
[0, L] for which there is a 3-free path from Z× {0} going through all Wi for i sufficiently large.
This follows by replacing a seed λ0 satisfying the condition of the theorem with its successor λt

for t a sufficiently large multiple of L. If all 0s within such a seed are replaced by 2s, this also
yields an exponential family of seeds for the Web-adapted Rule 30 CA with the same chaotic
properties as discussed in Section 2.

We conclude this section with the following conjecture supported by computer experiments.

Conjecture 5.2. The exponential bound (1.1) in Theorem 1.5 holds when diagonal path is
replaced by 4-free path.

6 Supercritical percolation

In this section we consider empty paths from random initial conditions, and in particular we
prove the percolation result Theorem 1.6. The results of this section are not needed for the proofs
of Theorems 1.1–1.4, but they are of independent interest and complement those of the previous
section. We also consider initial conditions where the randomness is restricted to the half-line
or a finite seed. Here many questions are open, but we establish some preliminary results. The
questions we consider are relevant to further understanding certain web CA behavior.

6.1 Percolation of empty paths

As Figure 6.1 suggests, the set of points reachable by empty paths emanating from an interval
at time 0 form an interval at each subsequent time. With random initial conditions, this interval
spreads linearly provided it survives. Proving this is the key to Theorem 1.6.

Suppose λ0 is given. The rightward Z-path from a space-time point (x, t) is an infinite
sequence of points (rs, s), s ≥ t defined as follows. Start with rt = x. Inductively, let rs+1 be the
largest integer y in (−∞, rs+1] for which λs+1(y) is 0; or if there is no such y we take ru = −∞
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Figure 6.1: All empty paths from an interval at time 0 are highlighted in blue.

for all u > s. Note that λ(rs, s) = 0 for all s > t for which rs is finite, but not necessarily
for s = t. Analogously, we define the leftward Z-path (ℓs, s), s ≥ t by reversing the space
coordinate in the definition.

Lemma 6.1 (Properties of Z-paths). Suppose λ is 1 Or 3 from any initial configuration.

(i) Suppose λ(0, 0) = 0 and let (rt, t), t ≥ 0 be the rightward Z-path from (0, 0). If x ≤ rt and
λ(x, t) = 0 then there is a empty path from (−∞, 0] × {0} to (x, t).

(ii) Fix an interval [a, b] with a ≤ b. Let (ℓt, t) be the leftward Z-path from (a, 0), and (rt, t)
the rightward Z-path from (b, 0). Suppose that ℓs ≤ rs for every s ≤ t. Then for any
y ∈ [ℓt, rt] with λt(y) = 0, there is an empty path from [a− 2, b+ 2]× {0} to (y, t).

(iii) Under the assumptions of (ii), suppose also that λ0(a) = λ0(b) = 0. Then for any y ∈ [ℓt, rt]
with λt(y) = 0, there is an empty path from [a, b]× {0} to (y, t).

(iv) Conversely, if there is an empty path from [a, b] × {0} to some (y, t), then ℓs ≤ rs for all
s ≤ t, and ℓt ≤ y ≤ rt.

Proof. We omit the proof of (i), as it is similar to the proof of (iii), which proceeds by induction
as follows. The argument reduces to verifying (iii) at time t = 1. Assume ℓ1 ≤ r1 and take
y ∈ [ℓ1, r1] ⊆ [a − 1, b + 1] with λ1(y) = 0. Then there exists an x ∈ {y − 1, y, y + 1} with
λ0(x) = 0. It remains to verify that x can be chosen to be in [a, b]. If y ∈ [a + 1, b − 1] this is
clear; if y ∈ {b, b+ 1} we may take x = b and if y ∈ {a, a + 1} we may take x = a.

The above argument also proves (ii): we verify the claim at time t = 1 and then use (iii).
The last claim (iv) is an easy consequence of definitions of empty and Z-paths.

The key fact in establishing percolation of empty paths is that rt has drift 1/4. The proof is
somewhat similar to that of non-percolation for wide paths, Theorem 1.5.

Lemma 6.2 (Drift). Suppose that the initial configuration λ0 is uniformly random on Z \ {0}
and λ0(0) = 0. Let (rt, t), t ≥ 0 be the rightward Z-path from (0, 0). For every ǫ > 0 there exists
a constant c = c(ǫ) > 0 so that P(|rt − t/4| > ǫt) < e−ct.



6 SUPERCRITICAL PERCOLATION 28

0

0

0
0

0
0

0 1 1 1 1 1
0 1 1 1

0 1
0 1 1 1 1 1 1

0 1 1 1 1
0 1 1

0
0

0 1 1 1
0 10 1
0 1

1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0

Figure 6.2: The rightward Z-path (solid lines) from the origin, together with its refresh points
(circled), and witness points (highlighted in red). A dual assignment of the witness points to
initial positions is indicated by the dashed lines. The states of the witness points in the order
they are examined are shown below.

Proof. We first describe an exploration process that determines the rightward Z-path from the
origin (0, 0). We designate (0, 0) to be the first refresh point. Now we examine the states
of the points (1, 1), (0, 1), (−1, 1), (−2, 1), . . ., in this order, until we find the first point with
state 0. Let G be the number of points examined, and call them witness points. Since the
states of these witness points are 01 · · · 1 (from left to right), certain states at the immediately
following time steps are determined. Specifically, the pattern 01 · · · 1 is immediately followed by
patterns of the same form, but with the length decreasing by 2 at each step and centered at
the same location, ending with either 01 or 0 according to whether G was even or odd. (See
Figure 6.2). We designate the location of the 0 in this last pattern to be the next refresh point.
It is (1−⌊G/2⌋, ⌈G/2⌉). Now iterate the process starting at the new refresh point. Note that the
rightward Z-path from (0, 0) consists precisely of the 0s at the left ends of the 01 · · · 1 patterns,
including the refresh points. Observe also that the Z-path is determined by the locations of the
refresh points, and that these are determined by examination of the witness points.

Now consider the above exploration process for the initial configuration that is uniformly
random on Z \ {0} and 0 at 0. Let (Xi)i≥1 be the sequence of states of the witness points,
in the order that they are examined by the exploration process. We claim that (Xi)i≥1 is
uniformly random. It suffices to check that (X1, . . . ,Xn) is uniformly random. This follows
from Proposition 4.2, by the dual assignment in which a witness point (x, t) is assigned to x+ t
if it is the rightmost witness point in its 01 · · · 1 pattern, and otherwise to x− t. See Figure 6.2.

Let Gi be the number of witness points examined in the row immediately immediately below
the ith refresh point. Then (Gi) are i.i.d. Geometric(1/2) random variables. Furthermore,
the sequence of refresh points is a random walk on Z

2 with steps (1 − ⌊Gi/2⌋, ⌈Gi/2⌉). As
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E⌊Gi/2⌋ = 2/3 and E⌈Gi/2⌉ = 4/3, each step has expectation vector (1/3, 4/3). The proof is
concluded by standard large deviation estimates.

Proof of Theorem 1.6. For L to be chosen later, consider the leftward path (ℓt, t) started at
(−L, 0) and the rightward path (rt, t) started at (0, L). Then, by a union bound and symmetry,

P
(
ℓt < rt ∀t

)
≥ P

(
ℓt ≤ −1 and rt ≥ 1 ∀t

)
≥ 1− 2P

(
rt ≤ 0 for some t

)
.

By Lemma 6.2, for L large enough we have P(rt ≤ 0 for some t) ≤ 1/3. Call a site x ∈ Z good
if an infinite empty path starts at (x, 0). Thus, by Lemma 6.1(ii),

P
(
[−L− 2, L+ 2] contains some good site

)
≥ P

(
ℓt < rt ∀t

)
≥ 1/3.

Consequently, by translation-invariance, P(0 is good) ≥ 1/[3(2L + 5)].

6.2 Empty paths for half-lines and seeds

How do empty paths behave when the initial configuration is a random seed? This question is
largely unresolved. (In contrast, the next section will provide detailed answers for diagonal and
wide paths). A first step would be to understand the case of a uniformly random half-line, for
which the following conjecture is natural given Lemma 6.2.

Conjecture 6.3. Suppose the initial condition λ0 is uniformly random on [1,∞) and 0 else-
where. Let (rt, t), t ≥ 0 be the rightward Z-path from (0, 0). Then rt/t → 1/4 as t → ∞.

We prove that a much weaker statement holds deterministically: for an initial configuration
supported in a half-line, empty paths penetrate arbitrarily far into its forward cone.

Lemma 6.4 (Unbounded penetration). Assume that the initial condition λ0 has no 1s outside
[1,∞). Let (rt, t) be the rightward Z-path from (0, 0). Then supt(rt + t) = ∞.

Proof. We first observe that for any initial configuration λ0 of 1 Or 3, if (x, t) has state 0 and
t ≥ 1 then at least one of the three points (x, t − 1), (x ± 1, t − 1) has state 0 also. Iterating
this we see that there must be an empty path from Z× {0} to (x, t). We call any such path an
ancestral path of (x, t).

Now, under the conditions or the lemma, note that for any m ≥ 0, the sequence of configura-
tions on the intervals [−t,−t+m+1]×{t} is periodic in t starting from some time tp depending
on m and λ0. For a ≥ 0, define the leftward diagonal Da := {(a− t, t) : t ≥ 0}. Then λ cannot
be identically 1 on two consecutive diagonals Da and Da+1, and also cannot be identically 1
on Da and identically 0 on Da+1. (Indeed, in either case we deduce that λ is also 1 on Da−1,
leading to a contradiction by induction.)

Fix m ≥ 0. We will show that for some t there an empty path from (−∞, 0] × {0} to
{(−t+m+1, t), (−t+m, t)}, which suffices by Lemma 6.1. To verify this claim, we may assume
that the periodic orbit commences initially, i.e., that tp = 0. There must be a time t with either
λt(−t+m+1) = 0 or λt(−t+m) = 0; by periodicity there must be infinitely many such times.
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Now take the leftmost ancestral path of one of these two points. Suppose this path does not
start on (−∞, 0]× {0}. Then, if t is large enough, the path has a diagonal segment longer than
the period of the orbit; additionally, all states immediately to the left of such a segment must
be 1. By periodicity, we have, for some a ∈ [0,m+1], infinite diagonals Da and Da+1 on which
λ is identically 1 and 0, respectively. This is in contradiction with our observations above.

We remark that the supremum in the above lemma cannot be replaced with a limit; a
counterexample is λ0 ≡ 1 on [2,∞) and λ0(1) = 0.

Returning to our earlier question on seeds, Figure 6.3 (top) shows the set of all points on
empty paths from (−1, 0), when λ0 is a random seed on [0, 25]. We believe that for typical long
seeds, the right frontier of this set lags behind the right edge of the forward cone of the seed by
a non-trivial power of t in the limit t → ∞. This is a natural guess, since the frontier has speed
1 in the voids, but presumably speed 1/4 on the fractal set occupied by randomness. It appears
plausible that such a process is a driving force behind the evolution of some exceptional seeds
for web CA, including the examples in Figures 1.2 (bottom), 2.1 (bottom), and possibly 2.4.

We believe that similar power law behavior holds for some specific small seeds. One example
is shown in Figure 6.3 (middle): the seed is 1 000 0̂ 000 1, and empty paths from the middle 0̂
are highlighted. However, some seeds exhibit entirely different behavior. The bottom picture
shows the empty paths from the two 0̂s in the seed 1 000 0̂ 000 1 000 0̂ 000 1. Despite apparent
initial similarity to the previous case, here the rightmost point (rt, t) reachable at time t has
rt/t bounded strictly between 0 and 1 at t → ∞. Indeed, the rescaled path 2−n{(rt, t) : t ≥ 0}
converges as n → ∞ to a variant of the Cantor function or “devil’s staircase”. This may be
proved by an inductive scheme.

As a preliminary step towards the power law behavior postulated above, we prove a version
in a simplified setting. Recall from the Section 2 that µ denotes the Xor additive cellular
automaton rule. Given a configuration µ ∈ {0, 1}Z×[0,∞), we define the χ-path starting from a
point (x, 0) to be the sequence of points ((xt, t) : t ≥ 0) given by x0 = x and

xt+1 =

{
xt, µ(xt, t) = 1;

xt + 1, µ(xt, t) = 0.

In other words, the path makes a down step from a 1, and a diagonal step from a 0. This is
intended as a simplified model for a rightward Z-path, which moves with speed 1 in 0s, but with
a slower speed in a random configuration.

Proposition 6.5 (Power law for Xor). Let µ be the Xor CA with initial configuration µ0 equal
to 1 on the two-point set {−1, 0} and 0 elsewhere. The χ-path ((xt, t))t≥0 starting from (0, 0)
satisfies

xt = t−Θ
(
tlog 2/ log 3

)
as t → ∞.

Proof. We first note some easy facts about µ. Denote the interval of points R(k, t) := ((i, t) :
t − 2k < i ≤ t) on the right side of the forward cone of the origin. For any k ≥ 1, the state-
vectors (µ(z) : z ∈ R(k, t)) on these intervals form a periodic sequence in t with period 2k−1.
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Figure 6.3: The set of all points (blue) on empty paths starting from certain initial points, in
1 Or 3 started from three different seeds: two apparent power-law cases, and a devil’s staircase.
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Figure 6.4: The χ-path from the origin in the Xor cellular automaton, together with the con-
struction used in its analysis. The strips S(2) (pink) and S(3) \ S(2) (orange) are shaded.

Furthermore, the sequence of state-vectors on the intervals R(k+1, t)\R(k, t) consists precisely
of the all-0 vector repeated 2k−1 times followed by the first 2k−1 state-vectors for R(k, t) (all
repeated with period 2k). See Figure 6.4 for an illustration of the case k = 2.

Let Ek := min{t ≥ 0 : (xt, t) /∈ R(k, t)}; this is the time at which the χ-path leaves the
diagonal strip S(k) := ∪tR(k, t). This can only happen at a down step, which can occur only
at a 1 of µ in the leftmost diagonal of S(k). It follows that Ek is divisible by 2k−1; write
Ek = 2k−1ek. For example (referring to Figure 6.4), we have e2 = 3 and e3 = 4.

In order to leave the strip S(k+1), the path must first leave S(k), and then leave S(k+1) \
S(k). By the above observations on periodicity, and the fact that the path moves diagonally on
0s, we deduce that

ek+1 =
⌊ek
2

⌋
+ ek.

The proof is concluded using induction and obvious monotonicity properties of the χ-path.

Among many unresolved questions, we do not know whether an analogue of Proposition 6.5
holds when the χ-path is defined similarly in terms of the 1 Or 3 CA λ rather than µ.

7 Additive dynamics from random seeds

Our goal in this section is to transfer the non-percolation results for infinite random initial
configurations to random seeds. The proofs exploit an intriguing interplay between randomness
and periodicity in the configuration started from a random seed.

Lemma 7.1 (Random edge-intervals). Assume λ0 is a uniformly random binary seed on [0, L].
For a fixed t, the state on the interval [t, t+ L]× {t} is uniformly random.

Proof. This is an immediate consequence of Lemma 3.2(i) and Corollary 4.3.
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Figure 7.1: Illustrations of the set of all points reached by paths starting within an initial random
seed. Top: empty diagonal paths; bottom: wide paths.

Lemma 7.2 (Edge-periodicity). For any λ0 which is 0 on [L + 1,∞), and any k ≥ 1, the
sequence of edge configurations (λ(i, t) : i = t+L− k+1, . . . , t+L) is periodic in t, with period
at most 2k.

Proof. This follows from Lemma 3.2(iv) and Lemma 4.1.

Our first result establishes that, in subcritical cases, paths from the initial state do not reach
far into the forward cone of [0, L] × {0}. This is illustrated in Figure 7.1, in which L = 25 and
all points on paths from Z×{0} are again depicted in blue (only one layer of points outside the
forward cone is colored blue, as all such are trivially reachable from Z× {0}).

Proposition 7.3 (Percolation into the cone). Suppose λ0 is a uniformly random binary seed on
[0, L]. The probability that there is an empty diagonal path from Z× {0} to the forward cone of
[0, L]×{⌊C logL⌋} goes to 0 as L → ∞. The same is true for wide paths. Here C is an absolute
constant.

Proof. Let k be a positive integer to be chosen later satisfying 2k + 1 < L. Call a space-time
point (x, t) bad if there exists an empty diagonal path from Z × {t − k} to (x, t). If the state
on the interval I(x, t) := [x− k, x+ k]×{t− k} is uniformly random, then Theorem 1.5 implies
that P((x, t) is bad) ≤ exp(−ck) for an absolute constant c > 0.
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Figure 7.2: An illustration of the proof of Proposition 7.3. The outline of the forward cone of
[0, L] × {0} is shown by the solid line (here L = 16). Points in the set S are shown as black
discs. Any path from the top row to the region below S must pass through S. For each point
in S, the top row of the associated triangle (of size k = 3) has a uniformly random state (three
such triangles are shaded).

We define an infinite set of points S via Figure 7.2. This set has the following properties:
(i) any path from Z× {0} to the forward cone of [0, L]× {2k} must pass through a point in S;
and (ii) for every (x, t) ∈ S, the state on the interval I(x, t) defined above is uniformly random,
either trivially or by Lemma 7.1.

We wish to bound the probability that S contains a bad point by a union bound. The set S
is infinite, but Lemma 7.2 implies that the states of the relevant intervals I(x, t) for (x, t) in the
diagonal “arms” of S repeat with period at most 2(2k +2). Thus, besides the at most L points
on the top section of S, there are only 8(2k + 2) distinct cases to consider. Hence

P(S contains a bad point) ≤ (L+ 16k + 16) e−ck.

The proof is completed by taking k = ⌊C ′ logL⌋ for a suitably large C ′ (the argument for wide
paths is identical).

Similarly, we next show that to each void of λ• there corresponds a periodic strip that blocks
diagonal and wide paths. Fix a void V of λ•, and an integer L ≥ 0. Define the perturbed
void V to be the triangular region

WL(V ) = V ∩ (V + (L, 0)).

See Figure 7.3 for an example. Note that WL(V ) = ∅ unless the width of V exceeds L. Further,
fix an integer m ≥ 1, assume the top of WL(V ) = [a, b] × {t}, and define the following interval
above WL(V ):

JL,m(V ) = [a− 2m, b+ 2m]× t− 2m.

(We set JL,m(V ) = ∅ when WL(V ) = ∅.)
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Figure 7.3: Perturbed void (dark blue), with L = 5, of the void with top interval [1, 15]× {16}.
The perturbed void is filled with 0s for any seed included in the interval of six red points. The
forward cone of this interval is outlined.

Figure 7.4: Illustration of Theorem 7.4(ii) with the seed 110100111 on [0, 8] and m = 2 and
same two voids as in Figure 3.4; the repeating string is A = 010110101111.

Lemma 7.4 (Periodic and random intervals above voids). Suppose the initial configuration λ0

vanishes outside [0, L]. Let m be a nonnegative integer. Let V be a void of λ• of width at least
L and at least 2m.

(i) λ vanishes on WL(V ).

(ii) There exists a string A of length 3 · 2m, depending on m and λ0 but not on V , such that
the configuration of λ on JL,m(V ) is a subword of A∞.

(iii) Now suppose that 2m+1 ≤ L and that λ0 is uniformly random on [0, L]. Then every interval
of length 2m in JL,m(V ) has uniformly random state.

Proof. Claim (i) is a simple consequence of Lemma 4.1, (ii) follows from Proposition 3.6 and
Lemma 4.1, and (iii) from Proposition 3.6 and Corollary 4.3.
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Proposition 7.5 (Percolation into voids). Assume the conditions in Lemma 7.4(iii). Let
cross(m) be the event that there exists a void V for which there is either an empty diagonal or
a wide path from JL,m(V ) to WL(V ). Then

P(cross(m)) ≤ exp(−c2m)

for some universal constant c.

Proof. Using Theorem 1.5, and Lemma 7.4 (ii) and (iii), this follows by a similar argument to
the proof of Theorem 7.3. The key point is that by Lemma 7.4(ii), only 3 · 2m distinct cases
need to be considered in the union bound.

8 Replication and ethers in web cellular automata

We can now prove Theorems 1.1 and 1.4 from the introduction.

Proof of Theorem 1.4. This is an immediate consequence of Proposition 7.3 and Lemma 2.1.

Proof of Theorem 1.1. Consider a uniformly random binary seed on [0, L]. In the context of
Proposition 7.5, let M be the smallest m with 2m+1 ≤ L, for which cross(m) does not occur.
If such an m does not exist, let M = ∞. By Proposition 7.5, M is tight as L → ∞.

If M = ∞, take RL = ∞. Assume now that M < ∞. Then there exists a string A′ of
0s and 2s of length of 3 · 2m so that the top row of WL is a segment of (A′)∞ for every void.
This holds because the first level configuration λ is periodic with the required period on a strip
above WL, by Lemma 7.4, while the absence of relevant paths makes the top row also periodic
by Lemma 2.1. Moreover, by the same results, the periodic pattern is the same for all voids.

Consider the CA ξ started with a periodic configuration B∞, for some string B of length
σ. The evolution is periodic in time after some initial burn-in period TB . Let burnin(σ) =
maxB TB . Our random distance RL is burnin(3 · 2M ) plus a universal additive constant. The
proof is finished by Lemma 2.3.

As remarked earlier, Theorem 1.1 implies that the union of the regions that are filled by a
translate of the ether has density 1 within the forward cone of the seed. Therefore, on the event
that RL < ∞ the set of non-zero points has a rational density within the same forward cone.
We do not know whether the same holds for every seed.

For an arbitrary web CA satisfying the conditions of Theorem 1.1, lim supL→∞P(RL ≥ r)
decays at least as fast as a power law in r. This is easily seen from the above proof, using the fact
that burnin(σ) ≤ 2σ . In cases when the dynamics restricted to 0s and 2s is additive, including
Web-Xor, Modified Web-Xor, and Piggyback, one can easily show that the decay is exponential.
Identical remarks apply to the temporal period of the ether ηL.
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9 Bounds on ether probabilities

In this section we prove Theorem 1.2, and explain how explicit lower bounds on ether probabil-
ities are proved. We also indicate how some ethers can be ruled out for certain rules.

For m ≥ 0, we call the string A in Lemma 7.4(ii) the level-2m link of the seed λ0. (Note
that the choice of A is unique up to periodic shifts.) Fix an integer k ≥ 1 and a binary string
A. Consider 1 Or 3 with initial periodic configuration λ0 = A∞. If there is no empty diagonal
(resp. wide, θ-free) path from Z× {0} to Z× {k − 1} in the resulting configuration λ, then we
say that that A is a blocker to depth k for diagonal (resp. wide, θ-free) paths. If λk−1 6≡ 0,
then we say that that A is non-degenerate to depth k.

Fix an m ≥ 1, and let λ0 be a uniformly random seed on [0, L], with L ≥ 2m+1. For diagonal
and wide paths, Proposition 7.5 implies that

P(the level-2m link of λ0 is a blocker to depth 2m) ≥ 1− exp(−c2m),

for some universal constant c.

Further, consider a web CA ξt with an ether η ∈ {0, 2}Z
2

. The signature of η is a string
B such that, for some t, η(·, t) equals a (spatial) translation of B∞, and is the first in the
lexicographic order among shortest such strings. Observe that two ethers are equivalent if and
only if they have the same signature. We say that a binary string A produces η with signature
B if the initial state ξ0 = A∞ makes ξt equal to a translation of B∞ at some time t.

Lemma 9.1 (Blockers). Let ξt be a diagonal-compliant (respectively: wide-compliant, or θ-
free-compliant) web CA. Further, let A be a string that is a blocker to depth 2m for diagonal
(respectively: wide, or θ-free) paths and produces an ether η. If a seed ξ0 results in the level-2m

link A, then ξ is a replicator with ether η. If, in addition, the CA ξt has no spontaneous birth,
then η ≡ 0.

Proof. The first claim follows by the same arguments as in the proof of Theorem 1.1. The last
claim follows by Lemma 2.1.

Denote by Seeds[a,b] the set of binary seeds that vanish outside [a, b], and by Seeds =

∪a≤bSeeds[a,b] the set of all binary seeds. Let g : {0, 1}Z → {0, 1}Z be the map determined by
one step of the 1 Or 3 rule (i.e., the map λ0 7→ λ1). It is well-known (and easy to prove) that,
for a ≤ b, the map g is injective from Seeds[a,b] to Seeds[a−1,b+1], and therefore the restriction
g|Seeds is injective. We say that a binary seed λ0 has a predecessor if it is in the image of
g|Seeds. More generally, λ0 has k predecessors, for k ≥ 1, if it is in the image of the k-th
iteration (g|Seeds)

k; in that case, (g|Seeds)
−k (λ0) contains a unique seed called the the k-th

predecessor of λ0. We denote by Predk the set of all seeds that have k predecessors. The
following lemma follows immediately from the properties of g|Seeds.

Lemma 9.2 (Predecessors of random seeds). Assume λ0 is a uniformly random binary seed on
[0, L] and that 1 ≤ k ≤ L/2. Then P(Predk) = 1/4k. Moreover, conditioned on Predk, the k-th
predecessor of λ0 is a uniform binary seed on [k, L− k].
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Lemma 9.3 (Predecessors and links). For m ≥ 0, a seed λ0 has 2m predecessors if and only if
its level-2m link is 0.

Proof. If λ0 has k predecessors, then its level-2m link is 0 by Lemma 3.2(ii) and Lemma 4.1.

Conversely, assume that λ0 ∈ Seeds[0,L] is given by a string S of length L + 1. If n is
large enough so that 2n > 2L and 2n > 2m+1, the configuration of λ2n on [0, L] is S, again by
Lemma 3.2(ii) and additivity. If the level-2m link is 0, the configuration on [0, L] at time 2n−2m

provides a seed λ′
0, such that g2

m

(λ′
0) = λ0.

Lemma 9.4 (Ether probabilities). Suppose some seed S0 ∈ Seeds[0,s−1] is a replicator with
some ether η, and is such that for some m ≥ 1, the level-2m link is a blocker to depth 2m. Let
ξ0 be a uniformly random binary seed on [0, L]. Then

lim inf
L→∞

P(ξ0 is a replicator with ether η) ≥ 2−s−2m+1

.

Proof. Assume a seed S1 with support in [s,∞) has 2m predecessors. Form a seed S by adding
the configurations of S0 and S1. Then, by Lemma 9.3 and Lemma 4.1, S has the same level-2m

link as S0, and therefore, by Lemma 9.1, is a replicator with the same ether η. In the rest of
the proof we apply this fact to random seeds.

Suppose now ξ0 is a uniformly random seed in Seeds[0,L], with L large enough so that
L− s ≥ 2m+1. Let ξ′0 (resp. ξ′′0 ) be the random seed that agrees with ξ0 on [0, s− 1] (resp. [s, L])
and vanishes elsewhere. Then,

P(S is a replicator with ether η) ≥ P(ξ′0 = S0, and ξ′′0 has 2m predecessors)

= P(ξ′0 = S0) ·P(ξ′′0 has 2m predecessors)

= 2−s · 4−2m ,

where the last equality follows from Lemma 9.2.

Proof of Theorem 1.2. This is immediate from Lemmas 9.1 and 9.4 and the proof of Theo-
rem 1.1.

Recall that Extended 1 Or 3 is not diagonal- or wide-compliant. However, it is 4-free com-
pliant, and this allows us to prove the following lower bounds.

Theorem 9.5 (Replication and ether probabilities for Extended 1 Or 3 ). Let ξ be the Extended
1 Or 3 web CA, started from a uniformly random binary seed on [0, L]. Then

lim inf
L→∞

P(ξ is a replicator) ≥ 0.826.

Moreover, lower bounds on lim infL→∞P(ξ is a replicator with ether η) for certain ethers η are
as in Table 9.1.
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ether
signature

temporal
period

spatial
period

density
of 2s

lower
bound

0 1 1 0 0.6061

02 1 2 1/2 0.0471

0002 2 4 1/2 0.0333

[7]2 4 8 3/8 0.0664

[5]202 4 8 3/8 0.0189

[15]2 8 16 5/16 0.0193

[13]202 8 16 11/32 0.0079

[11]20002 8 16 5/16 0.0024

[9]2000202 8 16 3/8 0.0085

[9]2020202 8 16 3/8 0.0006

[7]200020202 8 16 13/32 0.0045

[7]202020202 8 16 7/16 0.0105

[5]2[5]20202 8 16 7/16 0.0006

Table 9.1: Some non-equivalent ethers that provably emerge for Extended 1 or 3 from a long
random seed with positive asymptotic probability. Each ether is generated from the initial
condition obtained by repeating its signature indefinitely. Here [k] stands for an interval of k
0s. The last column is a rigorous lower bound for the lim inf of the probability in Theorem 1.2.
The lower bounds sum to just over 0.826.

For an ether η, its reflection around the time axis is denoted by η̄. Then η is symmetric
if η̄ is equivalent to η. Assume that B is the signature of η and B̄ its reflection. A sufficient
condition for symmetry of η is that the reflection B̄ is a periodic shift of B. However, this
is not a necessary condition: the ether with signature B = [7]200020202 is symmetric as the
fourth iteration of the 1 Or 3 rule applied on B∞ yields a translation of B̄∞. Thus the only
non-symmetric ether in Table 9.1 is the one with signature [9]2000202. In non-symmetric cases,
our tables combine the frequencies of an ether and its reflection.

Proof of Theorem 9.5. Throughout the proof, fix a positive integer m ≥ 1 and assume that
L ≥ 3 · 2m. Using the same notation as in Proposition 3.6, assume that for some a ≥ 0, the
configuration of λ• at some time t on I = [a+ L, a + L− 1 + 3 · 2m]× {t} is exactly the string
A0 = 1� 1� 0�. For ease of reference, we will assume A∞

0 is positioned on Z so that A0

is the configuration in [0, 3 · 2n − 1].

Our main tool is the map Φ : ZL+1
2 → Z

3·2m
2 that takes as argument an initial binary seed λ0

supported on [0, L] and outputs the configuration of λ on I. This is a linear map that assigns
to every seed with support in [0, L] its level-2m link. The matrix of Φ (in the standard basis)
has row i given by the segment [i, L + i] of A∞

0 , i = 0, . . . , 3 · 2m − 1. (All matrix and vector
coordinate indices start at 0.) It is easy to see that the matrix has rank 2m+1, and therefore its
image has cardinality 22

m+1

. The kernel of Φ∗ has basis vectors yk, k = 0, . . . , 2m − 1, given by
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yki = 1[imod 2m = k], i = 0, . . . , 3 · 2m − 1. Therefore, the image of Φ is the set

Φ(ZL+1
2 ) =

{
b ∈ Z

3·2m
2 : bi + b2m+i + b2m+1+i = 0, ∀i = 0, . . . , 2m − 1

}
.

A vector in Z
3·2m
2 is naturally identified with a binary string of length 3 · 2m and we will do so

for the rest of the proof. Let Nn be the number of strings in Φ(ZL+1
2 ) that are non-degenerate

to depth 2m. Further, let Nb the number of strings in Φ(ZL+1
2 ) that are non-degenerate and

blockers, for 4-free paths, to the same depth 2m.

Now suppose that ξ0 be a uniform random binary seed on [0, L] and let pL be the probability
that ξ is a replicator. We claim that

(9.1) lim inf
L→∞

pL ≥
Nb

Nn
.

Recall that Pred1 is the event that ξ0 has a predecessor; by Lemma 9.3, PredC1 is exactly the
event that Φ(ξ0) is non-degenerate to depth 2m. Furthermore, conditioned on Pred1, the first
predecessor of ξ0 is a uniformly random binary seed on [1, L− 1]. Therefore,

(9.2)

pL ≥ P(Φ(ξ0) is a blocker to depth 2m | PredC1 )P(PredC1 )

+P(ξ is a replicator | Pred1)P(Pred1)

=
Nb

Nn
·
3

4
+ pL−2

1

4
.

Now (9.1) follows by taking lim inf as L → ∞ of the first and last expressions of (9.2). The
particular bound was obtained by a computer for m = 4: all 232 vectors in the range of Φ were
checked for blocking and non-degeneracy, and the resulting tallies were Nn = 3, 221, 225, 472
and Nb = 2, 663, 229, 504. This concludes the proof for replication probability.

The proof for a lower bound for a particular ether η is identical except in the definition of
Nb, which is now the number of strings in Φ(ZL+1

2 ) that are blockers and non-degenerate to the
level 2m, and produce η. For example, the result for the zero ether was Nb = 1, 952, 489, 232.

Table 9.1 suggests that spatial and temporal periods of Extended 1 Or 3 ethers are powers
of 2, and that the ether (2)∞ never appears. This is addressed in our next two results.

Lemma 9.6 (Periodic configurations). Assume that λ0 is a spatially periodic configuration
whose period σ divides 3 · 2n, and that λt = λ0 for some t. Then σ divides 2n. Moreover, for
σ ≥ 1 the temporal period equals σ/2.

Proof. By Lemma 3.1 and Lemma 4.1, we may assume n = 1, and then we check that any λ0 of
period 3 leads to a constant configuration in a single time step. The last assertion follows from
Lemma 3.1 and the following two easily checked facts: (1) if λ0 is periodic with period at most
2, then λ0 = λ1; and (2) if λ0 is periodic with period exactly 4, then λ0 6= λ1.

Proposition 9.7 (Possible ethers). Assume ξt is the Extended 1 or 3 CA. Suppose that that ξ0
is a replicator with ether η, and that its level-2m link is a blocker to depth 2m for 4-free paths.
Then η has spatial period that is a power of 2. Also, the signature of η is either 0 or it is of
the form [a1]2[a2]2 . . . [ak]2, where k ≥ 1 and each [ai] is a string of 0s of odd length ai. In
particular, η 6≡ 2.



9 BOUNDS ON ETHER PROBABILITIES 41

ether
signature

temporal
period

spatial
period

density
of 2s

lower
bound

0 1 1 0 0.5

2 1 1 1 0.0398

02 1 2 1/2 0.0142

0002 2 4 1/2 0.0258

[7]2 4 8 3/8 0.0099

[4]2022 4 8 1/2 0.0303

00020222 4 8 1/2 0.0209

00022222 4 8 5/8 0.1297

0002000200022222 8 16 11/16 0.0362

0002000200202002 8 16 9/16 0.0216

Table 9.2: Ten ethers that emerge from long random seeds for Piggyback with positive asymptotic
probability. The conventions of Table 9.1 apply.

Proof. The first claim follows from the previous lemma and Theorem 7.4, so we proceed to
prove the second claim. If λt ≡ 0, but λt−1 6≡ 0, then there are, up to translation, exactly two
possibilities for λt−1 and λt−2:

· · · 1 1 1 1 0 0 1 1 1 1 0 0 · · · · · · 0 1 0 0 0 1 0 1 0 0 0 1 · · ·

· · · 0 1 1 0 1 1 0 1 1 0 1 1 · · · · · · 0 1 1 0 1 1 0 1 1 0 1 1 · · ·

Assume that the seed ξ0 is such that δ(ξ0) has exactly k predecessors. (Recall that δ(a) :=
1[a = 1].) Then, for any n, the state of δ(ξ) on [C − 1, 2n −C +1]×{2n − k− 2, 2n − k− 1} is a
segment of one of the two configurations above. (Here, C is a constant that depends only on L.)
By considering 4-free paths, we see that the left configuration implies ξ2n−k ≡ 0 on [C, 2n −C],
while for right one implies that one ξ2n−k vanishes outside 6Z ∩ [C, 2n − C] (after a suitable
translation). As 2s evolve according to the 1 Or 3 rule in the absence of 1s, the positions of 2s
started from a subset of 2Z are a subset of 2Z at all even times (by Lemma 3.1). The claimed
form of the signature follows.

Lower bounds for ether probabilities can also be obtained for Piggyback , with the same proof
as for Theorem 9.5.

Theorem 9.8 (Ether probabilities for Piggyback). Let ξt be the Piggyback web CA, started from
a uniformly random seed of 0s and 1s on [0, L]. Lower bounds on

lim inf
L→∞

P(ξ is a replicator with ether η)

are as in Table 9.2.

The computer search with m = 4 yielded 117 different ethers for Piggyback with provably
positive asymptotic probability, with their combined probabilities at least 0.914. The ethers
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listed in Table 9.2 are the ten with largest lower bounds. The only non-symmetric ether among
these ten has signature [4]2022. (The initial state (00020222)∞ generates its translated reflection
in 2 steps.) We do not know whether the asymptotic probability for the zero ether is exactly
1/2.

Open problems

As the earlier discussions indicate, this topic offers a rich supply of open questions. We highlight
a small selection.

(i) In the 1 Or 3 cellular automaton started from a uniformly random binary string on the
half-line [0,∞), what is the growth rate of the maximum integer rt for which there is an
empty path from (−∞, 0)× {0} to (rt, t)? Is it the case that rt/t → 1/4 as t → ∞?

(ii) What can be said about percolation in the space-time configuration of other one-
dimensional cellular automata started in an invariant measure? For example, the uniformly
random binary string on Z is invariant for permutative rules (see [BL] for a definition),
including Rule 30. Do there exist infinite diagonal, wide or empty paths?

(iii) Are there infinitely many different ethers for replicators in the Piggyback cellular automa-
ton? Is there an algorithm that decides whether a given ether occurs in some replicator?

(iv) For two-dimensional Box 13 solidification CA (see Section 2 and [GG2]) started from a
uniform random seed in [0, L]2, does the final configuration have rational density with
probability converging to 1 as L → ∞?
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