Redetermined Crystal Structures of NiTe₂, PdTe₂, PtS₂, PtSe₂, and PtTe₂

SIGRID FURUSETH, KARI SELTE and ARNE KJEKSHUS

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Oslo 3, Norway

The present study was originally started with the purpose of reinvestigating the variable z parameter in the Cd(OH)₂ type crystal structure of NiTe₂ and PdTe₂. (The Cd(OH), type structure is described in terms of space group $P\overline{3}m1$ with metal atoms in 0,0,0 and metalloid atoms in $\frac{2}{3}, \frac{1}{3}, z$ and $\frac{1}{3}, \frac{2}{3}, \overline{z}$ with $z \approx \frac{1}{4}$.) The previous determination of the crystal structure of PdTe, by Thomassen i was based on the assumption of an ideal z value of $\frac{1}{2}$, whereas Tengnér ² used a rotation diagram to estimate $z=0.25\pm0.01$ for NiTe₂. The isostructural compounds PtS2, PtSe2, and PtTe₂ have recently been reinvestigated by Grønvold et al.³ As only a qualitative criterion was used to compare observed and calculated intensities of the X-ray powder photographs, these compounds were also included in the present

Samples were prepared by treating the mixed powders of metal (of purity 99.9% or better) and chalcogen (of purity 99.999+%) in the stoichiometric ratio 1:2 in evacuated, sealed silica tubes, as previously described by Grønvold et al., Westrum et al., and Grønvold and Røst.

All samples were crushed and X-ray powder photographs taken with filtered CuK radiation $(\lambda(\alpha_1)=1.54050~\text{Å})$ in cameras with 114.6 mm effective diameter and asymmetric film mounting. Photographs were also taken with strictly monochromatized CuK α_1 radiation in a Guinier type camera with KCl as internal standard. The relative intensities of the reflections on multiple-film Debye-Scherrer photographs were determined from photometric recordings of the films. Corrections for the resolution of $K\alpha_1\alpha_2$ doublets were carried out according to the method of Rae and Barker. $^6F_0^2$ values were obtained by multiplication of the corrected intensities with $(Lp \times p)^{-1}$. (No corrections for absorption and temperature factors were used.) In the calculation of F_c values, atomic scattering factors were taken from International Tables. The reliability index

$$R^* = \Sigma |F_0^2 - F_c^2| / \Sigma F_0^2$$

has been used in order to judge the accordance between the observed and calculated data. (F_c^2) represents the sum of the squares of the structure factors for reflections with equal $\sin^2\theta$. The observed intensities of the strong, high-angle reflections $(\theta > 75^\circ)$ are, probably because of systematic errors, considerably lower than calculated, and these reflections are not taken into account in the calculation of R^* .)

Sets of F_c values were calculated for each compound for values of z between 0.20 and 0.28. The z,R^* curves are shown in Fig. 1. The minima of the curves indicate the most probable values of z. Unit cell dimensions, z parameters with correspond-

Table 1. Structural data for the MX_2 compounds NiTe₂, PdTe₂, PtS₂, PtSe₂, and PtTe₂.

Compound	$ m NiTe_2$	PdTe_2	$\mathbf{PtS_2}$	PtSe_{2}	PtTe_{2}
$egin{array}{c} a \ (\mathring{\mathbb{A}}) \\ c \ (\mathring{\mathbb{A}}) \\ z \\ M-6 \ M \ (\mathring{\mathbb{A}}) \end{array}$	$egin{array}{c} 3.8542 \\ 5.2604 \\ 0.254 \pm 0.004 \\ 3.854 \\ \hline \end{array}$	$\begin{array}{c} 4.0365 \\ 5.1262 \\ 0.247 \pm 0.005 \\ 4.037 \end{array}$	3.5432 5.0388 0.227 ± 0.010 3.543	3.7278 5.0813 0.255 ± 0.003 3.728	4.0259 5.2209 0.254 ± 0.005 4.026
		$ \begin{vmatrix} 2.652 \pm 0.013 \\ 3.49 & \pm 0.04 \\ 3.44 & \pm 0.04 \\ 4.037 \end{vmatrix} $	$egin{array}{lll} 2.34 & \pm 0.03 \\ 3.43 & \pm 0.08 \\ 3.07 & \pm 0.08 \\ 3.543 \end{array}$	$ \begin{vmatrix} 2.513 \pm 0.009 \\ 3.29 & \pm 0.02 \\ 3.37 & \pm 0.02 \\ 3.728 \end{vmatrix} $	$egin{array}{l} 2.676 \pm 0.013 \ 3.46 \ \pm 0.04 \ 3.53 \ \pm 0.04 \ 4.026 \ \end{array}$

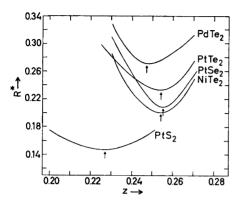


Fig. 1. The R* versus z curves for NiTe₂, PdTe₂, PtSe₃, and PtTe₃.

ing uncertainties estimated from the curvature of the z,R^* curves, and the shortest interatomic distances are listed in Table 1.

Some comments on the results should

be appropriate:

(i) All samples used for collecting the intensity data in this study, suffered from preferred orientation of the crystals in the glass capillaries. This effect was least significant for PtS₂ and most noteworthy for PdTe₂. Our first sample of PdTe₂, prepared at 500°C, gave $R^* = 0.52$ as the best R^* value; the second sample, heated at 300°C for four days, gave the z,R^* curve shown in Fig. 1. Within the limited accuracy the position of the minimum was the same for the two sets of intensity data. This indicates that the determinations of z in Table 1 are quite reliable despite the relatively high values of R^* shown in Fig. 1.

(ii) The only compound of this investigation having a z parameter markedly different from the ideal value $z=\frac{1}{4}$, is PtS₂. The flatness of the R^* versus z curve for PtS₂ explains why this deviation has not been observed by Grønvold et al.,³ showing clearly that qualitative criteria may be insufficient for accurate structure determinations. (Because of the large difference in the X-ray scattering factors of Pt and S, R^* for PtS₂ is rather insensitive

to the variations in z).

(iii) The reliability index $R^{**}=\Sigma||\sqrt{F_{\rm o}^2}|-|\sqrt{F_{\rm c}^2}||/\Sigma|\sqrt{F_{\rm o}^2}|$ can more easily than R^* be compared with the commonly used $R=\Sigma||F_{\rm o}|-|F_{\rm c}||/\Sigma|F_{\rm o}|$. In the

minima of the z, R^* curves the corresponding values of R^{**} are 0.12, 0.13, 0.083, 0.12, and 0.11 for NiTe₂, PdTe₂, PtS₂, PtSe₂, and PtTe₂, respectively. (R^{**} is 0.095 for PtS₂ at z=0.250).

Acknowledgement. The authors are greatly indebted to Professor Haakon Haraldsen for his kind interest in this study and for placing laboratory facilities at their disposal.

- Thomassen, L. Z. physik. Chem. B 2 (1929) 349.
- Tengnér, S. Z. anorg. allgem. Chem. 239 (1938) 126.
- Grønvold, F., Haraldsen, H. and Kjekshus,
 A. Acta Chem. Scand. 14 (1960) 1879.
- Westrum, E. F., Chou, C., Machol, R. E. and Grønvold, F. J. Chem. Phys. 28 (1958) 498.
- Grønvold, F. and Røst, E. Acta Chem. Scand. 10 (1956) 1620.
- Rae, A. I. M. and Barker, W. W. Acta Cryst. 14 (1961) 1208.
- International Tables for X-Ray Crystallography. III. The Kynoch Press, Birmingham 1962.

Received December 17, 1964.

On the Magnetic Properties of Niobium Selenides and Tellurides

KARI SELTE and ARNE KJEKSHUS

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Oslo 3, Norway

As part of our continued studies of niobium selenides and tellurides ¹⁻⁴ we here report the results of magnetic susceptibility measurements carried out on the existing phases Nb₅Se₄, Nb₃Se₄, Nb_{1+x}Se₂ (0.00 $\leq x \leq$ 0.29 at 25°C), "NbSe₄", Nb₅Te₄, Nb₅Te₄, NbTe₂, and NbTe₄.

Purity of the materials and preparation of the samples have previously been described. The magnetic measurements were made according to the Gouy method at temperatures between 90 and 725°K and at three different maximum field strengths ($H_{\rm max}=4015,4700,$ and 5110 Ø, respectively). The samples were enclosed